

Astronomical Data

Else Starkenburg

Schwarzschild Fellow / Emmy Noether Junior Group Leader Leibniz-Institut für Astrophyisk, Potsdam

Content

Dark Matter in the Milky Way

How to get from here

Credit: J. Helly, A. Cooper, S. Cole and C. Frenk (ICC), based on simulation data from The Virgo consortium and software by V. Springel

Dark Matter in the Milky Way

How to get from here.....to here

Credit: J. Helly, A. Cooper, S. Cole and C. Frenk (ICC), based on simulation data from The Virgo consortium and software by V. Springel

Does this show the history of our Milky Way?

Credit: J. Helly, A. Cooper, S. Cole and C. Frenk (ICC), based on simulation data from The Virgo consortium and software by V. Springel

Astronomical data

Stars

- Position
- Luminosity
- Radial velocity
- Proper motions (tangential velocity)
- Metallicity
 - Multiple chemical abundances
- Stellar parameters
 - Temperature
 - Gravity
 - Turbulence

The imprint of dark matter on

astronomical data

- The Milky Way and its dark matter
 - How massive is the Milky Way really?
 - Why do we care?
- The most dark matter dominated galaxies?
 - Should we look at the satellite galaxies to see dark matter annihilation signals, and if so, which?
- What other signals can we see from dark matter?
- What current and future data will help us solve these problems?

uncertain

Wang et al., 2015

Why do we care?

- Calibrating our simulations
- Small scale "crisis"
 - (many experts here on these topics)
 - "Too big to fail"
 - "Missing satellites"
 - Magellanic Clouds
- Derivation of orbits
- The critical observation is kinematics of tracers further out

The shape of the halo

- How much does the halo respond to the disk and accretion history?
 - Affects also the orbits of streams
- One way to measure this is compare local measurements of DM to global (rotation curves)
 - Read et al., 2014, Iocco et al., 2015, Silverwood et al., 2015
 - Assumption: dynamical equilibrium

- Many satellite galaxies around the Milky Way are a unique opportunity to study galaxy formation at a different mass scale
 - And they seem to be very dark matter dominated!

- Some reviews:
 - Walker 2012
 - Battaglia et al., 2013

Luminosity – velocity dispersion relation

McConnachie et al., 2012

Luminosity – velocity dispersion relation

- Dark matter masses are uncertain in particular in the smaller systems - due to:
- Foreground contamination
- Binaries
 - Can the velocity dispersion for the smallest galaxies
 - McConnachie & Cote, 2010: binaries cannot account for observed dispersions much in excess of ~4.5 km/s
 - Munoz et al., 2010: if the measured velocity dispersion of a dSph ranges between 4 and 10 km/s, the inflation from binaries should not be more than 30%
- Are they spherically symmetrical?
- Are they in dynamical equilibrium?

A recent example: Triangulum II

Who lives in which halo?

Barber, Starkenburg, Navarro et al., 2014 Yaryura, Helmi, Abadi & Starkenburg, 2016

Abundance matching is likely to break down at low masses

How can we make progress?

- Careful modelling taking into account all these effects
- Time-dependent observations to correct for binaries
 - e.g., Koposov et al., 2011, Walker et al., 2014,
- Chemical analysis of the stars to differentiate between dwarf galaxies and globular clusters
- Focussing on more isolated dwarf galaxies
 - Although here we have faintness limits
 - Also problems with modelling the rotation curves (see work Kyle Oman)
- Find extra-tidal stars to investigate if stripping is occurring

Figure 1: The estimated pre-infall mass of the Carina dwarf compared with predictions from cosmological simulations.

Ural et al., 2015

Other signatures of dark matter

Dark matter haloes

& stellar streams

Courtesy: Ray Carlberg, GD1

- Detection of substructures with stellar streams
- Applied to a few streams today but has great potential
 - Carlberg, 2015: "Around one hundred velocity measurements per kiloparsec of stream will enable tests for the presence of a local sub-halo density as small as 0.2-0.5% of the local mass density, with about 1% predicted for 30 kiloparsec orbital radii streams."
 - See also Erkal et al., 2015

- Debate on whether this is visible on Palomar 5 stellar stream
 - Carlberg et al., 2012 sees gaps using SDSS data and a matched filter-map (giving more weight to certain types of stars)
 - Ibata et al., 2016 could not reproduce these results with narrowband photometry from CFHT
 - They find the stream is actually very smooth

How can we make progress?

- Deeper photometry
 - S/N in GD1 is 2.3
- Adding velocities through spectroscopic data
- Add proper motions
 - Also to remove foreground

What can be the impact of dark satellites?

A. Helmi, L.V. Sales, E. Starkenburg, T.K. Starkenburg et al., ApJL, 2012

Milky Way-like: Its disk doesn't care Dwarf-like: has an impact with a dark halo as big as its disk ~1.5x in its life

What can be the impact of dark satellites?

