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Problems	in	Standard	Model		

The	Standard	Model	(SM)	is	the	best	theory		
in	describing	the	nature	of	elementary	parQcle	
physics,	which	is	in	excellent	agreement	with	
almost	of	all	current	experimental	results		
					EVEN	ader	the	LHC	
		
However,		
New	Physics	beyond	SM	is	strongly	suggested	by	
both	experimental	&	theoreQcal	points	of	view		



	1.	Neutrino	masses		
					and	flavor	mixings	
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Figure 14.9: The regions of squared-mass splitting and mixing angle favored or
excluded by various experiments based on two-flavor neutrino oscillation analyses.
The figure was contributed by H. Murayama (University of California, Berkeley, and
IPMU, University of Tokyo). References to the data used in the figure can be found
at http://hitoshi.berkeley.edu/neutrino.
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Neutrinos	are	massless	
in	the	Standard	Model	

PDG	
What	is	missing	in	the	Standard	Model?		



Existence	of	Dark	Ma3er	has	been	established!		

Dark	Ma/er	parQcle:				non-baryonic		
																																										electric	charge	neutral		
																																										(quasi)	stable													

2.	Cosmological	Dark	Ma/er	Problem		

No	suitable	DM	candidates	in	the	SM	

Energy	budget	of	the	
Universe	is	precisely	
determined	by	recent	CMB	
anisotropy	observaQons		
(WMAP	&	Planck)		



Minimal	gauged	B-L	extension	of	the	Standard	Model	

Ø  To	incorporate	neutrino	masses	in	the	Standard	Model	(at	the	
renormalizable	level),	we	need	right-handed	neutrinos	

Ø  Right-handed	neutrinos	are	singlet,	and	only	for	generaQng	
neutrino	mass	

Gauged	B-L	extension	of	the	Standard	Model	

Ø  B-L	is	the	unique	anomaly	free	global	symmetry		

Ø  Gauging	the	global	B-L	symmetry	looks	natural		

Ø  Anomaly	free	requirement	à	3	right-handed	neutrinos	



Minimal	Gauged	B-L	Extension	of	the	SM	

The	model	is	based	on		

ParQcle	Contents		

New	fermions:	

New	scalar:	

Mohapatra	&	Marshak;		
We/erich;	others	

2

SU(3)c SU(2)L U(1)Y U(1)B−L

qiL 3 2 +1/6 +1/3
ui
R 3 1 +2/3 +1/3

diR 3 1 −1/3 +1/3
ℓiL 1 2 −1/2 −1
N i 1 1 0 −1
eiR 1 1 −1 −1
H 1 2 −1/2 0
Φ 1 1 0 +2

TABLE I: Particle content. In addition to the SM particle
contents, the right-handed neutrino N i (i = 1, 2, 3 denotes
the generation index) and a complex scalar Φ are introduced.

SU(3)c × SU(2)L × U(1)Y × U(1)B−L and the particle
content is listed in Table 1 [33]. The SM singlet scalar (Φ)
breaks the U(1)B−L gauge symmetry down to Z2 (B−L)

by its vacuum expectation value (vev), and at the same
time generates the right-handed neutrino masses. The
Lagrangian terms relevant for the seesaw mechanism are
given by

L ⊃ −Y ij
D N iH†ℓjL −

1

2
Y i
NΦN icN i + h.c., (1)

where the first term yields the Dirac neutrino mass after
electroweak symmetry breaking, while the right-handed
neutrino Majorana mass term is generated by the second
term associated with the B − L gauge symmetry break-
ing. Without loss of generality, we use the basis which
diagonalizes the second term and makes Y i

N real and pos-
itive.
Consider the following tree level action in the Jordan

frame:

Stree
J =

∫

d4x
√
−g

[

−
(

m2
P

2
+ ξHH†H + ξΦ†Φ

)

R

+(DµH)†gµν(DνH)− λH

(

H†H −
v2

2

)2

+(DµΦ)
†gµν(DνΦ)− λ

(

Φ†Φ−
v2B−L

2

)2

−λ′(Φ†Φ)(H†H)
]

, (2)

where v and vB−L are the vevs of the Higgs fields H and
Φ respectively. To simplify the discussion, we assume
that λ′ is sufficiently small so it can be ignored, and also
ξH ≪ ξ.
The relevant one-loop renormalization group improved

effective action can be written as [41]

SJ =

∫

d4x
√
−g

[

−
(

m2
P + ξG(t)2φ2

2

)

R

+
1

2
G(t)2(∂φ)2 −

1

4
λ(t)G(t)4φ4

]

, (3)

where t = ln(φ/µ) and G(t) = exp(−
∫ t
0 dt′γ(t′)/(1 +

γ(t′))), with

γ(t) =
1

(4π)2

(

1

2

∑

i

(Y i
N (t))2 − 12 g2B−L(t)

)

(4)

being the anomalous dimension of the inflaton field.
gB−L denotes the U(1)B−L gauge coupling and µ the
renormalization scale. In the presence of the nonmini-
mal gravitational coupling, the one loop renormalization
group equations (RGEs) of λ, gB−L, ξ and Y i

N are given
by [32, 33]

(4π)2
dλ

dt
= (2 + 18 s2)λ2 − 48λ g2B−L + 96g4B−L

+2λ
∑

i

(Y i
N )2 −

∑

i

(Y i
N )4, (5)

(4π)2
dgB−L

dt
=

(

32 + 4 s

3

)

g3B−L, (6)

(4π)2
dξ

dt
= (ξ + 1/6)

(

(1 + s2)λ− 2γ
)

, (7)

(4π)2
dY i

N

dt
= (Y i

N )3 − 6g2B−LY
i
N +

1

2
Y i
N

∑

j

(Y j
N )2,

(8)

where the s factor is defined as

s(φ) ≡

(

1 + ξφ2

m2

P

)

1 + (6ξ + 1) ξφ
2

m2

P

. (9)

In the Einstein frame with a canonical gravity sector,
the kinetic energy of φ can be made canonical with re-
spect to a new field σ = σ(φ) [7],

(

dσ

dφ

)2

=
G(t)2Ω(t) + 3m2

P (∂φΩ(t))
2/2

Ω(t)2
, (10)

where,

Ω(t) = 1 + ξG(t)2φ2/m2
P . (11)

The action in the Einstein frame is then given by

SE =

∫

d4x
√
−gE

[

−
1

2
m2

PRE +
1

2
(∂Eσ)

2 − VE(σ)

]

,

(12)
with

VE(φ) =
1
4λ(t)G(t)4 φ4

(

1 + ξ φ2

m2

P

)2 . (13)

In our numerical work, we employ above potential with
the RGEs given in Eqs. (5-8). However, for a qualitative
discussion it is reasonable to use the following leading-log
approximation of the above potential:

VE(φ) ≃

(

λ0

4 +
96 g2

B−L

16 π2 ln
[

φ
µ

])

φ4

(

1 + ξ φ2

m2

P

)2 , (14)

R	



B-L	symmetry	breaking	via		

B-L	gauge	boson	(Z’	boson)	mass	
	
			
Majorana	neutrino	mass	

Mass	scale	is	controlled	
by	B-L	Sym.	Br.	scale		
	
B-L	sym	breaking	also	
generates	NR	mass		

New	terms	in	Lagangian	



SM	singlet	fermion	

Seesaw Mechanism 

We	introduce	right-handed	neutrinos		and	Majorana	masses	

IntegraQng	out	the	heavy	Majorana	neutrino	

Minkowski;	Yanagida;		Gell-Mann,	Ramond	&	
Slansky;	Mohapatra	&	Senjanovic;	others	



What	is	the	Majorana	mass	scale?		

Broad	range	of	Majorana	mass,	depending	on	Dirac	mass	scale		

Example:		

Minimal	B-L	@	TeV	is	well-moQvated	in	terms	of	the	LHC	



Natural	realizaQon	of	the	TeV	scale	B-L	model	(Example)	

SUSY	extension		

New	superpotenQal	terms		

chiral superfield SU(3)c SU(2)L U(1)Y U(1)B−L R-parity Z2

Qi 3 2 +1/6 +1/3 − +
U c
i 3∗ 1 −2/3 −1/3 − +

Dc
i 3∗ 1 +1/3 −1/3 − +

Li 1 2 −1/2 −1 − +
N c

1 1 1 0 +1 − −
N c

2,3 1 1 0 +1 − +
Ec

i 1 1 −1 +1 − +
Hu 1 2 +1/2 0 + +
Hd 1 2 −1/2 0 + +
Φ 1 1 0 −2 + +
Φ̄ 1 1 0 +2 + +

Table 2: Particle contents: In addition to the MSSM particles, three right-handed neutrino
superfields (N c

1,2,3) and two Higgs superfields (Φ̄ and Φ) are introduced. The Z2-parity for N c
1

is assigned to be odd. i = 1, 2, 3 is the generation index.

8π2dMBL

d lnµ
= 16g2BLMBL. (31)

.

There are three identical equations for the soft right handed sneutrino masses [12,13],

8π2
dm2

φ

d lnµ
= g2BL

[
(m2

Ñc
1
+m2

Ñc
2
+m2

φ)− 4M2
BL

]
. (32)

8π2
dm2

Ñc
i

d lnµ
= g2BL

[
(m2

Ñc
1
+m2

Ñc
2
+m2

φ)− 4M2
BL

]
. (33)

m2
Ñc

i
≫ m2

φ (34)

W ⊃ yijDN
c
i LjHu + fkΦN

c
kN

c
k + µΦΦ̄ (35)

V. Barger, P. Fileviez Perez and S. Spinner, Phys. Rev. Lett. 102, 181802 (2009)

The minimal supersymmetric (SUSY) extension of the Standard Model (MSSM) is one of

the prime candidates for physics beyond the Standard Model (SM), which naturally solves

problems in the SM, in particular, the gauge hierarchy problem. In addition, a candidate for

the cold dark matter, which is missing in the SM, is also naturally incorporated in the MSSM.

3

chiral superfield SU(3)c SU(2)L U(1)Y U(1)B−L R-parity Z2

Qi 3 2 +1/6 +1/3 − +
U c
i 3∗ 1 −2/3 −1/3 − +

Dc
i 3∗ 1 +1/3 −1/3 − +

Li 1 2 −1/2 −1 − +
N c

i 1 1 0 +1 − −
Ec

i 1 1 −1 +1 − +
Hu 1 2 +1/2 0 + +
Hd 1 2 −1/2 0 + +
Φ 1 1 0 −2 + +
Φ̄ 1 1 0 +2 + +

Table 2: Particle contents: In addition to the MSSM particles, three right-handed neutrino
superfields (N c

1,2,3) and two Higgs superfields (Φ̄ and Φ) are introduced. The Z2-parity for N c
1

is assigned to be odd. i = 1, 2, 3 is the generation index.

