

INDIRECT DETECTION and SIMULATIONS, and DATA too

Miguel A. Sánchez-Conde

(Wenner-Gren Fellow)

[Oskar Klein Centre for Cosmoparticle Physics, Stockholm University]

Dark matter in the Milky Way Mainz, May 2-13 2016

Talk main drivers

TWO QUESTIONS:

- 1. WHAT ARE THE MAIN OPEN ISSUES IN (GALACTIC) INDIRECT DARK MATTER SEARCHES AT PRESENT?
- 2. HOW COULD SIMULATIONS AND NEW DATA CAN HELP TO SHED LIGHT ON THEM?

Outline

- Astrophysical (Galactic) fore/backgrounds
- > Galactic targets:
 - Galactic center
 - Dwarfs
 - Dark satellites
- > Subhalo boosts to the annihilation signal

For each of the items above:

- i) Current status
- ii) Open issues
- iii) Possible ways to address them (simulations, data).

The 'golden channel': GAMMAS

Why gammas?

Energy scale of annihilation products set by DM particle mass

- → favored models ~GeV-TeV
- Gamma-rays travel following straight lines
 - \rightarrow source can be known

✓ [In the local Universe] Gamma-rays do not suffer from attenuation

 \rightarrow spectral information retained.

Present gamma-ray observatories

E. range: 20 MeV \rightarrow 1 TeV E. resolution: ~10% @ GeV FoV: ~ 2.4 sr Angular res.: ~0.2°@10 GeV Aeff ~ m²

HESS

[>2002]

Fermi LAT [>2008] E. range: $0.1 \rightarrow 100 \text{ TeV}$ E. resolution: ~20% @ 10 TeV FoV: ~ 2 sr Angular res.: ~0.2°@10 TeV Aeff ~22,000 m²

MAGIC [>2003]

[>2006]

E. range: 50 GeV \rightarrow 10TeV E. resolution: ~20% FoV: \approx 4 deg. Angular res.: \approx 0.1° Aeff ~ 10⁵ m²

The sky through the Fermi-LAT eyes

[Abdo+10]

THE GAMMA-RAY SKY above 1 GeV 5 years of Fermi LAT data

The complexity of the gamma-ray sky

THE GAMMA-RAY SKY above 1 GeV 5 years of Fermi LAT data

The dark matter-induced gamma-ray sky

Dark Matter simulation: Pieri+09, arXiv:0908.0195

Need to disentangle dark matter annihilations from 'conventional' astrophysics.

Crucial to understand the astrophysical processes in great detail.

Challenges

Source confusion spatial spectral

Astrophysical foregrounds

Sub-threshold sources E.g.: 2FGL: ~1800 sources 3FGL: ~3000 sources

<u>Challenges</u>

Sensitivity

Angular resolution

Spectral resolution

Source confusion spatial spectral

Astrophysical foregrounds

Sub-threshold sources E.g.: 2FGL: ~1800 sources 3FGL: ~3000 sources

<u>Challenges</u>

Sensitivity

Angular resolution

Spectral resolution

Source confusion spatial spectral

More data! [for LAT, 1605.02016]

New experiments

Simulations to model the diffuse emission? → Marinacci's talk!

Astrophysical foregrounds

Sub-threshold sources E.g.: 2FGL: ~1800 sources 3FGL: ~3000 sources

Fermi LAT: the future ahead

- Formally approved till the end of the year.
 - Very likely 2018. Probably beyond?
- With more LAT data:
 - A better knowledge of foregrounds possible.
 - More sub-threshold sources detected.
 - General improvement on DM limits:
 - linearly with time at high energies (better statistics)
 - sqrt(time) at low energies.
- Pass 8 (>mid 2015): improved performance

The inminent future for current generation IACTs

HESS-II

- first light in 2012
- push the threshold to lower energies ~50 GeV
- Expected to lead the IACT limits using the GC.