Tjitske Starkenburg et al., 2016

- Small dark matter clump, not supposed to form any stars
 - Sweeps up gas and start forming stars in the merger event
 - In gas-poor mergers, the system becomes more spherical

Avenues to progress

- Theoretical understanding of how often this will happen and understanding unique signatures
- Systematic observations of isolated dwarf systems

Current & future surveys

Recap of our wish-list:

- Understanding tidal stripping, binary populations & foreground in dwarf spheroidal systems
 - Rotation curves in further away dwarf irregular systems
- Deeper photometry of the halo streams and dwarf galaxy systems
- Lots of spectroscopy to determine velocities
 - Of outer halo tracers
 - Of stellar streams & galaxies (weed out contamination)
- Proper motions

Photometry efforts:

- PanSTARRS1: SDSS-like, but a bit deeper and with 3π coverage
 - Also scans everything multiple times, so variable stars can be flagged
 - First data release "soon"!
- In the future: LSST

- Smaller targeted surveys
 - "Solo dwarfs" survey of isolated dwarf systems in the Local Group (Higgs et al., 2016)

Metallicity-sensitive surveys

- Metallicity-sensitive photometry can really help to efficiently find stripped material from existing substructures
 - Trace the stripping of dwarf galaxies
 - Also new dimension in substructure searches
- Many planned/ongoing surveys are mapping the Galaxy
 - "Pristine" in the Northern Hemisphere
 - In the Southern Hemisphere: SkyMapper
 - Complementary in the Northern Hemisphere: the LUAU survey
 - Deep u-band photometry
 - APASS (multi-narrow-band)
 - Gaia spectrophotometry

Using narrow-band photometry

- The "Pristine" survey
 - Find metal-poor stars and finally uncover statistical samples in the halo and surrounding dwarf galaxies
 - CFHT 4m, 1° fov
 - Currently >600 deg²
 - +1000 deg²

 $[Fe/H] = -\infty$ [Fe/H] = -3.0[Fe/H] = -2.0[Fe/H] = -1.0[Fe/H] = +0.0

PIs: Else Starkenburg & Nicolas Martin. Co-Is: Piercarlo Bonifacio, Elisabetta Caffau, Raymond Carlberg, Patrick Cote, Patrick Francois, Stephen Gwyn, Vanessa Hill, Rodrigo Ibata, Pascale Jablonka, Julio Navarro, Alan McConnachie, Ruben Sanchez-Janssen, Kim Venn, Kris Youakim

The Future is Now

 Gaia will obtain proper motions and parallaxes for all objects to G=20, radial velocities to G~15-16, and abundances to G~12 Multiple 4m MOS instruments will complement Gaia by obtaining radial velocities and chemical abundance information for stars in the nearby Galaxy (e.g., HERMES, WEAVE, 4MOST)

The Future is Now

 Gaia will obtain proper motions and parallaxes for all objects to G=20, radial velocities to G~15-16, and abundances to G~12 Multiple 4m MOS instruments will complement Gaia by obtaining radial velocities and chemical abundance information for stars in the nearby Galaxy (e.g., HERMES, WEAVE, 4MOST)

General relativistic light-bending determined to 1 part in 10^6

Gaia time line

"End of summer"

- First public data release
- Positions and (G)magnitudes for all single stars
- Proper motions and parallaxes for selected bright stars overlapping with the Tycho catalogue
- Variables in some special fields

Spring/summer 2017

- First data release containing proper motions for all stars
- Updated until end of mission after 5 years

Gaia field transits (ICRS) for 5 years

Spectroscopy in the future

- Follow-up for Gaia:
 - The missing radial velocity component
 - Chemistry
- Many projects with hundreds of fibers:
- WEAVE on the 4m William Herschel Telescope on La Palma (Spain)
 - Surveys to begin 2018
 - Resolving power: ~5000 & ~20,000
 - Kinematics & chemistry

HERMES:

- Already started
- Mainly focussing on the disc of the Galaxy
- Bright & high-resolution

PSF:

- On Subaru
- Only medium-resolution mode

Spectroscopy in the future

- 4MOST 4 Metre Multi-Object Spectroscopic Telescope (on ESO's VISTA)
 - 4 Galactic surveys to begin 2021
 - + 4 extra-galactic surveys
 - My role: co-PI of the low-resolution bulge & disk survey
 - Largest follow-up survey of Gaia (2400 fibers)
 - Resolving power: ~5000 & ~20,000
 - Kinematics, but many elemental abundances too

Maunakea Spectroscopic Explorer

- Transforming CFHT on Mauna Kea into 10meter class wide-field dedicated spectrograph by 2025
 - Project office funded/studies underway

Spectroscopy in the future

MOONS

- Near-infrared (Apt to study the inner Galaxy)
- 2019 on ESO-VLT
- High-resolution and medium resolution mode
- ~1000 fibers

http://www.roe.ac.uk/~ciras/MOONS/VLT-MOONS.html

Goals: Milky Way dynamics

- Determine the Milky Way 3D potential from local streams up to ~100kpc
 - How is DM reacting to baryons:
 - has there been significant adiabatic contraction?
 - is there a disk-like DM component?
 - does the DM respond to the bar?
 - Determine the mass spectrum of Dark Matter 10³–10⁵ M_o halo substructure by the kinematic effects on cold stellar streams

Conclusions

Exciting times!

- **ESA-Gaia is a game-changer**
- The follow-up spectroscopy surveys are underway
 - We will have a 6D view on our Galaxy like never before opening up many new possibilities
 - 7-D or more, with metallicity information, or chemical abundances