8π2dMBL

d lnµ
= 16g2BLMBL. (31)

.

There are three identical equations for the soft right handed sneutrino masses [12,13],

8π2
dm2

φ

d lnµ
= g2BL

[
(m2

Ñc
1
+m2

Ñc
2
+m2

φ)− 4M2
BL

]
. (32)

8π2
dm2

Ñc
i

d lnµ
= g2BL

[
(m2

Ñc
1
+m2

Ñc
2
+m2

φ)− 4M2
BL

]
. (33)

m2
Ñc

i
≫ m2

φ (34)

W ⊃ yijDN
c
i LjHu + fkΦN

c
kN

c
k + µΦΦ̄ (35)

V. Barger, P. Fileviez Perez and S. Spinner, Phys. Rev. Lett. 102, 181802 (2009)

The minimal supersymmetric (SUSY) extension of the Standard Model (MSSM) is one of

the prime candidates for physics beyond the Standard Model (SM), which naturally solves

problems in the SM, in particular, the gauge hierarchy problem. In addition, a candidate for

the cold dark matter, which is missing in the SM, is also naturally incorporated in the MSSM.

Searching for SUSY is one of the major occupations of the Large Hadron Collider (LHC)

3



RadiaQve	B-L	symmetry	breaking	@	TeV	

chiral superfield SU(3)c SU(2)L U(1)Y U(1)B−L R-parity Z2

Qi 3 2 +1/6 +1/3 − +
U c
i 3∗ 1 −2/3 −1/3 − +

Dc
i 3∗ 1 +1/3 −1/3 − +

Li 1 2 −1/2 −1 − +
N c

1 1 1 0 +1 − −
N c

2,3 1 1 0 +1 − +
Ec

i 1 1 −1 +1 − +
Hu 1 2 +1/2 0 + +
Hd 1 2 −1/2 0 + +
Φ 1 1 0 −2 + +
Φ̄ 1 1 0 +2 + +

Table 5: Particle contents: In addition to the MSSM particles, three right-handed neutrino
superfields (N c

1,2,3) and two Higgs superfields (Φ̄ and Φ) are introduced. The Z2-parity for N c
1

is assigned to be odd. i = 1, 2, 3 is the generation index.

Next, we introduce soft SUSY breaking terms for the fields in the B − L sector:

Lsoft = −
(
1

2
MBLλBLλBL + h.c.

)
−
(

3∑

k=1

m2
Ñc

k
|Ñ c

k |
2 +m2

Φ|Φ|2 +m2
Φ̄|Φ̄|

2

)

+

(
BΦΦ̄Φ+

3∑

k=1

AkΦÑ c
kÑ

c
k + h.c.

)
. (39)

Here we have omitted terms relevant to the neutrino Dirac Yukawa couplings since they are

very small, i.e. O(10−6) or smaller. For simplicity, in this analysis we consider the same

setup as the constrained MSSM and assume the universal soft SUSY breaking parameters,

m2
Ñc

k
= m2

Φ = m2
Φ̄ = m2

0 and Ak = A0, at the grand unification scale4, MU = 2× 1016 GeV.

3 Radiative B − L symmetry breaking and R-parity

In the non-SUSY minimal B − L model, the B − L symmetry breaking scale is determined

by parameters in the Higgs potential which can in general be at any scale as long as the

experimental bound mZ′/gBL ≥ 6− 7 TeV [13] is satisfied. The SUSY extension of the model,

however, offers a very interesting possibility for constraining the B − L symmetry breaking

scale, as pointed out in [9].

It is well-known that the electroweak symmetry breaking in the MSSM is triggered by

radiative corrections to the up-type Higgs doublet mass squared via the large top Yukawa
4However, we do not necessarily assume grand unification behind our model. In fact, it is very non-trivial

to unify the Z2-odd right-handed neutrino with Z2-even fields.
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PRD	85	(2012)	055011	
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PLB	665	(2008)	374				
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Ø Most	of	parameter	space,		
						R-parity	is	also	broken	



DM	candidate	is	sQll	missing	

There	have	been	many	proposal	for	introducQon	of	DM	parQcles		
Concise	model:	no	extension	of	the	parQcle	content		

Ø  Assigning	odd	parity	
for	one	N_R	

		
Ø  The	others	are	all	

even	

SU(3)c SU(2)L U(1)Y U(1)B−L Z2

N j
R 1 1 0 −1 +

NR 1 1 0 −1 −
Φ 1 1 0 +2 +

Table 1: The particle content of the minimal U(1)B−L extended SM with Z2 parity. In addition
to the SM particle content, the three right-handed neutrinos N j

R (j = 1, 2) and NR and a
complex scalar Φ are introduced. The Z2 parity is also introduced, under which the right-
handed neutrino NR is odd, while the other fields are even.
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Minimal	B-L	model	with	NR	dark	ma/er		

Ø  3	right-handed	neutrinos	à	2+1		

2	NRs	for	the	minimal	seesaw			

ü  Neutrino	oscillaQon	data	with	one	massless	eigenstate	
	
ü  leptogenesis	at	TeV		

1	NRs	for	thermal	Dark	Ma/er	

					Enhancement	of	epsilon	necessary	
à	Resonant	leptogensis	

						Suppression	of	lepton	asymmetry	via	Z’	interacQon		
à	some	more	enhancement	by	Y_D		
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PLB	548	(2002)	119		
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PRD	83	(2011)	093011	



Ø  B-L	Higgs	can	play	the	role	of	inflaQon		 NO,	Rheman	&	Sari,		
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SU(3)c SU(2)L U(1)Y U(1)B−L

qiL 3 2 +1/6 +1/3
ui
R 3 1 +2/3 +1/3

diR 3 1 −1/3 +1/3
ℓiL 1 2 −1/2 −1
N i 1 1 0 −1
eiR 1 1 −1 −1
H 1 2 −1/2 0
Φ 1 1 0 +2

TABLE I: Particle content. In addition to the SM particle
contents, the right-handed neutrino N i (i = 1, 2, 3 denotes
the generation index) and a complex scalar Φ are introduced.

SU(3)c × SU(2)L × U(1)Y × U(1)B−L and the particle
content is listed in Table 1 [33]. The SM singlet scalar (Φ)
breaks the U(1)B−L gauge symmetry down to Z2 (B−L)

by its vacuum expectation value (vev), and at the same
time generates the right-handed neutrino masses. The
Lagrangian terms relevant for the seesaw mechanism are
given by

L ⊃ −Y ij
D N iH†ℓjL −

1

2
Y i
NΦN icN i + h.c., (1)

where the first term yields the Dirac neutrino mass after
electroweak symmetry breaking, while the right-handed
neutrino Majorana mass term is generated by the second
term associated with the B − L gauge symmetry break-
ing. Without loss of generality, we use the basis which
diagonalizes the second term and makes Y i

N real and pos-
itive.
Consider the following tree level action in the Jordan

frame:

Stree
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d4x
√
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2

)2
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†gµν(DνΦ)− λ

(

Φ†Φ−
v2B−L

2

)2

−λ′(Φ†Φ)(H†H)
]

, (2)

where v and vB−L are the vevs of the Higgs fields H and
Φ respectively. To simplify the discussion, we assume
that λ′ is sufficiently small so it can be ignored, and also
ξH ≪ ξ.
The relevant one-loop renormalization group improved

effective action can be written as [41]

SJ =

∫

d4x
√
−g

[

−
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m2
P + ξG(t)2φ2

2

)

R

+
1

2
G(t)2(∂φ)2 −

1

4
λ(t)G(t)4φ4

]

, (3)

where t = ln(φ/µ) and G(t) = exp(−
∫ t
0 dt′γ(t′)/(1 +

γ(t′))), with

γ(t) =
1

(4π)2
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1

2
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(Y i
N (t))2 − 12 g2B−L(t)

)

(4)

being the anomalous dimension of the inflaton field.
gB−L denotes the U(1)B−L gauge coupling and µ the
renormalization scale. In the presence of the nonmini-
mal gravitational coupling, the one loop renormalization
group equations (RGEs) of λ, gB−L, ξ and Y i

N are given
by [32, 33]

(4π)2
dλ
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= (2 + 18 s2)λ2 − 48λ g2B−L + 96g4B−L
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where the s factor is defined as

s(φ) ≡

(
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m2

P

)

1 + (6ξ + 1) ξφ
2

m2

P

. (9)

In the Einstein frame with a canonical gravity sector,
the kinetic energy of φ can be made canonical with re-
spect to a new field σ = σ(φ) [7],

(

dσ

dφ

)2

=
G(t)2Ω(t) + 3m2

P (∂φΩ(t))
2/2

Ω(t)2
, (10)

where,

Ω(t) = 1 + ξG(t)2φ2/m2
P . (11)

The action in the Einstein frame is then given by
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−gE

[

−
1

2
m2
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with
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4λ(t)G(t)4 φ4

(

1 + ξ φ2

m2

P

)2 . (13)

In our numerical work, we employ above potential with
the RGEs given in Eqs. (5-8). However, for a qualitative
discussion it is reasonable to use the following leading-log
approximation of the above potential:

VE(φ) ≃

(

λ0

4 +
96 g2
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16 π2 ln
[
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1 + ξ φ2
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)2 , (14)
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where the s factor is defined as

s(φ) ≡

(

1 + ξφ2
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P

)

1 + (6ξ + 1) ξφ
2

m2

P

. (9)

In the Einstein frame with a canonical gravity sector,
the kinetic energy of φ can be made canonical with re-
spect to a new field σ = σ(φ) [7],

(

dσ

dφ

)2

=
G(t)2Ω(t) + 3m2

P (∂φΩ(t))
2/2

Ω(t)2
, (10)

where,

Ω(t) = 1 + ξG(t)2φ2/m2
P . (11)

The action in the Einstein frame is then given by

SE =
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d4x
√
−gE

[

−
1

2
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PRE +
1

2
(∂Eσ)

2 − VE(σ)

]

,

(12)
with

VE(φ) =
1
4λ(t)G(t)4 φ4

(

1 + ξ φ2
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P

)2 . (13)

In our numerical work, we employ above potential with
the RGEs given in Eqs. (5-8). However, for a qualitative
discussion it is reasonable to use the following leading-log
approximation of the above potential:

VE(φ) ≃

(

λ0
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96 g2
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16 π2 ln
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φ4
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Suitable	choice	of		
non-minimal	coupling,	
the	inflaQonary	
predicQons	are	
consistent	with		
Planck	2015	results	



Z’BL	portal	NR	dark	ma/er	

Ø  The	NR	dark	ma/er	communicate	
with	the	SM	parQcles	through	its	
B-L	gauge	interacQon	

5

Z’BL portal dark matter

The dark matter particle can communicate with 
the SM particles through the Z’BL boson.

