Z'BL Portal Dark Matter and LHC Run-2 Results

Nobuchika Okada

University of Alabama

In collaboration with Satomi Okada (Yamagata University)

Ref: NO & S. Okada, PRD 93, 075003 (2016) [arXiv:1601.07526 [hep-ph]]

Talk @ MITP Workshop June 9th, 2016

The <u>Standard Model (SM)</u> is <u>the best theory</u> in describing the nature of elementary particle physics, which is in excellent agreement with almost of all current experimental results <u>EVEN after the LHC</u>

However,

<u>New Physics beyond SM</u> is strongly suggested by both <u>experimental & theoretical</u> points of view

What is missing in the Standard Model?

<u>1. Neutrino masses</u> and flavor mixings

$$\begin{split} \Delta m^2_{21} &= (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \\ \Delta m^2_{32} &= (2.44 \pm 0.06) \times 10^{-3} \text{ eV}^2 \end{split}$$

$$sin^{2}(2\theta_{12}) = 0.846 \pm 0.021$$

$$sin^{2}(2\theta_{23}) = 0.999^{+0.001}_{-0.018}$$

$$sin^{2}(2\theta_{13}) = (9.3 \pm 0.8) \times 10^{-2}$$

Neutrinos are massless in the Standard Model

PDG

2. Cosmological Dark Matter Problem

Existence of Dark Matter has been established!

Energy budget of the Universe is precisely determined by recent CMB anisotropy observations (WMAP & Planck)

Dark Matter particle: non-baryonic electric charge neutral (quasi) stable $\tau_{DM} > t_U$

No suitable DM candidates in the SM

Minimal gauged B-L extension of the Standard Model

- To incorporate neutrino masses in the Standard Model (at the renormalizable level), we need <u>right-handed neutrinos</u>
- Right-handed neutrinos are <u>singlet</u>, and only for generating neutrino mass

Gauged B-L extension of the Standard Model

- B-L is the unique anomaly free global symmetry
- Gauging the global B-L symmetry looks natural

> Anomaly free requirement \rightarrow 3 right-handed neutrinos

Minimal Gauged B-L Extension of the SM

Mohapatra & Marshak; Wetterich; others

The model is based on
$$SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$$

Particle Contents

		$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_{B-L}$
	q_L^i	3	2	+1/6	+1/3
	u_R^i	3	1	+2/3	+1/3
	d_R^i	3	1	-1/3	+1/3
	ℓ_L^i	1	2	-1/2	-1
New fermions:	N_{R}^{i}	1	1	0	-1
	e_R^i	1	1	-1	-1
	H	1	2	-1/2	0
New scalar:	Φ	1	1	0	+2

New terms in Lagangian

$$\mathcal{L} \supset -Y_D^{ij} N^{ci} \ell^j H - f_i \Phi N^{ci} N^{cj}$$

B-L symmetry breaking via
$$\left< \Phi \right> = \frac{v_{\mathsf{BL}}}{\sqrt{2}}$$

B-L gauge boson (Z' boson) mass

$$M_{Z'} = 2g_{\mathsf{BL}}v_{\mathsf{BL}}$$

Mass scale is controlled by B-L Sym. Br. scale

Majorana neutrino mass

$$M_R^i = \sqrt{2} f_i v_{\mathsf{BL}}$$

<u>B-L sym breaking also</u> <u>generates NR mass</u>

Seesaw Mechanism

Minkowski; Yanagida; Gell-Mann, Ramond & Slansky; Mohapatra & Senjanovic; others

We introduce right-handed neutrinos and Majorana masses

$$\mathcal{L} \supset -Y_D N^c \ell H - \frac{1}{2} M_R N^c N^c$$

Integrating out the heavy Majorana neutrino

SM singlet fermion

What is the Majorana mass scale?

$$rac{Y_D^2}{M_R} = rac{1}{M} \sim rac{1}{10^{14} {
m GeV}}$$

Broad range of Majorana mass, depending on Dirac mass scale

Example:

$$\begin{array}{l} Y_D v \sim m_e \rightarrow \overbrace{M_R \sim 1 \, \mathrm{TeV}} \\ Y_D v \sim m_t \rightarrow \overbrace{M_R \sim 10^{14} \, \mathrm{GeV}} \end{array}$$

Minimal B-L @ TeV is well-motivated in terms of the LHC

Natural realization of the TeV scale B-L model (Example)