VERITAS

1000h observation of
 Segue 1 by 2018 (Smith +13)

MAGIC

 Expected to produce new DM limits from dwarfs

The inminent future for satellite-based experiments

CALET

- Japanese-led.
- Launched in Aug 15
- Placed at the ISS

Both:

- ✓ deep calorimeter, 1 GeV 10 TeV
- ✓ superb energy resolution ~2% @ 100 GeV
- ✓ 0.3° angular resolution @ 100 GeV
- Very good background rejection power
- ✓ Small collecting area of ~0.15 and ~0.5 m^2

DAMPE

- Chinese
- Launched in Dec 2015

The future beyond

GAMMA-400

- Russian-led.
- Launch by 2018/19.
- 100 MeV 3TeV
- Efective area ~0.4 m²
- FoV: ~1.2 sr

Big improvement w.r.t. Fermi, but smaller collection area.

HERD

- Chinese
- Launch by 2018/19.
- 100 MeV 10 TeV
- Efective area ~3.7 m²sr
- ∆E/E ~1% > 100 GeV
- 0.1º @ 200 GeV angular resolution.

The future beyond?

PANGU (Wu+14)

- ESA/CAS joint small mission.
- Spectro-imaging, timing and polarization.
- 10 MeV few GeV
- ΔE/E ~ 1% > 100 GeV
- 0.1° (a) 1 GeV angular res.

AstroMeV

- Space mission by ~2025.
- 0.1-100 MeV
- Consortium formed to respond to AO of space agencies.
- http://astromev.in2p3.fr/

Full list of Future High-Energy Astrophysics missions: https://heasarc.gsfc.nasa.gov/docs/heasarc/missions/concepts.html

IACT future: Cherenkov Telescope Array (CTA)

Low-energy section: 4 x 23 m tel. (LST) (FOV: 4-5 degrees) energy threshold of some 10 GeV

Core-energy array: 23 x 12 m tel. (MST) FOV: 7-8 degrees mCrab sensitivity in the 100 GeV–10 TeV domain High-energy section: 30-70 x 4-6 m tel. (SST) - FOV: ~10 degrees

10 km² area at multi-TeV energies

Prototype phase started Sites decided First science in ~2018?

Gammas: the future ahead

Fermi

[<2018?]

CALET[>2015]

DAMPE [>2015]

GAMMA-400 [> 2018]

HAWC [>2015]

CTA [>2018?]

HESS-II [>2012]

> Full list of Future High-Energy Astrophysics missions: https://heasarc.gsfc.nasa.gov/docs/heasarc/missions/concepts.html

Outline

Astrophysical (Galactic) fore/backgrounds

> Subhalo boosts to the annihilation signal

For each of the items above:

- i) Current status
- ii) Open issues
- iii) Possible ways to address them (simulations, data).

Dark Matter search strategies

Satellites

Low background and good source id, but low statistics

Galactic Center

Largest statistics, but source confusion/diffuse foregrounds

Milky Way Halo

Large statistics, but diffuse foregrounds

Spectral Lines

Little or no astrophysical uncertainties, good source id, but low signal expected

Galaxy Clusters

Large, extended signal, but diffuse background and astrophysics

Isotropic background

Large statistics, but astrophysics, galactic diffuse foregrounds, signal uncertainties

Dark Matter simulation: Pieri+(2009) arXiv:0908.0195

(γ-ray) DM searches: today

[Ackermann+15, the LAT collab., 1503.02641]

→ GC excess persists. Origin unclear.

- \rightarrow Dwarfs the most promising independent way to test it.
- → Fermi LAT ruling out thermal WIMPs below ~100 GeV.
- \rightarrow IACTs and HAWC competitive in the TeV energy range.

How to improve the limits? What are the actual uncertainties on them?

... and not only GC and dwarfs!

Physics Reports, accepted [1605.02016]

... and not only GC and dwarfs!