Z’BL portal dark matter=

・B-L gauge coupling (αBL) 
・Z’BL boson mass (mZ’) 
・dark matter mass (mDM)

Only three free parameters are involved in 
dark matter physics analysis.

f

f̄NR

NR

Z 0
BL

Ø  For	Dark	Ma/er	physics,	only	3	free	parameters	are	involved	

NO	&	S.	Okada,	PRD	93(2016)	075003	
arXiv:	1601.07526		
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Z’BL portal dark matter

The dark matter particle can communicate with 
the SM particles through the Z’BL boson.

Z’BL portal dark matter=

・B-L gauge coupling (αBL) 
・Z’BL boson mass (mZ’) 
・dark matter mass (mDM)

Only three free parameters are involved in 
dark matter physics analysis.

f

f̄NR

NR

Z 0
BL

Note	that	the	NR	dark	ma/er	has	B-L	charge	-1	



Cosmological	constraint	on	Z’	portal	DM	

Observed	Relic	Abundance:		

The parameters in the Higgs potential are suitably chosen for the Higgs fields to develop their

VEVs as

⟨H⟩ =
(

v√
2

0

)

, ⟨Φ⟩ =
vBL√
2
. (3)

Associated with the B−L symmetry breaking, the Majorana neutrinos N j
R (j = 1, 2), the dark

matter particle NR and the B − L gauge boson acquire their masses as

mj
N =

Y j
N√
2
vBL, mDM =

YN√
2
vBL, mZ′ = 2gBLvBL, (4)

where gBL is the U(1)B−L gauge coupling.

The dark matter particle can communicate with the SM particles in two ways. One is

through the Higgs bosons. In the Higgs potential of Eq. (2), the SM Higgs boson and the

B − L Higgs boson mix with each other in the mass eigenstates, and this Higgs boson mass

eigenstates mediate the interactions between the dark matter particle and the SM particles.

Dark matter physics with the interactions mediated by the Higgs bosons have been investigated

in [3, 5]. The analysis involves 4 free parameters: Yukawa coupling YN and 3 free parameters

from the Higgs potential after two conditions of v = 246 GeV and the SM-like Higgs boson

mass fixed to be 125 GeV are taken into account. The other way for the dark matter particle

to communicate with the SM particles is through the B − L gauge interaction with the Z ′
BL

boson. In this case, only three free parameters (gBL, mZ′ and mDM) are involved in dark matter

physics analysis. As we have stated in the previous section, we concentrate on dark matter

physics mediated by the Z ′
BL boson. When |λHΦ| ≪ 1, the Higgs bosons mediated interactions

are negligibly small, and the dark matter particle communicates with the SM particles only

through the Z ′
BL boson. For example, this situation is realized in supersymmetric extension of

our model [6], where λHΦ is forbidden by supersymmetry in the Higgs superpotential at the

renormalizable level. When squarks and sleptons are all heavier than the dark matter particles,

there is no essential difference in dark matter phenomenology between non-supersymmetric case

and supersymmetric case (see Ref. [6]). For a limited parameter choice, the Z ′
B−L portal dark

matter scenario has been investigated in [5, 6].

3 Cosmological constraint on Z ′
BL portal dark matter

The dark matter relic abundance is measured at the 68% limit as [18]

ΩDMh2 = 0.1198± 0.0015. (5)

4

Planck	2015	(68%	CL)	
In this section, we evaluate the relic abundance of the dark matter NR and identify an allowed

parameter region that satisfies the upper bound on the dark matter relic density of ΩDMh2 ≤
0.1213. The dark matter relic abundance is evaluated by integrating the Boltzmann equation

given by

dY

dx
= −

s⟨σv⟩
xH(mDM)

(

Y 2 − Y 2
EQ

)

, (6)

where temperature of the universe is normalized by the mass of the right-handed neutrino

x = mDM/T , H(mDM) is the Hubble parameter at T = mDM , Y is the yield (the ratio of

the dark matter number density to the entropy density s) of the dark matter particle, YEQ is

the yield of the dark matter particle in thermal equilibrium, and ⟨σv⟩ is the thermal average

of the dark matter annihilation cross section times relative velocity. Explicit formulas of the

quantities involved in the Boltzmann equation are as follows:

s =
2π2

45
g⋆
m3

DM

x3
,

H(mDM) =

√

4π3

45
g⋆
m2

DM

MP l

,

sYEQ =
gDM

2π2

m3
DM

x
K2(x), (7)

where MP l = 1.22×1019 GeV is the Planck mass, gDM = 2 is the number of degrees of freedom

for the dark matter particle, g⋆ is the effective total number of degrees of freedom for particles

in thermal equilibrium (in the following analysis, we use g⋆ = 106.75 for the SM particles), and

K2 is the modified Bessel function of the second kind. In our Z ′
BL portal dark matter scenario,

a pair of dark matter annihilates into the SM particles dominantly through the Z ′
BL exchange

in the s-channel. The thermal average of the annihilation cross section is given by

⟨σv⟩ = (sYEQ)
−2 mDM

64π4x

∫ ∞

4m2
DM

ds σ̂(s)
√
sK1

(

x
√
s

mDM

)

, (8)

where the reduced cross section is defined as σ̂(s) = 2(s−4m2
DM )σ(s) with the total annihilation

cross section σ(s), and K1 is the modified Bessel function of the first kind. The total cross

section of the dark matter annihilation process NN → Z ′
BL → f f̄ (f denotes the SM fermions)

is calculated as

σ(s) = πα2
BL

√

s(s− 4m2
DM)

(s−m2
Z′)2 +m2

Z′Γ2
Z′

[

148

9
+

4

3
βt

(

1−
1

3
β2
t

)]

(9)

with βt(s) =
√

1− 4m2
t/s, top quark mass of mt = 173.34 GeV and the total decay width of

Z ′
BL boson given by

ΓZ′ =
αBL

6
mZ′

[

37

3
+

1

3
βt(m

2
Z′)

(

3− βt(m
2
Z′)2

)

+

(

1−
4m2

DM

m2
Z′

)
3

2

θ

(

m2
Z′

m2
DM

− 4

)

]

. (10)

5

Thermal	DM	relic	abundance	is	determined	
by	the	Boltzmann	equaQon:	

6

3. Cosmological constraint 
on Z’BL portal DM

The observed dark matter relic abundance

hHi ¼
! vffiffi

2
p

0

#
; hΦi ¼ vBLffiffiffi

2
p : ð3Þ

Associated with the B − L symmetry breaking, the
Majorana neutrinos Nj

R ðj ¼ 1; 2Þ, the dark matter particle
NR and the B − L gauge boson acquire their masses as

mj
N ¼ Yj

Nffiffiffi
2

p vBL; mDM ¼ YNffiffiffi
2

p vBL; mZ0 ¼ 2gBLvBL; ð4Þ

where gBL is the Uð1ÞB−L gauge coupling.
The dark matter particle can communicate with the SM

particles in two ways. One is through the Higgs bosons. In
the Higgs potential of Eq. (2), the SM Higgs boson and the
B − L Higgs boson mix with each other in the mass
eigenstates, and this Higgs boson mass eigenstates mediate
the interactions between the dark matter particle and the
SM particles. Dark matter physics with the interactions
mediated by the Higgs bosons have been investigated in
[3,5]. The analysis involves 4 free parameters: Yukawa
coupling YN and 3 free parameters from the Higgs potential
after two conditions of v ¼ 246 GeV and the SM-like
Higgs boson mass fixed to be 125 GeV are taken into
account. The other way for the dark matter particle to
communicate with the SM particles is through the B − L
gauge interaction with the Z0

BL boson. In this case, only
three free parameters (gBL, mZ0 and mDM) are involved in
dark matter physics analysis. As we have stated in the
previous section, we concentrate on dark matter physics
mediated by the Z0

BL boson. When jλHΦj ≪ 1, the Higgs
bosons mediated interactions are negligibly small, and the
dark matter particle communicates with the SM particles
only through the Z0

BL boson. For example, this situation is
realized in supersymmetric extension of our model [6],
where λHΦ is forbidden by supersymmetry in the Higgs
superpotential at the renormalizable level. When squarks
and sleptons are all heavier than the dark matter particles,
there is no essential difference in dark matter phenomenol-
ogy between the nonsupersymmetric case and the super-
symmetric case (see Ref. [6]). For a limited parameter
choice, the Z0

B−L portal dark matter scenario has been
investigated in [5,6].

III. COSMOLOGICAL CONSTRAINT ON Z0
BL

PORTAL DARK MATTER

The dark matter relic abundance is measured at the 68%
limit as [18]

ΩDMh2 ¼ 0.1198$ 0.0015: ð5Þ

In this section, we evaluate the relic abundance of the
dark matter NR and identify an allowed parameter region
that satisfies the upper bound on the dark matter
relic density of ΩDMh2 ≤ 0.1213. The dark matter relic

abundance is evaluated by integrating the Boltzmann
equation given by
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where temperature of the universe is normalized by the
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the Hubble parameter at T ¼ mDM, Y is the yield (the ratio
of the dark matter number density to the entropy density s)
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matter particle in thermal equilibrium, and hσvi is the
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where MPl ¼ 1.22 × 1019 GeV is the Planck mass, gDM ¼
2 is the number of degrees of freedom for the dark matter
particle, g⋆ is the effective total number of degrees of
freedom for particles in thermal equilibrium (in the follow-
ing analysis, we use g⋆ ¼ 106.75 for the SM particles), and
K2 is the modified Bessel function of the second kind. In
our Z0

BL portal dark matter scenario, a pair of dark matter
annihilates into the SM particles dominantly through the
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BL exchange in the s-channel. The thermal average of the
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where the reduced cross section is defined as σ̂ðsÞ ¼
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173.34 GeV and the total decay width of Z0

BL boson
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K2 is the modified Bessel function of the second kind. In
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annihilates into the SM particles dominantly through the
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Figure 1: The relic abundance of the Z ′
BL portal right-hard neutrino dark matter as a function

of the dark matter mass (mDM) for mZ′ = 3 TeV and various values of the gauge coupling
αBL = 0.001, 0.0014, 0.002, 0.003 and 0.005 (solid lines from top to bottom). The two horizontal
lines denote the range of the observed dark matter relic density, 0.1183 ≤ ΩDMh2 ≤ 0.1213.