SUSY extension

chiral superfield	$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_{B-L}$
Q^i	3	2	+1/6	+1/3
U^c_i	3^*	1	-2/3	-1/3
D_i^c	3^*	1	+1/3	-1/3
L_i	1	2	-1/2	-1
N_i^c	1	1	0	+1
E_i^c	1	1	-1	+1
H_u	1	2	+1/2	0
H_d	1	2	-1/2	0
Φ	1	1	0	-2
$\bar{\Phi}$	1	1	0	+2

New superpotential terms

 $W \supset y_D^{ij} N_i^c L_j H_u + f_k \Phi N_k^c N_k^c + \mu \Phi \bar{\Phi}$

Radiative B-L symmetry breaking @ TeV

$$\mathcal{L}_{\text{soft}} = -\left(\frac{1}{2}M_{BL}\lambda_{BL}\lambda_{BL} + h.c.\right) - \left(\sum_{k=1}^{3}m_{\tilde{N}_{k}^{c}}^{2}|\tilde{N}_{k}^{c}|^{2} + m_{\Phi}^{2}|\Phi|^{2} + m_{\bar{\Phi}}^{2}|\bar{\Phi}|^{2}\right) + \left(B_{\Phi}\bar{\Phi}\Phi + \sum_{k=1}^{3}A_{k}\Phi\tilde{N}_{k}^{c}\tilde{N}_{k}^{c} + h.c.\right).$$
Burell

800 000 $m_{\Phi_{+}}^2$ 600 000 000 000 007 m²/GeV² $m_{\tilde{N}_1^c}^2 = m_{\tilde{N}_2^c}^2$ 200 000 m_{Φ}^2 0 $m_{ ilde{N}_3^c}^2$ 12 14 16 8 10 4 6 $\log_{10}[\mu/\text{GeV}]$

Kharlil & Masiero, PLB 665 (2008) 374

Burell & N.O, PRD 85 (2012) 055011 $M_{1/2} = 500 \text{ GeV}$

$$m_0 = 800 \text{ GeV}$$

$$A_0 = 0 \text{ GeV}$$

$$f_1 = f_2 = 0.45 \\
 f_3 = 3$$

 $g_{\mathsf{BL}}(M_{GUT}) = 0.53$

Fileviez Perez & Spinner, PRD 83 (2009) 035004 ➤ Most of parameter space,

R-parity is also broken

DM candidate is still missing

There have been many proposal for introduction of DM particles

Concise model: <u>no extension</u> of the particle content

Instead, introduce a parity

NO & Seto, PRD 82 (2010) 023507

 $Y_D^{3j} \to 0$

Enhancement of symmetry: $\mathcal{L} \supset Y_D^{3j} N_3^c \ell_j H$

Minimal B-L model with NR dark matter

> 3 right-handed neutrinos \rightarrow 2+1

2 NRs for the minimal seesaw

Frampton, Glashow & Yanagida, PLB 548 (2002) 119

- ✓ Neutrino oscillation data with one massless eigenstate
- ✓ leptogenesis at TeV

Enhancement of epsilon necessary

→ Resonant leptogensis

Suppression of lepton asymmetry via Z' interaction \rightarrow some more enhancement by Y_D Iso, NO & Orikasa,

PRD 83 (2011) 093011

1 NRs for thermal Dark Matter

B-L Higgs can play the role of inflation

$$S_{J}^{tree} = \int d^{4}x \sqrt{-g} \left[-\left(\frac{m_{P}^{2}}{2} + \xi_{H}H^{\dagger}H + \xi\Phi^{\dagger}\Phi\right)\mathcal{R} + (D_{\mu}H)^{\dagger}g^{\mu\nu}(D_{\nu}H) - \lambda_{H}\left(H^{\dagger}H - \frac{v^{2}}{2}\right)^{2} + (D_{\mu}\Phi)^{\dagger}g^{\mu\nu}(D_{\nu}\Phi) - \left(\lambda\left(\Phi^{\dagger}\Phi - \frac{v_{B-L}^{2}}{2}\right)^{2} - \lambda'(\Phi^{\dagger}\Phi)(H^{\dagger}H)\right) \right]$$

NO, Rheman & Safhi, PLB 701 (2011) 520

Suitable choice of non-minimal coupling, the inflationary predictions are consistent with Planck 2015 results

