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Connecting scales...
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Performance

Projected Performance Development
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Computing
power is
constantly
Increasing

Exaflop machines
by ~2018

Hybrid
architectures are
becoming the
standard



Astrophysics has
been one of the main
driver behind
computing power

SuperMUC time
allocation

m Astrophysics
M Engineering & Energy
® Chemistry & Materials

source: PRACE

RANK SITE SYSTEM CORES
1 Mational Super Computer Center in -~ Tianhe-2 [MilkyWay-2] - TH-IVB-FEP 3,120,000
Guangzhou Cluster, Intel Xeon E5-2692 12C
China 2.200GHz, TH Express-2, Intel Xeon Phi
151P
NUDT
z DOE/SC/0ak Ridge National Titan - Cray XK7 , Opteron 8274 16C 560,640
Laboratory 2.200GHz, Cray Gemini interconnect,
United States NVIDIA K20x
Cray Inc.
3 DOE/NNSA/LLNL Sequoia - BlueGene/Q, Power BOC 16C 1,572,864
United States 1.60 GHz, Custom
IBM
4 RIKEN Advanced Institute for K computer, SPARCAL VIlIfx 2.0GHz, 705,024
Computational Science [AICS] Tofu interconnect
Japan Fujitsu
5 DOE/SC/Argonne National Laboratory Mira - BlueGene/Q, Power BAC 16C 786,432
United States 1.60GHz, Custom
IBM
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source : Top500

PFlops machines
N cores ~ 105

Simulations
N cores ~ 1034

Make better use
of the hardware
is crucial!




The state of the art



resolution elements

Moore's law for simulations
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numerical scheme:
@ SPH
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& moving mesh

included physics:
cooling + star formation

+black hole feedback
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® ~102° resolution elements
® ~1 kpc force resolution

Zoom-ins (for MW):
® ~107® resolution elements
® ~100 pc force resolution

1057 CPUh to complete



DM Density (g/cm?®)

Gasoline

Agora project (Kim et al. 2014)

Gravity

We think we
have it under
control (if it is
newtonian)

All solvers (multigrid,
tree methods,
Fourier methods,
Tree-PM methods),
are essentially in
agreement
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Gravity

We think we
have it under
control (if it is
newtonian)

All solvers (multigrid,
tree methods,
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agreement



Hydrodynamics

Vogelsberger+ 2012
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S i -2 understood

' " but results can
be dependent
on the way
equations are
solved
numerically

Discrepancy was larger ~5 years ago, now this
Issue is mitigated



Galaxy formation poses an enormous multi-scale physics problem
THE DYNAMIC RANGE CHALLENGE

A supermassive BH in a galaxy
\J
® I ~10-6 pc ~10 kpc dynamic range of 1010

Star formation in a normal galaxy

- Miot ~ 1012 Mg
mass dynamic range of 1012
ol m-~1Mg

Credit: Volker Springel



gas-fraction 20%

Springel+ 2005

gas-fraction 20%
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Subgrid
physics

Any physical process that is relevant to the
simulated scales but occurs below the
spatial resolution of the simulation scales
must be included using a subgrid model.

This is the major source of uncertainties
in simulations!

A (non-comprehensive) list:

- Star formation

- ISM physics

- Stellar physics: Evolution, winds, metal
enrichment...

- Supernova feedback

- AGN physics

- Magnetic fields (generation)

- Cosmic rays (production and acceleration)

- Extra dark matter physics: self-interacting or
decay



Supernova
feedback

Insufficient resolution leads to
overcooling

Many successful implementations,
tailored to specific codes

i superbubble A - galactic wind
e 100pe ~10 kpc



Cygnus A

AGN
: feedback

L ~ 100 kpc

Very challenging to implement and
benchmark

® Dynamic range in scales is larger than in
SN feedback

® Relativistic physics

® Massive objects are rare, need to simulate
large volumes

® Even zoom ins are expensive because
of the large mass

Perseus cluster
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Comparison Projects

I ockstar
L 2oL STF (A-4)
SUBFIND (A-4

__ VOBOZ (a—4)

Key to improve methods and understand their limitations
® |t has proven to be difficult in practice (politics).
Easier with analysis tools. Hopefully improving in
the upcoming years (Agora, Scylla, ...)
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Subhaloes Going Notts (Onions+2012)

Aquila project (Scannapieco+2012)




Future directions



What to do with more computing power?

Zoom-in

® More statistics ® More resolution



What to do with more computing power?

More statistics:
® Better sampling of the high-
mass end and AGN feedback

® |arger volumes (~10 larger
than state of the art or ~10°¢
galaxies)

Challenges:

® Code scalability

® Memory consumption

® Data management (~PB)




What to do with more computing power?

More resolution (goal ~ 1pc):

® More faithful implementation
of physical processes (e.qg.
ISM physics)

® Stellar dynamics

® Exploration of the low-mass
end (satellites)

Challenges:
® | oad balancing (scalability)
® New physics implementation
® Convergence(?)
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Current status: full star formation rate
history compatible with observations
(from abundance matching)

Future: Stochasticity of the IMF...