Here, we have neglected all SM fermion masses except for mt, and assumed mj
N > mZ′/2, for

simplicity.

Now we solve the Boltzmann equation numerically, and find the asymptotic value of the

yield Y (∞). Then, the dark matter relic density is evaluated as

ΩDMh2 =
mDMs0Y (∞)

ρc/h2
, (11)

where s0 = 2890 cm−3 is the entropy density of the present universe, and ρc/h2 = 1.05 ×
10−5 GeV/cm3 is the critical density. In our analysis, only three parameters, namely αBL =

g2BL/(4π), mZ′ and mDM , are involved. For mZ′ = 3 TeV and various values of the gauge

coupling αBL, Fig. 1 shows the resultant dark matter relic abundance as a function of the

dark matter mass mDM , along with the observed bounds 0.1183 ≤ ΩDMh2 ≤ 0.1213 [18] (two

horizontal dashed lines). The solid lines from top to bottom correspond to the results for

αBL = 0.001, 0.0014, 0.002, 0.003 and 0.005, respectively. We can see that only if the dark

matter mass is close to half of the Z ′
BL boson mass, the observed relic abundance can be

reproduced. In other words, normal values of the dark matter annihilation cross section leads

to over-abundance, and it is necessary that an enhancement of the cross section through the

Z ′
BL boson resonance in the s-channel annihilation process.
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Here, we have neglected all SM fermion masses except for
mt, and assumed mj

N > mZ0=2, for simplicity.
Now we solve the Boltzmann equation numerically, and

find the asymptotic value of the yield Yð∞Þ. Then, the dark
matter relic density is evaluated as

ΩDMh2 ¼
mDMs0Yð∞Þ

ρc=h2
; ð11Þ

where s0 ¼ 2890 cm−3 is the entropy density of the present
universe, and ρc=h2 ¼ 1.05 × 10−5 GeV=cm3 is the critical
density. In our analysis, only three parameters, namely
αBL ¼ g2BL=ð4πÞ, mZ0 and mDM, are involved. For mZ0 ¼
3 TeV and various values of the gauge coupling αBL, Fig. 1
shows the resultant dark matter relic abundance as a
function of the dark matter mass mDM, along with the
observed bounds 0.1183 ≤ ΩDMh2 ≤ 0.1213 [18] (two
horizontal dashed lines). The solid lines from top to bottom
correspond to the results for αBL ¼ 0.001, 0.0014, 0.002,
0.003 and 0.005, respectively. We can see that only if the
dark matter mass is close to half of the Z0

BL boson mass, the
observed relic abundance can be reproduced. In other
words, normal values of the dark matter annihilation cross
section leads to overabundance, and it is necessary that an
enhancement of the cross section through the Z0

BL boson
resonance in the s-channel annihilation process.
For a fixed mDM in the Fig. 1, the resultant relic

abundance becomes larger as the gauge coupling αBL is
lowered. As a result, there is a lower bound on αBL in order
to satisfy the cosmological upper bound on the dark matter
relic abundance ΩDMh2 ≤ 0.1213. For a αBL value larger
than the lower bound, we can find two values of mDM
which result in the center value of the observed relic
abundance ΩDMh2 ¼ 0.1198. In Fig. 2, we show the dark
matter mass resulting ΩDMh2 ¼ 0.1198 as a function of
αBL. The left panel shows the result formZ0 ¼ 3 TeV, while
the corresponding results for mZ0 ¼ 4 TeV is shown in the
right panel. As a reference, we also show the dotted lines
corresponding to mDM ¼ mZ0=2. In Fig. 1, we see that the
minimum relic abundance is achieved by a dark matter
mass which is very close to, but smaller than mZ0=2.
Although the annihilation cross section of Eq. (9) has a
peak at

ffiffiffi
s

p
¼ mZ0 , the thermal averaged cross section given

in Eq. (8) includes the integral of the product of the reduced
cross section and the modified Bessel function K1. Our
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FIG. 1. The relic abundance of the Z0
BL portal right-hard

neutrino dark matter as a function of the dark matter mass
(mDM) formZ0 ¼ 3 TeV and various values of the gauge coupling
αBL ¼ 0.001, 0.0014, 0.002, 0.003 and 0.005 (solid lines from
top to bottom). The two horizontal lines denote the range of the
observed dark matter relic density, 0.1183 ≤ ΩDMh2 ≤ 0.1213.
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FIG. 2. The dark matter mass as a function of αBL formZ0 ¼ 3 TeV (left panel) andmZ0 ¼ 4 TeV (right panel). Along the solid (black)
curve in each panel, ΩDMh2 ¼ 0.1198 is satisfied. The dotted lines correspond to mDM ¼ mZ0=2. The vertical solid lines (in red) denote
the upper bound on αBL obtained from the recent LHC Run-2 results (see Figs. 4 and 5). In the left panel, the left vertical line represents
the constraint from the ATLAS result [14], while the right one is from the CMS result [15]. In the right panel, the vertical line represents
the constraint from the ATLAS result [14].
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matter mass resulting ΩDMh2 ¼ 0.1198 as a function of
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the corresponding results for mZ0 ¼ 4 TeV is shown in the
right panel. As a reference, we also show the dotted lines
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FIG. 2. The dark matter mass as a function of αBL formZ0 ¼ 3 TeV (left panel) andmZ0 ¼ 4 TeV (right panel). Along the solid (black)
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Here, we have neglected all SM fermion masses except for
mt, and assumed mj

N > mZ0=2, for simplicity.
Now we solve the Boltzmann equation numerically, and

find the asymptotic value of the yield Yð∞Þ. Then, the dark
matter relic density is evaluated as

ΩDMh2 ¼
mDMs0Yð∞Þ

ρc=h2
; ð11Þ

where s0 ¼ 2890 cm−3 is the entropy density of the present
universe, and ρc=h2 ¼ 1.05 × 10−5 GeV=cm3 is the critical
density. In our analysis, only three parameters, namely
αBL ¼ g2BL=ð4πÞ, mZ0 and mDM, are involved. For mZ0 ¼
3 TeV and various values of the gauge coupling αBL, Fig. 1
shows the resultant dark matter relic abundance as a
function of the dark matter mass mDM, along with the
observed bounds 0.1183 ≤ ΩDMh2 ≤ 0.1213 [18] (two
horizontal dashed lines). The solid lines from top to bottom
correspond to the results for αBL ¼ 0.001, 0.0014, 0.002,
0.003 and 0.005, respectively. We can see that only if the
dark matter mass is close to half of the Z0

BL boson mass, the
observed relic abundance can be reproduced. In other
words, normal values of the dark matter annihilation cross
section leads to overabundance, and it is necessary that an
enhancement of the cross section through the Z0

BL boson
resonance in the s-channel annihilation process.
For a fixed mDM in the Fig. 1, the resultant relic

abundance becomes larger as the gauge coupling αBL is
lowered. As a result, there is a lower bound on αBL in order
to satisfy the cosmological upper bound on the dark matter
relic abundance ΩDMh2 ≤ 0.1213. For a αBL value larger
than the lower bound, we can find two values of mDM
which result in the center value of the observed relic
abundance ΩDMh2 ¼ 0.1198. In Fig. 2, we show the dark
matter mass resulting ΩDMh2 ¼ 0.1198 as a function of
αBL. The left panel shows the result formZ0 ¼ 3 TeV, while
the corresponding results for mZ0 ¼ 4 TeV is shown in the
right panel. As a reference, we also show the dotted lines
corresponding to mDM ¼ mZ0=2. In Fig. 1, we see that the
minimum relic abundance is achieved by a dark matter
mass which is very close to, but smaller than mZ0=2.
Although the annihilation cross section of Eq. (9) has a
peak at

ffiffiffi
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p
¼ mZ0 , the thermal averaged cross section given

in Eq. (8) includes the integral of the product of the reduced
cross section and the modified Bessel function K1. Our
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where s0 ¼ 2890 cm−3 is the entropy density of the present
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observed bounds 0.1183 ≤ ΩDMh2 ≤ 0.1213 [18] (two
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dark matter mass is close to half of the Z0
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observed relic abundance can be reproduced. In other
words, normal values of the dark matter annihilation cross
section leads to overabundance, and it is necessary that an
enhancement of the cross section through the Z0
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For a fixed mDM in the Fig. 1, the resultant relic

abundance becomes larger as the gauge coupling αBL is
lowered. As a result, there is a lower bound on αBL in order
to satisfy the cosmological upper bound on the dark matter
relic abundance ΩDMh2 ≤ 0.1213. For a αBL value larger
than the lower bound, we can find two values of mDM
which result in the center value of the observed relic
abundance ΩDMh2 ¼ 0.1198. In Fig. 2, we show the dark
matter mass resulting ΩDMh2 ¼ 0.1198 as a function of
αBL. The left panel shows the result formZ0 ¼ 3 TeV, while
the corresponding results for mZ0 ¼ 4 TeV is shown in the
right panel. As a reference, we also show the dotted lines
corresponding to mDM ¼ mZ0=2. In Fig. 1, we see that the
minimum relic abundance is achieved by a dark matter
mass which is very close to, but smaller than mZ0=2.
Although the annihilation cross section of Eq. (9) has a
peak at
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Figure 2: The dark matter mass as a function of αBL for mZ′ = 3 TeV (left panel) and
mZ′ = 4 TeV (right panel). Along the solid (black) curve in each panel, ΩDMh2 = 0.1198 is
satisfied. The dotted lines correspond to mDM = mZ′/2. The vertical solid lines (in red) denote
the upper bound on αBL obtained from the recent LHC Run-2 results (see Figs. 4 and 5). In
the left panel, the left vertical line represents the constraint from the ATLAS result [14], while
the right one is from the CMS result [15]. In the right panel, the vertical line represents the
constraint from the ATLAS result [14].
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coupling αBL is lowered. As a result, there is a lower bound on αBL in order to satisfy the

cosmological upper bound on the dark matter relic abundance ΩDMh2 ≤ 0.1213. For a αBL

value larger than the lower bound, we can find two values of mDM which result in the center

value of the observed relic abundance ΩDMh2 = 0.1198. In Fig. 2, we show the dark matter

mass resulting ΩDMh2 = 0.1198 as a function of αBL. The left panel shows the result for

mZ′ = 3 TeV, while the corresponding results for mZ′ = 4 TeV is shown in the right panel.