Z'BL portal NR dark matter

NO & S. Okada, PRD 93(2016) 075003 arXiv: 1601.07526

 The NR dark matter communicate with the SM particles through its B-L gauge interaction

- For Dark Matter physics, <u>only 3 free parameters</u> are involved
 - B-L gauge coupling (α BL)
 - Z'BL boson mass (mz')
 - dark matter mass (mdм)

Note that the NR dark matter has B-L charge -1

Cosmological constraint on Z' portal DM

Observed Relic Abundance:
$$\left[\Omega_{DM}h^2=0.1198\pm0.0015
ight]$$

Planck 2015 (68% CL)

Thermal DM relic abundance is determined by the Boltzmann equation:

$$\frac{dY}{dx} = -\frac{s\langle\sigma v\rangle}{xH(m_{DM})} \left(Y^2 - Y_{EQ}^2\right)$$

 $s = \frac{2\pi^2}{45} g_* \frac{m_{\rm DM}^3}{x^3} \text{ where temperature}_{DM} f/\text{the universe is anormalized} so the right-hangled neutrino <math>x_{\rm the} m_{\rm DM} K_{\rm Tmass}$ $= 2g_{BL} v_{BL}, \int \frac{4\pi^3}{45} m_{em}^2 m_{\rm DM}^2 \text{ the Hubble parameter at } T_{\rm multiple Model} f/\text{DM} f/$

Results for various B-L gauge coupling values for mz'=3 TeV

Results for various B-L gauge coupling values for $mz^2=3$ TeV

Along the black curve, $\Omega_{DM}h^2 = 0.1198$ is satisfied

1. The lower bound of the dark matter mass

LHC Run-2 Constraints

The ATLAS and CMS collaborations have been searching for Z' boson resonance with dilepton final state at the LHC Run-2

 $pp \rightarrow Z' + X \rightarrow || + X$

Upper bounds on the cross section for the sequential Z' model have been obtained

Sequential Z' : heavy Z' boson with exactly the same coupling as the SM Z boson

We interpret the ATLAS & the CMS bounds to the B-L Z' boson

<u>Sample</u>

Final state dilepton invariant mass distribution for mz'=2.5 TeV

ATLAS & CMS bounds on <u>sequential Z' model</u> and the consistency of our analysis with their analysis

Integrate the differential Xsec for $128 \text{ GeV} \le M_{\ell\ell} \le 6000 \text{ GeV}$

Integrate the differential Xsec for

 $0.97 \ m_{Z'_{SSM}} \le M_{\ell\ell} \le 1.03 \ m_{Z'_{SSM}}$

Bounds from ATLAS at LHC Run-2

The upper bound on α_{BL} as a function of Z'BL mass

Bounds from CMS at LHC Run-2

The upper bound on α_{BL} as a function of Z'BL mass

Other constraints

LEP 2 bound on effective 4 Fermi interactions from Z'

$$\frac{m_{Z'}}{g_{BL}} \ge 6.9 \text{ TeV}$$

Carena et al., PRD 70 (2004) 093009 Heeck, PLB 739 (2014) 256

Perturbativity of the B-L coupling up to the Planck scale

$$\alpha_{BL} < \frac{\pi}{6\ln\left[\frac{M_{Pl}}{m_{Z'}}\right]}$$

1 loop RGE

Combining all constraints

We found the lower bound on the Z'BL boson mass mz' > 2.5 TeV.

Conclusions

We have considered the minimal gauged B-L extension of the standard model with a right-handed neutrino dark matter.

In this model, the dark matter particle communicates with the standard model particles through the B-L gauge boson(Z'BL boson), and this "Z'BL portal" dark matter scenario is controlled by only three parameters,

- gauge coupling
- Z'BL boson mass
- dark matter mass

We have considered a variety of phenomenological constraints on this "Z'BL portal" dark matter scenario.

- \cdot relic abundance constraint
- LHC Run-2 bounds
- LEP2 bound
- perturbativity bound of running gauge coupling up to Planck mass

We have found the lower bound on the Z'_{BL} boson mass of mz' > 2.5 TeV.

Thank you

for your attention!

Backup slides

Direct and indirect detection

In non-relativistic limit, the scattering cross section of DM with nucleon is vanishing.

$$\sigma(N_R q \to N_R q) \to 0$$

B-L Higgs portal dark matter is also possible.