Physics Reports, accepted [1605.02016]

Dark Matter search strategies

Satellites

Low background and good source id, but low statistics

Galactic Center

Largest statistics, but source confusion/diffuse foregrounds

Milky Way Halo

Large statistics, but diffuse foregrounds

Spectral Lines

Little or no astrophysical uncertainties, good source id, but low signal expected

Galaxy Clusters

Large, extended signal, but diffuse background and astrophysics

Isotropic background

Large statistics, but astrophysics, galactic diffuse foregrounds, signal uncertainties

Dark Matter simulation: Pieri+(2009) arXiv:0908.0195

'GeV excess' in the Galactic center

- Several groups have reported an excess of GeV photons from the GC region (e.g., Goodenough & Hooper 09, 11; Daylan+14, Abazajian+14, Calore+14; Gordon & Macías 14, Ajell0+16)
- General agreement on the excess peaking at a few GeV above the standard diffuse emission models.
- Interpretation difficult due to complicated foreground/background modeling.
- **DM annihilation** a plausible and exciting possibility!
 - Spatially consistent with gNFW
 - Approx. half the thermal cross section
 - Around 50 GeV DM particle mass (bb)

[Daylan+14]

Properties of the GC excess

Spectrum

peaks at 2-3 GeV high-energy tail up to >100 GeV

Robust to changes in the diffuse modeling Yet, substantial *spectral variations* possible → large systematics

[Calore+14]

Morphology spatially extended spherically symmetric

GeV excess: a DM origin?

- Residuals improve by adding a DM template (but don't disappear!)
- Spectral fit to DM models equally preferred against e.g. broken power law.

Calore et al., Phys. Rev. D91 (2015) 6, 063003

 $[{\rm cm}_{2}] {\cal H}^{-26}$

ov

10

Residuals (1.6 — 10 GeV)

[The Fermi-LAT collab., 1511.02938]

- ✓ Consistent with gNFW
 ✓ Approx. half <ov>_{thermal}
 ✓ DM mass:
 - ~49 GeV (b quarks)
 - ~38 GeV (c quarks)

Interpretation (II): Unresolved sources?

- O(1000) Millisecond pulsars (MSPs) within ~1kpc of the GC [Abazajian+14]
- Young MSPs [O'Leary+15]
- MSPs from globular clusters' disruption [Brandt+15]
- Non-poissonian photon statistics template analysis [Lee+15]
- Wavelet decomposition of the gamma-ray sky [Bartels+15]

Interpretation (III): Cosmic-ray outbursts?

CR-induced emission may vary with time due to outburst events (black hole, starbursts)

1) HADRONIC

E.g., protons from supernova remnants [Carlson&Profumo 14]

2) LEPTONIC

0.0

E.g., multiple burst events injecting electrons [Petrovic+14, Cholis+15]

[Cholis+15]

To be addressed

• Diffuse emission uncertainties

- New satellite missions coming with improved angular resolution
- CTA from the ground (though probably too high energy threshold for this...)
- Improved models of CR propagation in the Galaxy.
- **Sub-threshold sources** in the inner Galaxy
 - Targeted radio and X-ray MSP searches. Future radio surveys.
 - Sophisticated gamma-ray analysis techniques (e.g. Bartels+15; Lee+15)
- Exact **DM density profile** in the Inner (<1-2 kpc) Galaxy?
 - Can *observations* help? Probably not for a while. MOONS in the near future?
 - *Simulations* and the cusp/core issue for MW-like galaxies. C'mon guys! ③

 \rightarrow But will they provide a reliable answer for THIS specific case??

The GC excess in Fermi-LAT Pass 8 data

- Excess persists
- Similar excesses at other longitudes along the Galactic Plane
 - \rightarrow not expected from DM
 - \rightarrow diffuse emission residuals can mimic a DM signal
- DM limits derived incorporating systematic uncertainties

A. Albert, for the LAT collab., [APS meeting, Apr 16]

D. Malyshev, for the LAT collab., [Gamma-rays and dark matter, Obergurgi, Dic 15]

Control of systematics critical

Charles, MASC+ [1605.02016]

Silverwood+14

Dark Matter search strategies

Satellites

Low background and good source id, but low statistics

Galactic Center

Largest statistics, but source confusion/diffuse foregrounds

Milky Way Halo

Large statistics, but diffuse foregrounds

Spectral Lines

Little or no astrophysical uncertainties, good source id, but low signal expected

Galaxy Clusters

Large, extended signal, but diffuse background and astrophysics

Isotropic background

Large statistics, but astrophysics, galactic diffuse foregrounds, signal uncertainties

Dark Matter simulation: Pieri+(2009) arXiv:0908.0195

GHALO simulation [Stadel+09]

luminous matter

GHALO simulation [Stadel+09]

The role of DM substructure in γ-ray DM searches

The *clumpy distribution* of subhalos inside larger halos may boost the annihilation signal importantly.