As a reference, we also show the dotted lines corresponding to mDM = mZ′/2. In Fig. 1, we

see that the minimum relic abundance is achieved by a dark matter mass which is very close

to, but smaller than mZ′/2. Although the annihilation cross section of Eq. (9) has a peak at
√
s = mZ′, the thermal averaged cross section given in Eq. (8) includes the integral of the

product of the reduced cross section and the modified Bessel function K1. Our results indicate

that for mDM taken to be slightly smaller than mZ′/2, the thermal averaged cross section is

larger than the one for mD = mZ′/2.

As mentioned above, for a fixed Z ′
BL boson mass, we can find a corresponding lower bound on

the gauge coupling αBL in order for the resultant relic abundance not to exceed the cosmological

upper bound ΩDMh2 = 0.1213. Fig. 3 depicts the lower bound of αBL as a function of mZ′ (solid

(black) line). Along this solid (black) line, we find that the dark matter mass is approximately

given by mDM ≃ 0.49 mZ′ . The dark matter relic abundance exceeds the cosmological upper
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the upper bound on αBL obtained from the recent LHC Run-2 results (see Figs. 4 and 5). In
the left panel, the left vertical line represents the constraint from the ATLAS result [14], while
the right one is from the CMS result [15]. In the right panel, the vertical line represents the
constraint from the ATLAS result [14].
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the right one is from the CMS result [15]. In the right panel, the vertical line represents the
constraint from the ATLAS result [14].
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mt, and assumed mj

N > mZ0=2, for simplicity.
Now we solve the Boltzmann equation numerically, and

find the asymptotic value of the yield Yð∞Þ. Then, the dark
matter relic density is evaluated as
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; ð11Þ

where s0 ¼ 2890 cm−3 is the entropy density of the present
universe, and ρc=h2 ¼ 1.05 × 10−5 GeV=cm3 is the critical
density. In our analysis, only three parameters, namely
αBL ¼ g2BL=ð4πÞ, mZ0 and mDM, are involved. For mZ0 ¼
3 TeV and various values of the gauge coupling αBL, Fig. 1
shows the resultant dark matter relic abundance as a
function of the dark matter mass mDM, along with the
observed bounds 0.1183 ≤ ΩDMh2 ≤ 0.1213 [18] (two
horizontal dashed lines). The solid lines from top to bottom
correspond to the results for αBL ¼ 0.001, 0.0014, 0.002,
0.003 and 0.005, respectively. We can see that only if the
dark matter mass is close to half of the Z0

BL boson mass, the
observed relic abundance can be reproduced. In other
words, normal values of the dark matter annihilation cross
section leads to overabundance, and it is necessary that an
enhancement of the cross section through the Z0

BL boson
resonance in the s-channel annihilation process.
For a fixed mDM in the Fig. 1, the resultant relic

abundance becomes larger as the gauge coupling αBL is
lowered. As a result, there is a lower bound on αBL in order
to satisfy the cosmological upper bound on the dark matter
relic abundance ΩDMh2 ≤ 0.1213. For a αBL value larger
than the lower bound, we can find two values of mDM
which result in the center value of the observed relic
abundance ΩDMh2 ¼ 0.1198. In Fig. 2, we show the dark
matter mass resulting ΩDMh2 ¼ 0.1198 as a function of
αBL. The left panel shows the result formZ0 ¼ 3 TeV, while
the corresponding results for mZ0 ¼ 4 TeV is shown in the
right panel. As a reference, we also show the dotted lines
corresponding to mDM ¼ mZ0=2. In Fig. 1, we see that the
minimum relic abundance is achieved by a dark matter
mass which is very close to, but smaller than mZ0=2.
Although the annihilation cross section of Eq. (9) has a
peak at
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¼ mZ0 , the thermal averaged cross section given

in Eq. (8) includes the integral of the product of the reduced
cross section and the modified Bessel function K1. Our

1350 1400 1450 1500
0.0

0.1

0.2

0.3

0.4

0.5

mDM

FIG. 1. The relic abundance of the Z0
BL portal right-hard

neutrino dark matter as a function of the dark matter mass
(mDM) formZ0 ¼ 3 TeV and various values of the gauge coupling
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FIG. 2. The dark matter mass as a function of αBL formZ0 ¼ 3 TeV (left panel) andmZ0 ¼ 4 TeV (right panel). Along the solid (black)
curve in each panel, ΩDMh2 ¼ 0.1198 is satisfied. The dotted lines correspond to mDM ¼ mZ0=2. The vertical solid lines (in red) denote
the upper bound on αBL obtained from the recent LHC Run-2 results (see Figs. 4 and 5). In the left panel, the left vertical line represents
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the constraint from the ATLAS result [14].
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Ø  The	ATLAS	and	CMS	collaboraQons	
have	been	searching	for	Z’	boson	
resonance	with	dilepton		final	
state	at	the	LHC	Run-2	
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4. Interpretation of LHC Run-2 results

The upper limits of the Z’ boson production cross 
section have been obtained by ATLAS and CMS 
collaborations.

q

q̄
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The ATLAS and CMS collaborations are searching for 
Z’ boson resonance with dilepton final state at the LHC Run-2.

Ø Upper	bounds	on	the	cross	secQon	for	the	sequenQal	Z’	model	
have	been	obtained		

SequenQal	Z’	:	heavy	Z’	boson	with	exactly	the	same	coupling		
																											as	the	SM	Z	boson	

We	interpret	the	ATLAS	&	the	CMS	bounds	to	the	B-L	Z’	boson	

	pp	à	Z’	+X	à	ll	+X	
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Figure 6: The differential cross section for pp → µ+µ−X at the LHC for mZ′ = 2.5 TeV and
αB−L = 0.008.

discovery limit obtained in [22] for ECMS = 14 TeV with an integrated luminosity of 100 fb−1.

If the B−L gauge coupling is comparable to the SM ones, αB−L = O(0.01), the LHC can cover

the region mZ′ ! 5 TeV.

Once a resonance of the Z ′ boson has been discovered at the LHC, the Z ′ boson mass can be

determined from the peak energy of the dilepton invariant mass. After the mass measurement,

we need more precise measurement of the Z ′ boson properties such as couplings with each

(chiral) SM fermion, spin and etc., in order to discriminate different models which predict

electric-charge neutral gauge bosons. It is interesting to note that the ILC is capable for this

task even if its center-of-mass energy is far below the Z ′ boson mass [23]. In fact, the search

reach of the ILC can be beyond the LHC one.

We calculate the cross sections of the process e+e− → µ+µ− at the ILC with a collider

energy
√

s = 1 TeV for various Z ′ boson mass. The deviation of the cross section in our model

from the SM one,

σ(e+e− → γ, Z, Z ′ → µ+µ−)

σSM(e+e− → γ, Z → µ+µ−)
− 1, (21)

is depicted in Fig. 7 as a function of mZ′. Here we have fixed αB−L = 0.01 and the differential

cross section is integrated over a scattering angle −0.95 ≤ cos θ ≤ 0.95. Even for a large Z ′

boson mass, for example, mZ′ = 10 TeV, Fig. 7 shows a few percent deviations, which is large

enough for the ILC with an integrated luminosity 500 fb−1 to identify. Assuming the ILC is

accessible to 1 % deviation, the search limit at the ILC has been investigated in [22] and in

Fig. 5, the dotted line (in red) shows the result. The ILC search limit is beyond the one at the

LHC.
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the cosmological constraint. As a result, the parameter space of the Z ′
BL portal dark matter

scenario is severally constrained once the two constraints are combined.

Let us calculate the cross section for the process pp → Z ′
BL+X → ℓ+ℓ−+X . The differential

cross section with respect to the invariant mass Mℓℓ of the final state dilepton is described as
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where fa is the parton distribution function for a parton “a”, and ECM = 13 TeV is the center-

of-mass energy of the LHC Run-2. In our numerical analysis, we employ CTEQ6L [22] for the

parton distribution functions with the factorization scale Q = mZ′ . Here, the cross section for

the colliding partons is given by

σ̂ =
4πα2

BL

81

M2
ℓℓ

(M2
ℓℓ −m2

Z′)2 +m2
Z′Γ2

Z′

. (13)

By integrating the differential cross section over a range of Mℓℓ set by the ATLAS and the

CMS analysis, respectively, we obtain the cross section to be compared with the upper bounds

obtained by the ATLAS and the CMS collaborations.

In the analysis by the ATLAS and the CMS collaborations, the so-called sequential SM Z ′

(Z ′
SSM) model [23] has been considered as a reference model. We first analyze the sequential

Z ′ model to check a consistency of our analysis with the one by the ATLAS collaboration.

In the sequential Z ′ model, the Z ′
SSM boson has exactly the same couplings with quarks and

leptons as the SM Z boson. With the couplings, we calculate the cross section of the process
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By integrating the differential cross section over a range of Mℓℓ set by the ATLAS and the

CMS analysis, respectively, we obtain the cross section to be compared with the upper bounds

obtained by the ATLAS and the CMS collaborations.

In the analysis by the ATLAS and the CMS collaborations, the so-called sequential SM Z ′

(Z ′
SSM) model [23] has been considered as a reference model. We first analyze the sequential

Z ′ model to check a consistency of our analysis with the one by the ATLAS collaboration.
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CMS analysis, respectively, we obtain the cross section to be compared with the upper bounds

obtained by the ATLAS and the CMS collaborations.

In the analysis by the ATLAS and the CMS collaborations, the so-called sequential SM Z ′

(Z ′
SSM) model [23] has been considered as a reference model. We first analyze the sequential

Z ′ model to check a consistency of our analysis with the one by the ATLAS collaboration.

In the sequential Z ′ model, the Z ′
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Figure 5: Left panel: the cross section ratio as a function of the Z ′
SSM mass (solid line)

with k = 1.80, along with the CMS result in Ref. [15] from the combined dielectron and
dimuon channels. Right panel: the cross section ratios calculated for various values of αBL

with k = 1.80. The solid lines from left to right correspond to αBL = 0.0001, 0.0005, 0.001,
0.005 and 0.01, respectively.

pp → Z ′
SSM + X → ℓ+ℓ− + X like Eq. (12). By integrating the differential cross section in

the region of 128 GeV≤ Mℓℓ ≤ 6000 GeV [20], we obtain the cross section of the dilepton

production process as a function of Z ′
SSM boson mass.3 Our result is shown as a solid line

in the left panel on Fig. 4, along with the plot presented by the ATLAS collaboration [14].