M.(z=0) was the main

benchmark for hydrodynamical
simulations until the 2010's
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Stinson+2013

Structure

High Diffusion
—— MNao ESF
—— High ESF
— - arctangent fit

— Fiducial
- - arctangent fit
— MUGS

120% SN energy
—— Low Dnffusion

In the inner part of galaxies subgrid

Marinacci+ 2015
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Morphologies & disk

Level 4

Box = 60 kpc

B S
S e

Auriga Project

Forming a realistic disc both in terms of morphology and kinematics

Current challenges: thin disk (requires higher resolution? More realistic physics?)



Satellites
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High resolution is also -
essential to simulate satellite

galaxies: e, o, M J‘

® Properties of dwarfs and
ultra-faint galaxies o

® Accurate modeling of
environmental effects (ram-
pressure, tidal

interactions...)
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Detad Kinematics

New simulations will also allows to do direct
detailed comparison with kinematic data:

® Important observable to constrain mass
content in galaxies: better understand
systematics and limits

Current challenges: incredible amount of
2D kinematic data (Integral Field) still to be
reproduced from dwarfs to biggest galaxies
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Tight metallicity - stellar mass relation
observed which is another constraint
recently become standard.

Future:

® Stellar structure and metallicity combined
could help us constrain this (Brook's point).
Lots of data on this from nearby galaxies.

® Possible avenue to explore with GAIA data
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CGM

We also have observations of the gas

properties around galaxies

CGM densities and metallicities as a
current/future tighter constraint on

feedback, and baryon content

Log N, [cm™]

- X-rays constraints: difficult but keep
improving
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Upcoming physics



Magnetic Fields

B (1G]

B field
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k.
%
Already included in cosmological . Marinaceis 3 Mpe

simulations!
- Important for many astrophysical phenomena (for instance in the ISM)
- Higher resolution:

® Detter study of B field amplification processes (dynamo)
® inclusion of diffusive effects (resistivity, ambipolar diffusion...)
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Thermal Conduction

Kannan+ 2016

AGN+Conduction

AGN only

Yang+ 2016

r (Kpc)

10.6

10.4

Important in high temperature
plasma

Many studies focus on galaxy
clusters (help alleviate cooling flows)

Tricky to implement numerically:
® Time step restrictions
® Anisotropic process with magnetic fields



Cosmic Rays

NASA'’s Fermi telescope resolves supernova remnants at GeV energies

High energy particles produced by different
phenomena.

Simulations model CR as a relativistic fluid.
Currently only CR coming from Supernova but

probably more in the near future. Anisotropic
transport processes are important.

Hot topic! Expect results in the
upcoming years.
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Salem+2014



Radiative transfer
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|deally using radiative transfer codes
will allow us to reduce several subgrid
physics models.

Codes exist and keep improving but
are not able to cover the dynamical
range needed for galaxy formation.

Currently:
® Non cosmological runs ~20 pc. Very
helpful to understand baryonic processes
and build effective models

® Cosmological runs can only be run down
to z~4 (best case, several kpc resolution).

Semi radiative transfer codes: radiative
transfer codes combined with subgrid physics.

Rosdahl+2015



Self-interacting/warm DM

CDMz =0 WDM1z=0

Herpich+2014
(WDM+hydro)

Now with hydrodynamics!
Baryonic physics enhance or
erase the effects?
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Several efforts to improve
SIDM/WDM computational
methods in the last years
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Summary

Cosmological hydrodynamical codes are (and will be in the next
years) under constant development, both from computational and
physics perspectives.

The amount of data available to constrain simulations is already
huge. This is good.

As we move forward, different simulated observables become
more solid, and groups (hopefully) converge on the role of
different physical processes.

The trick is decide (and agree) which observations we should
focus our efforts on based on constraining power and lack of
systematics.

FUTURE IS BRIGHT BUT PROBABLY SLOWER THAN WHAT WE

WOULD WANT



Summary

proceedings). I found that the evolution is well fitted by

N = 400 x 100.215(Yea,r—1975) (1)

where the amplitude is normalized to the work of Miyoshi & Kihara (1975). Just
for comparison, the total number of CDM particles of mass mcpym in a box of
the universe of one side L is

N — QopmperL® 1083 (QCDM) ( _L )3 ( lkeV) (%) | 2)
McoMm 0.23 1h—1Gpc McpMm h

If I simply extrapolate equation (1) and adopt the WMAP parameters (Spergel

et al. 2003), then the number of particles that one can simulate in a (1h1Gpc)?

box will reach the real number of CDM particles in December 2348 and February

2386 for mepy = lkeV and 107°eV, respectively. I have not yet checked the

above arithmetic, but the exact number should not change the basic conclusion;
simulations in the new millennium will be unbelievably realistic.

Suto (2005)
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