→ SUBSTRUCTURE BOOSTS

Dwarf spheroidal satellite galaxies

- \circ The most DM dominated systems known in the Universe.
- Nearly 30 confirmed dwarfs in the Milky Way. More on the way!
- Close to us. Several of them within 50 kpc.
- Free from bright astrophysical gamma-ray sources

Fermi-LAT DM search in dwarfs

Relevance of these limits

Most robust and competitive limits in the <1 TeV WIMP mass regime so far.

Dwarfs as a test of the GeV GC excess.

[Ackermann+15, the Fermi-LAT collab., 1503.02641]

Recent discovery of new satellites

4 additional DES dwarfs reported from outside the DES collab. (Koposov+15, Kim&Jerjen15, Kim+15, Martin+15) DES collab., 1503.02584 DES collab., 1508.03622 Leavens+15

Discovery timeline

A. Drlica-Wagner for the LAT and DES collaborations [*UCLA DM 2016*, Feb 2016]

Search for γ-ray emission from the DES dwarf candidates with the Fermi LAT

Drlica-Wagner+15, [astro-ph/1503.02632]

- No gamma-ray signal found
 - → Upper limits to the gamma-ray flux.
- Assuming they are dwarfs and share similar properties, we can **combine** individual results
- Most significant excess is < 1σ

[Drlica-Wagner, on behalf of LAT and DES collab., UCLA DM 2016]

Data: looking forward

- Large spectroscopic campaign underway
- More sky coverage:
 - DES Y₃+: a few hundred more sq.deg at greater sensitivity.
 - LSST: 20,000 sq. deg. with much greater sensitivity
- Increased sensitivity
 - Are there hyper-faint galaxies out there?
 - Any very nearby?

Simulations: looking forward

Hargis+14

Impact of baryons on this number?

How many dwarfs should we expect?

Zhu+15

E.g, what Fermi LAT can still do

More **data** + dwarf discoveries will provide: → best tool to improve upon the current DM limits significantly. → An independent test of the GC excess as due to DM.

CDM HALO SUBSTRUCTURE

Low-mass subhalos might host few or no stars \rightarrow no optical counterpart. Gamma-rays from DM annihilations may be the only way to find them!

Could some of them be better candidates than dwarfs? How many of these low-mass subhalos are potentially detectable?

Should we expect any DM satellite e.g. here?

A.Drlica-Wagner DPF 2013

DM constraints from DM satellites

- I. J-factors + Particle physics model \rightarrow annihilation luminosities
- II. Fermi sensitivity maps to DM anniihilations -> number of detectable DM satellites
- III. Predictions versus data \rightarrow DM constraints
 - 1/3 of the sources 3FGL catalog remains unidentified (~1000 unIDs)
 - The more astrophysical associations the better for the limits!

Example of constraints from dark satellites

Data: The more uniD associations the better! **Simulations**: How would this picture change by including baryons in the game?

(γ-ray) DM searches: tomorrow

- → Fermi + CTA will (fully?) test the thermal cross-section value (by ~2020?)
- → New instruments from the ground and on space (CTA, GAMMA-400, HERD)
- → These limits only possible if:
 - ightarrow reliable J-factor estimates from dwarfs are available in the future
 - ightarrow Understand and control the systematics
- → As usual, **simulations** can guide us in the search!

Outline

- Astrophysical (Galactic) fore/backgrounds
- > Galactic targets:
 - Galactic center
 - Dwarfs
 - Dark satellites

For each of the items above:

- i) Current status
- ii) Open issues
- iii) Possible ways to address them (simulations, data).