In the analysis in the ATLAS paper, the lower limit of the Z ′
SSM boson mass is found to be

3.4 TeV, which is read from the intersection point of the theory prediction (diagonal dashed

line) and the experimental cross section bound (horizontal solid curve (in red)). In order to

take into account the difference of the parton distribution functions used in the ATLAS and

our analysis and QCD corrections of the process, we have scaled our resultant cross section

by a factor k = 1.31, with which we can obtain the same lower limit of the Z ′
SSM boson mass

as 3.4 TeV. We can see that our result with the factor of k = 1.31 is very consistent with

the theoretical prediction (diagonal dashed line) presented in Ref. [14]. This factor is used in

our analysis of the Z ′
BL production process. Now we calculate the cross section of the process

pp → Z ′
BL +X → ℓ+ℓ− +X for various values of αBL, and our results are shown in the right

panel of Fig. 4, along with the plot in Ref. [14]. The diagonal solid lines from left to right

correspond to αBL = 0.0001, 0.001, 0.01 and 0.05, respectively. From the intersections of the

horizontal curve and diagonal solid lines, we can read off a lower bound on the Z ′
BL boson mass

for a fixed αBL value. In this way, we have obtained the upper bound on αBL as a function the

Z ′
BL boson mass, which is depicted in Fig. 3 (dashed (red) line).

3 Since the decay width of the Z ′

SSM
boson is narrow, the cross section is almost determined by the integral

in the vicinity of the resonance pole.
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with k = 1.80. The solid lines from left to right correspond to αBL = 0.0001, 0.0005, 0.001,
0.005 and 0.01, respectively.
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SSM + X → ℓ+ℓ− + X like Eq. (12). By integrating the differential cross section in

the region of 128 GeV≤ Mℓℓ ≤ 6000 GeV [20], we obtain the cross section of the dilepton

production process as a function of Z ′
SSM boson mass.3 Our result is shown as a solid line

in the left panel on Fig. 4, along with the plot presented by the ATLAS collaboration [14].

In the analysis in the ATLAS paper, the lower limit of the Z ′
SSM boson mass is found to be

3.4 TeV, which is read from the intersection point of the theory prediction (diagonal dashed

line) and the experimental cross section bound (horizontal solid curve (in red)). In order to

take into account the difference of the parton distribution functions used in the ATLAS and

our analysis and QCD corrections of the process, we have scaled our resultant cross section

by a factor k = 1.31, with which we can obtain the same lower limit of the Z ′
SSM boson mass

as 3.4 TeV. We can see that our result with the factor of k = 1.31 is very consistent with

the theoretical prediction (diagonal dashed line) presented in Ref. [14]. This factor is used in

our analysis of the Z ′
BL production process. Now we calculate the cross section of the process

pp → Z ′
BL +X → ℓ+ℓ− +X for various values of αBL, and our results are shown in the right

panel of Fig. 4, along with the plot in Ref. [14]. The diagonal solid lines from left to right

correspond to αBL = 0.0001, 0.001, 0.01 and 0.05, respectively. From the intersections of the

horizontal curve and diagonal solid lines, we can read off a lower bound on the Z ′
BL boson mass

for a fixed αBL value. In this way, we have obtained the upper bound on αBL as a function the

Z ′
BL boson mass, which is depicted in Fig. 3 (dashed (red) line).

3 Since the decay width of the Z ′

SSM
boson is narrow, the cross section is almost determined by the integral

in the vicinity of the resonance pole.
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We apply the same strategy and compare our result for the Z ′
SSM model with the one by

the CMS collaboration [15]. According to the CMS analysis, we integrate the differential cross

section in the range of 0.97 mZ′

SSM
≤ Mℓℓ ≤ 1.03 mZ′

SSM
. In the CMS analysis, the limits are

set on the ratio of the Z ′
SSM boson cross section to the Z/γ∗ cross section in a mass window of

60 to 120 GeV, which is predicted to be 1928 pb. Our result is shown as a diagonal solid line

in the left panel of Fig. 5, along with the plot presented in Ref. [15]. The analysis in this CMS

paper leads to the lower limit of the Z ′
SSM boson mass as 3.15 TeV, which is read from the

intersection point of the theory prediction (diagonal dashed line) and the experimental cross

section bound (horizontal solid curve (in blue)). In order to obtain the same lower mass limit

of mZ′

SSM
≤ 3.15 TeV, we have introduced a factor k = 1.80. The left panel shows that our

results are very consistent with the theoretical cross section presented in Ref. [15].

With the factor of k = 1.80, we calculate the cross section of the process pp → Z ′
BL +X →

ℓ+ℓ−+X for various values of αBL, and our results are shown in the right panel of Fig. 5, along

with the plot in Ref. [15]. The diagonal solid lines from left to right correspond to αBL = 0.0001,

0.0005, 0.001, 0.005 and 0.01, respectively. From the intersections of the horizontal (blue) curve

and diagonal solid lines, we can read off a lower bound on the Z ′
BL boson mass for a fixed αBL

value. In Fig. 3, the diagonal solid (blue) line in the range of 2000 GeV≤ mZ′

BL
≤ 3500 GeV

shows the upper bound on αBL as a function the Z ′
BL boson mass. The ATLAS and the CMS

bounds we have obtained are consistent with each other. The ATLAS bound is slightly more

severe than the CMS bound, and applicable to a higher mass range up to mZ′ = 5000 GeV.

In Fig. 3, we also show the LEP bound as the dotted line which is obtained from the search

for effective 4-Fermi interactions mediated by the Z ′
BL boson [24]. An updated limit with the

final LEP 2 data [25] is found to be [26]

mZ′

gBL

≥ 6.9 TeV (14)

at 95% confidence level. We find that the ATLAS bound at the LHC Run-2 is more severe than

the LEP bound for mZ′ ! 4.3 TeV. In order to avoid the Landau pole of the running B − L

coupling αBL(µ) below the Plank mass, 1/αBL(MP l) > 0, we find

αBL <
π

6 ln
[

MPl

mZ′

] , (15)

which is shown as the dashed-dotted line in Fig. 3. Here, the gauge coupling αBL used in our

analysis for dark matter physics and LHC physics is defined as the running gauge coupling

αBL(µ) at µ = mZ′, and we have employed the renormalization group equation at the one-loop

level with m1
N = m2

N = mΦ = mZ′, for simplicity.
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                                       for various values of αBL.pp ! Z 0

BL +X ! l+l� +X

red)]. In order to take into account the difference of the
parton distribution functions used in the ATLAS and our
analysis and QCD corrections of the process, we have
scaled our resultant cross section by a factor k ¼ 1.31, with
which we can obtain the same lower limit of the Z0

SSM
boson mass as 3.4 TeV. We can see that our result with the
factor of k ¼ 1.31 is very consistent with the theoretical
prediction (diagonal dashed line) presented in Ref. [14].
This factor is used in our analysis of the Z0

BL production
process. Now we calculate the cross section of the process
pp → Z0

BL þ X → lþl− þ X for various values of αBL,
and our results are shown in the right panel of Fig. 4, along
with the plot in Ref. [14]. The diagonal solid lines from left
to right correspond to αBL ¼ 0.0001, 0.001, 0.01 and 0.05,
respectively. From the intersections of the horizontal curve
and diagonal solid lines, we can read off a lower bound on
the Z0

BL boson mass for a fixed αBL value. In this way, we
have obtained the upper bound on αBL as a function the Z0

BL
boson mass, which is depicted in Fig. 3 [dashed (red) line].
We apply the same strategy and compare our result for

the Z0
SSM model with the one by the CMS collaboration

[15]. According to the CMS analysis, we integrate the
differential cross section in the range of 0.97mZ0

SSM
≤

Mll ≤ 1.03mZ0
SSM

. In the CMS analysis, the limits are
set on the ratio of the Z0

SSM boson cross section to the
Z=γ# cross section in a mass window of 60 to 120 GeV,
which is predicted to be 1928 pb. Our result is shown as a
diagonal solid line in the left panel of Fig. 5, along with the
plot presented in Ref. [15]. The analysis in this CMS paper
leads to the lower limit of the Z0

SSM boson mass as 3.15 TeV,
which is read from the intersection point of the theory
prediction (diagonal dashed line) and the experimental
cross section bound [horizontal solid curve (in blue)]. In
order to obtain the same lower mass limit of mZ0

SSM
≤

3.15 TeV, we have introduced a factor k ¼ 1.80. The left
panel shows that our results are very consistent with the
theoretical cross section presented in Ref. [15].

With the factor of k ¼ 1.80, we calculate the cross section
of the process pp → Z0

BL þ X → lþl− þ X for various
values of αBL, and our results are shown in the right panel of
Fig. 5, along with the plot in Ref. [15]. The diagonal solid
lines from left to right correspond to αBL ¼ 0.0001, 0.0005,
0.001, 0.005 and 0.01, respectively. From the intersections
of the horizontal (blue) curve and diagonal solid lines, we
can read off a lower bound on theZ0

BL bosonmass for a fixed
αBL value. In Fig. 3, the diagonal solid (blue) line in the
range of 2000 GeV ≤ mZ0

BL
≤ 3500 GeV shows the upper

bound onαBL as a function theZ0
BL bosonmass. TheATLAS

and the CMS bounds we have obtained are consistent with
each other. The ATLAS bound is slightly more severe than
the CMS bound, and applicable to a higher mass range up
to mZ0 ¼ 5000 GeV.
In Fig. 3, we also show the LEP bound as the dotted line

which is obtained from the search for effective 4-Fermi
interactions mediated by the Z0

BL boson [24]. An updated
limit with the final LEP 2 data [25] is found to be [26]

mZ0

gBL
≥ 6.9 TeV ð14Þ

at 95% confidence level. We find that the ATLAS bound at
the LHC Run-2 is more severe than the LEP bound for
mZ0 ≲ 4.3 TeV. In order to avoid the Landau pole of the
running B − L coupling αBLðμÞ below the Plank mass,
1=αBLðMPlÞ > 0, we find

αBL <
π

6 ln½MPl
mZ0

'
; ð15Þ

which is shown as the dashed-dotted line in Fig. 3. Here,
the gauge coupling αBL used in our analysis for dark matter
physics and LHC physics is defined as the running gauge
coupling αBLðμÞ at μ ¼ mZ0 , and we have employed the
renormalization group equation at the one-loop level with
m1

N ¼ m2
N ¼ mΦ ¼ mZ0 , for simplicity.
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FIG. 4. Left panel: the cross section as a function of the Z0
SSM mass (solid line) with k ¼ 1.31, along with the ATLAS result in Ref. [14]

from the combined dielectron and dimuon channels. Right panel: the cross sections calculated for various values of αBL with k ¼ 1.31.
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boson mass, which is depicted in Fig. 3 [dashed (red) line].
We apply the same strategy and compare our result for

the Z0
SSM model with the one by the CMS collaboration

[15]. According to the CMS analysis, we integrate the
differential cross section in the range of 0.97mZ0

SSM
≤

Mll ≤ 1.03mZ0
SSM

. In the CMS analysis, the limits are
set on the ratio of the Z0

SSM boson cross section to the
Z=γ# cross section in a mass window of 60 to 120 GeV,
which is predicted to be 1928 pb. Our result is shown as a
diagonal solid line in the left panel of Fig. 5, along with the
plot presented in Ref. [15]. The analysis in this CMS paper
leads to the lower limit of the Z0

SSM boson mass as 3.15 TeV,
which is read from the intersection point of the theory
prediction (diagonal dashed line) and the experimental
cross section bound [horizontal solid curve (in blue)]. In
order to obtain the same lower mass limit of mZ0

SSM
≤

3.15 TeV, we have introduced a factor k ¼ 1.80. The left
panel shows that our results are very consistent with the
theoretical cross section presented in Ref. [15].

With the factor of k ¼ 1.80, we calculate the cross section
of the process pp → Z0

BL þ X → lþl− þ X for various
values of αBL, and our results are shown in the right panel of
Fig. 5, along with the plot in Ref. [15]. The diagonal solid
lines from left to right correspond to αBL ¼ 0.0001, 0.0005,
0.001, 0.005 and 0.01, respectively. From the intersections
of the horizontal (blue) curve and diagonal solid lines, we
can read off a lower bound on theZ0

BL bosonmass for a fixed
αBL value. In Fig. 3, the diagonal solid (blue) line in the
range of 2000 GeV ≤ mZ0

BL
≤ 3500 GeV shows the upper

bound onαBL as a function theZ0
BL bosonmass. TheATLAS

and the CMS bounds we have obtained are consistent with
each other. The ATLAS bound is slightly more severe than
the CMS bound, and applicable to a higher mass range up
to mZ0 ¼ 5000 GeV.
In Fig. 3, we also show the LEP bound as the dotted line

which is obtained from the search for effective 4-Fermi
interactions mediated by the Z0

BL boson [24]. An updated
limit with the final LEP 2 data [25] is found to be [26]

mZ0

gBL
≥ 6.9 TeV ð14Þ

at 95% confidence level. We find that the ATLAS bound at
the LHC Run-2 is more severe than the LEP bound for
mZ0 ≲ 4.3 TeV. In order to avoid the Landau pole of the
running B − L coupling αBLðμÞ below the Plank mass,
1=αBLðMPlÞ > 0, we find

αBL <
π

6 ln½MPl
mZ0

'
; ð15Þ

which is shown as the dashed-dotted line in Fig. 3. Here,
the gauge coupling αBL used in our analysis for dark matter
physics and LHC physics is defined as the running gauge
coupling αBLðμÞ at μ ¼ mZ0 , and we have employed the
renormalization group equation at the one-loop level with
m1

N ¼ m2
N ¼ mΦ ¼ mZ0 , for simplicity.
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FIG. 4. Left panel: the cross section as a function of the Z0
SSM mass (solid line) with k ¼ 1.31, along with the ATLAS result in Ref. [14]

from the combined dielectron and dimuon channels. Right panel: the cross sections calculated for various values of αBL with k ¼ 1.31.
The solid lines from left to right correspond to αBL ¼ 0.0001, 0.001, 0.01 and 0.05, respectively.
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We did the same analysis for the CMS bound.

V. CONCLUSIONS

We have considered the minimal gauged B − L exten-
sion of the standard model, which is free from all the gauge
and gravitational anomalies and automatically incorporates
the neutrino mass and flavor mixing through the seesaw
mechanism. We have extended this model by introducing a
Z2 parity, so that a dark matter candidate is supplemented
and identified as an Z2-odd right-handed neutrino. No
extension of the particle content from the one of the
minimal B − L model is needed. In this model, the dark
matter particle communicates with the standard model
particles through the B − L gauge boson (Z0

BL boson).
Since the B − L charges for all particles are fixed, physics
of this “Z0

BL portal” dark matter scenario is controlled by
only three parameters, namely, the gauge coupling, the Z0

BL
boson mass, and the dark matter mass. Imposing the
cosmological upper bound on the dark matter relic density,
we have found the lower bound on the B − L gauge
coupling as a function of the Z0

BL boson mass. Search
results for Z0 boson resonance by the ATLAS and CMS
collaborations at the LHC Run-2 provide the information
that is complementary to the cosmological bound on the
“Z0

BL portal” dark matter scenario. We have interpreted the
Z0 boson resonance search results at the LHC Run-2, and
obtained the upper bound on the B − L gauge coupling as a
function of the Z0

BL boson mass. Similar upper bounds on
the B − L gauge coupling can be obtained through results
by the LEP experiment of search for effective 4-Fermi
interactions mediated by the Z0

BL boson and the require-
ment to maintain the running B − L gauge coupling in
perturbative regime up to the Planck mass. Putting all
together, our final result is shown in Fig. 3. We have
identified the allowed parameter region for the “Z0

BL portal”
dark matter scenario, which turns out to be narrow and

leads to the lower bound on the Z0
BL boson mass of

mZ0 > 2.5 TeV.
In the present model, the standard model fermions

couple with the Z0
BL boson through the vector current,

while the dark matter particle has the axial current coupling
because of its Majorana nature. Hence, the elastic scattering
cross section of the dark matter particle with nuclei
vanishes in the nonrelativistic limit, and the direct and
indirect search for the dark matter particle is not applicable
to the present scenario. Our model can be easily extended to
have more general U(1) gauge symmetry [27], while
keeping the same minimal particle content. In this case,
the axial vector couplings between the standard model
fermions with the Z0 gauge boson arise in general, and the
dark matter particle can scatter off nuclei. In the context of
the sequential Z0 model as a reference, the constraints from
the direct and indirect dark matter search on the Z0 portal
dark matter scenario have been investigated in Ref. [12].
Several representative Z0 portal dark matter models have
been examined to account for the Galactic Center gamma-
ray excess [13]. It is worth investigating this direction with
the general U(1) extension of our scenario with the right-
handed neutrino dark matter [28].
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FIG. 3: Representative Feynman diagram for dilepton production through Z ′ exchange.

Cuts
Z ′ Model SM

MZ′ = 0.6 MZ′ = 1

Basic 948.9 ± 1.3 948.6±1.3 941.0±1.2

Mττ > 0.2 TeV 1.58 ± 0.002 1.49±0.002 1.41±0.002

TABLE I: Dilepton pair cross-sections (in pb) for the Z ′ model and the SM at the LHC with√
S = 14 TeV. All the masses shown here are given in TeV.

that in the region of low ditau invariant mass the SM completely obscures the new
physics. To increase the sensitivity to new physics we therefore need to remove this
low invariant ditau mass region, especially the Z peak.

If there is a new resonance, such as a Z ′, with a mass in the energy range
accessible to LHC it could be discovered by studying the cross-section or an invariant
mass distribution such as that shown in Figure 4. We do not address this possibility
in this paper as this is not the focus of our study. Our focus is the charge asymmetry:
if sufficiently different from the SM prediction it could signal new physics that is
not directly observable as a resonance (for example, because it is too heavy). The
charge asymmetry is a very useful observable even if new physics is first discovered
as a resonance: it would serve to distinguish between different possibilities as we
illustrate below. We therefore begin by asking whether the Z ′ can yield a charge
asymmetry that differs sufficiently from the SM to be observed. This is illustrated
in Figure 5.

The first figure shows the charge asymmetry for y < yc = 0.5 as a function
of dilepton invariant mass. The second figure shows the corresponding asymmetry
integrated over dilepton invariant mass, as a function of Mmin

>∼ 200 GeV.

We have explored the effect of variations in the couplings to some extent. Cou-
pling the Z ′ to d-quarks instead of u-quarks for its production process diminishes
its contributions at LHC. Replacing the purely right-handed coupling with a purely
left-handed coupling affects the interference between the SM and the Z ′. In Figure 6
we emphasize the utility of the charge asymmetry in helping to untangle any possi-
ble new physics that may first be observed in the invariant mass distribution. We
compare two Z ′ cases both with mass 600 GeV: the generic case described above,
where the only non-zero couplings are cτR, and cuR such that cτR · cuR = 1/3; and the
model studied in Ref. [2]. As is evident from the figure, the two models have nearly
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We apply the same strategy and compare our result for the Z ′
SSM model with the one by

the CMS collaboration [15]. According to the CMS analysis, we integrate the differential cross

section in the range of 0.97 mZ′

SSM
≤ Mℓℓ ≤ 1.03 mZ′

SSM
. In the CMS analysis, the limits are

set on the ratio of the Z ′
SSM boson cross section to the Z/γ∗ cross section in a mass window of

60 to 120 GeV, which is predicted to be 1928 pb. Our result is shown as a diagonal solid line

in the left panel of Fig. 5, along with the plot presented in Ref. [15]. The analysis in this CMS

paper leads to the lower limit of the Z ′
SSM boson mass as 3.15 TeV, which is read from the

intersection point of the theory prediction (diagonal dashed line) and the experimental cross

section bound (horizontal solid curve (in blue)). In order to obtain the same lower mass limit

of mZ′

SSM
≤ 3.15 TeV, we have introduced a factor k = 1.80. The left panel shows that our

results are very consistent with the theoretical cross section presented in Ref. [15].

With the factor of k = 1.80, we calculate the cross section of the process pp → Z ′
BL +X →

ℓ+ℓ−+X for various values of αBL, and our results are shown in the right panel of Fig. 5, along

with the plot in Ref. [15]. The diagonal solid lines from left to right correspond to αBL = 0.0001,

0.0005, 0.001, 0.005 and 0.01, respectively. From the intersections of the horizontal (blue) curve

and diagonal solid lines, we can read off a lower bound on the Z ′
BL boson mass for a fixed αBL

value. In Fig. 3, the diagonal solid (blue) line in the range of 2000 GeV≤ mZ′

BL
≤ 3500 GeV

shows the upper bound on αBL as a function the Z ′
BL boson mass. The ATLAS and the CMS

bounds we have obtained are consistent with each other. The ATLAS bound is slightly more

severe than the CMS bound, and applicable to a higher mass range up to mZ′ = 5000 GeV.