The role of DM substructure in γ-ray DM searches

Both *dwarfs* and *dark satellites* are highly DM-dominated systems

→ GOOD TARGETS

The *clumpy distribution* of subhalos inside larger halos may boost the annihilation signal importantly.

→ SUBSTRUCTURE BOOSTS

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

$$B(M) = \frac{1}{L(M)} \int_{M_{min}}^{M} (dN/dm) \left[1 + B(m)\right] L(m) \ dm$$

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

- Integration down to the minimum predicted halo mass ~10⁻⁶ Msun.
- Current Milky Way-size simulations "only" resolve subhalos down to ~10⁵ Msun.

→ Extrapolations below the mass resolution needed.

Current knowledge of the c(M) relation at z=o

Concentration $c = R_{vir} / r_s$

MASC & Prada, MNRAS, 442, 2271 (2014) [astro-ph/1312.1729]

Current knowledge of the c(M) relation at z=o

Concentration $c = R_{vir} / r_s$

MASC & Prada, MNRAS, 442, 2271 (2014) [astro-ph/1312.1729]

Work ongoing to cover the gap

Concentration $c = R_{vir} / r_s$

Pilipenko, MASC, Prada, Klypin, Yepes et al. In prep.

SCP14 substructure boosts

<u>Reminder</u>: they all assume that both main halos and subhalos possess similar structural properties!

Subhalo concentrations? Yes.

• Difficulty in defining them:

- More complex evolution compared to field halos.
- Tidal forces modify the DM density profile
- Reduced R_{max}, i.e. the radius at which V_{max} is reached
- Solution: choose a definition independent of the profile

$$c_{\rm V} = \frac{\bar{\rho}(R_{\rm max})}{\rho_c} = 2\left(\frac{V_{\rm max}}{H_0 R_{\rm max}}\right)^2$$

See also Diemand+o8

• Still useful to compare to the standard c₂₀₀:

For NFW:
$$c_{\rm V} = \left(\frac{c_{\Delta}}{2.163}\right)^3 \frac{f(R_{\rm max}/r_s)}{f(c_{\Delta})} \Delta$$

c_v results from VL-II and ELVIS

 10^{7} $0 < x_{sub} < 0.1$ 0.1 < x_{sub} < 0.3 /L-|| 100 $0.3 < x_{sub} < 1.0$ 1.0 < x_{sub} < 1.5 106 P12 C200 Median values 5 10⁵ Four radial bins: 104 10 Clear increase of 10³ 106 10⁹ 10 10^{7} 10^{8} subhalo concentration V_{max} [km/s] m₂₀₀ [h⁻¹M_☉] as we approach the host halo center 107 $0 < x_{sub} < 0.1$ **ELVIS** $0.1 < x_{sub} < 0.3$ 100 $0.3 < x_{sub} < 1.0$ $1.0 < x_{sub} < 1.5$ 10⁶ P12 c200 10⁵ 3 104 10 Moliné, MASC+ 10³ 10 10⁶ 107 10⁸ 10⁹ [1603.04057] $m_{200} \ [h^{-1}M_{\odot}]$ V_{max} [km/s]

Improved subhalo boost model

- 1. Make use of our best knowledge on subhalo concentrations.
- 2. Tidal stripping included (Roche criterium).

Moliné, MASC+ [1603.04057]

Factor 2-3 larger boosts

Very small boost for subhalos, e.g. dwarfs

Agrees also with Bartels & Ando (2015) and Zavala & Afshordi (2015)

(Some) OPEN ISSUES

- Precise structural properties of DM subhalos, including low-mass ones?
- → Exact radial distribution?
- → How many? Mass function, survival probability...
- → How do baryons affect them?
- → Observational evidences? (lensing, Galactic disk 'gaps', etc)
- Should we already see some dark satellites with current γ-ray experiments?
- \rightarrow Could they affect DM direct experiments in some way?

THANKS!

Miguel A. Sánchez-Conde

(sanchezconde@fysik.su.se)