In Fig. 3, we also show the LEP bound as the dotted line which is obtained from the search

for effective 4-Fermi interactions mediated by the Z ′
BL boson [24]. An updated limit with the

final LEP 2 data [25] is found to be [26]

mZ′

gBL

≥ 6.9 TeV (14)

at 95% confidence level. We find that the ATLAS bound at the LHC Run-2 is more severe than

the LEP bound for mZ′ ! 4.3 TeV. In order to avoid the Landau pole of the running B − L

coupling αBL(µ) below the Plank mass, 1/αBL(MP l) > 0, we find

αBL <
π

6 ln
[

MPl

mZ′

] , (15)

which is shown as the dashed-dotted line in Fig. 3. Here, the gauge coupling αBL used in our

analysis for dark matter physics and LHC physics is defined as the running gauge coupling

αBL(µ) at µ = mZ′, and we have employed the renormalization group equation at the one-loop

level with m1
N = m2

N = mΦ = mZ′, for simplicity.
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We apply the same strategy and compare our result for the Z ′
SSM model with the one by

the CMS collaboration [15]. According to the CMS analysis, we integrate the differential cross

section in the range of 0.97 mZ′

SSM
≤ Mℓℓ ≤ 1.03 mZ′

SSM
. In the CMS analysis, the limits are

set on the ratio of the Z ′
SSM boson cross section to the Z/γ∗ cross section in a mass window of

60 to 120 GeV, which is predicted to be 1928 pb. Our result is shown as a diagonal solid line

in the left panel of Fig. 5, along with the plot presented in Ref. [15]. The analysis in this CMS

paper leads to the lower limit of the Z ′
SSM boson mass as 3.15 TeV, which is read from the

intersection point of the theory prediction (diagonal dashed line) and the experimental cross

section bound (horizontal solid curve (in blue)). In order to obtain the same lower mass limit

of mZ′

SSM
≤ 3.15 TeV, we have introduced a factor k = 1.80. The left panel shows that our

results are very consistent with the theoretical cross section presented in Ref. [15].

With the factor of k = 1.80, we calculate the cross section of the process pp → Z ′
BL +X →

ℓ+ℓ−+X for various values of αBL, and our results are shown in the right panel of Fig. 5, along

with the plot in Ref. [15]. The diagonal solid lines from left to right correspond to αBL = 0.0001,

0.0005, 0.001, 0.005 and 0.01, respectively. From the intersections of the horizontal (blue) curve

and diagonal solid lines, we can read off a lower bound on the Z ′
BL boson mass for a fixed αBL

value. In Fig. 3, the diagonal solid (blue) line in the range of 2000 GeV≤ mZ′

BL
≤ 3500 GeV

shows the upper bound on αBL as a function the Z ′
BL boson mass. The ATLAS and the CMS

bounds we have obtained are consistent with each other. The ATLAS bound is slightly more

severe than the CMS bound, and applicable to a higher mass range up to mZ′ = 5000 GeV.

In Fig. 3, we also show the LEP bound as the dotted line which is obtained from the search

for effective 4-Fermi interactions mediated by the Z ′
BL boson [24]. An updated limit with the

final LEP 2 data [25] is found to be [26]

mZ′

gBL

≥ 6.9 TeV (14)

at 95% confidence level. We find that the ATLAS bound at the LHC Run-2 is more severe than

the LEP bound for mZ′ ! 4.3 TeV. In order to avoid the Landau pole of the running B − L

coupling αBL(µ) below the Plank mass, 1/αBL(MP l) > 0, we find

αBL <
π

6 ln
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MPl
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] , (15)

which is shown as the dashed-dotted line in Fig. 3. Here, the gauge coupling αBL used in our

analysis for dark matter physics and LHC physics is defined as the running gauge coupling

αBL(µ) at µ = mZ′, and we have employed the renormalization group equation at the one-loop

level with m1
N = m2

N = mΦ = mZ′, for simplicity.
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Combining all constraints

results indicate that for mDM taken to be slightly smaller
than mZ0=2, the thermal averaged cross section is larger
than the one for mD ¼ mZ0=2.
As mentioned above, for a fixed Z0

BL boson mass, we can
find a corresponding lower bound on the gauge coupling
αBL in order for the resultant relic abundance not to exceed
the cosmological upper bound ΩDMh2 ¼ 0.1213. Figure 3
depicts the lower bound of αBL as a function of mZ0

[solid (black) line]. Along this solid (black) line, we find
that the dark matter mass is approximately given by
mDM ≃ 0.49mZ0 . The dark matter relic abundance exceeds
the cosmological upper bound in the region below the solid
(black) line. Along with the other constraints that will be
obtained in the next section, Fig. 3 is our main results in
this paper.

IV. INTERPRETATION OF LHC RUN-2 RESULTS

Very recently, the LHC Run-2 started its operation with a
13 TeV collider energy. Preliminary results from the
ATLAS and the CMS collaborations have been reported
[19]. The Run-2 results have provided constraints on new
physics models, some of which are more severe than those
by the LHC Run-1 results. The ATLAS and the CMS
collaborations continue search for Z0 boson resonance with
dilepton final states at the LHC Run-2, and have improved
the upper limits of the Z0 boson production cross section
from those in the LHC Run-1 [20,21]. Employing the LHC
Run-2 results, we will derive an upper bound on αBL as a

function of mZ0 . Since we have obtained in the previous
section the lower bound on αBL as a function of mZ0 from
the constraint on the dark matter relic abundance, the LHC
Run-2 results are complementary to the cosmological
constraint. As a result, the parameter space of the Z0

BL
portal dark matter scenario is severally constrained once the
two constraints are combined.
Let us calculate the cross section for the process

pp → Z0
BL þ X → lþl− þ X. The differential cross sec-

tion with respect to the invariant massMll of the final state
dilepton is described as

dσ
dMll

¼
X

a;b

Z
1

M2
ll

E2
CM

dx
2Mll

xE2
CM

faðx;Q2Þfb
!

M2
ll

xE2
CM

; Q2

"
σ̂

× ðqq̄ → Z0
BL → lþl−Þ; ð12Þ

where fa is the parton distribution function for a parton “a”,
and ECM ¼ 13 TeV is the center-of-mass energy of the
LHC Run-2. In our numerical analysis, we employ
CTEQ6L [22] for the parton distribution functions with
the factorization scale Q ¼ mZ0 . Here, the cross section for
the colliding partons is given by

σ̂ ¼ 4πα2BL
81

M2
ll

ðM2
ll −m2

Z0Þ2 þm2
Z0Γ2

Z0
: ð13Þ

By integrating the differential cross section over a range of
Mll set by the ATLAS and the CMS analysis, respectively,
we obtain the cross section to be compared with the
upper bounds obtained by the ATLAS and the CMS
collaborations.
In the analysis by the ATLAS and the CMS collabora-

tions, the so-called sequential SM Z0 (Z0
SSM) model [23] has

been considered as a reference model. We first analyze the
sequential Z0 model to check a consistency of our analysis
with the one by the ATLAS collaboration. In the sequential
Z0 model, the Z0

SSM boson has exactly the same couplings
with quarks and leptons as the SM Z boson. With the
couplings, we calculate the cross section of the process
pp → Z0

SSM þ X → lþl− þ X like Eq. (12). By integrat-
ing the differential cross section in the region of
128 GeV ≤ Mll ≤ 6000 GeV [20], we obtain the cross
section of the dilepton production process as a function of
Z0
SSM boson mass.3 Our result is shown as a solid line in the

left panel on Fig. 4, along with the plot presented by the
ATLAS collaboration [14]. In the analysis in the ATLAS
paper, the lower limit of the Z0

SSM boson mass is found to be
3.4 TeV, which is read from the intersection point of the
theory prediction (diagonal dashed line) and the exper-
imental cross section bound [horizontal solid curve (in
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FIG. 3. Allowed parameter region for the Z0
BL portal dark

matter scenario. The solid (black) line shows the lower bound on
αBL as a function of mZ0 to satisfy the cosmological upper bound
on the dark matter relic abundance. The dashed line (in red)
shows the upper bound on αBL as a function of mZ0 from the
search results for Z0 boson resonance by the ATLAS collabora-
tion, while the diagonal line (in blue) in the range of 2000 GeV ≤
mZ0 ≤ 3500 GeV denotes the upper bound obtained from the
result by the CMS collaboration. The LEP bound is depicted as
the dotted line. The regions above these dashed, solid and dotted
lines are excluded. We also show a theoretical upper bound on
αBL to avoid the Landau pole of the running B − L gauge
coupling below the Planck mass MPl.

3Since the decay width of the Z0
SSM boson is narrow, the cross

section is almost determined by the integral in the vicinity of the
resonance pole.
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We found the lower bound on the Z’BL boson mass 
mZ’ > 2.5 TeV.

perturbativity bound
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5. Conclusions

We have considered the minimal gauged B-L extension 
of the standard model with a right-handed neutrino dark 
matter.

In this model, the dark matter particle communicates 
with the standard model particles through the B-L gauge 
boson(Z’BL boson), and this “Z’BL portal” dark matter 
scenario is controlled by only three parameters,

・gauge coupling 
・Z’BL boson mass 
・dark matter mass
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5. Conclusions

We have considered a variety of phenomenological 
constraints on this “Z’BL portal” dark matter scenario.
・relic abundance constraint 
・LHC Run-2 bounds 
・LEP2 bound 
・perturbativity bound of running gauge coupling 
   up to Planck mass

We have found the lower bound on the Z’BL boson mass 
of mZ’ > 2.5TeV.
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Direct and indirect detection

qq

NRNR

Z 0
BL

Axial vector coupling

Vector coupling

�(NRq ! NRq) ! 0

In non-relativistic limit, 
the scattering cross section of DM with nucleon 
is vanishing.
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B-L Higgs portal dark matter

f

f̄NR

NR

� H
YN

mass mixing

Free parameters 
・B-L Higgs mass (mΦ) 
・Φ-H mixing mass 
・dark matter mass (mDM)

B-L Higgs portal dark matter is also possible.


