
Q&A session, 6 May 2016
Dark Matter in the Milky Way

MITP, 2-13 May 2016

1. Which upcoming direct detection experiments are going to be most interesting to
constrain dark matter? How do you select the ideal target nuclei for direct detection and
how does this choice limit the type of dark matter particle you are able to detect?

Speaker: Riccardo Catena

2. What is and how do you use abundance matching?

Speaker: Chris Brook

3. What is the difference between a Dirac and a Majorana mass term, and how do they
fit together with the Higgs mechanism (or not as may be the case for Majorana particles)?

Speaker: Filippo Sala

4. What is the missing baryon problem?

Speaker: Kyle Oman

5. Which is the ideal target/object for indirect searches?

Speakers: Fabio Iocco & Mattia Fornasa

6. Too big to fail problem and its relation with missing satellite and core/cusp problems.

Speaker: Jose Oñorbe

7. In cosmological simulations, the mass of an individual gas or dark matter “particle”
is millions of solar masses. Why can we expect that the actual dark matter particles in
the universe have the same phase space distribution as such massive “particles” in the
simulations?

Speaker: Matthieu Schaller











N-body Simulations 

Observations 



Stellar Mass Function                          Halo Mass Function 
        observed                                                        from simulations 



Abundance matching 
Halo mass-stellar mass 



Abundance matching 
Halo mass-baryon mass (stars+HI) 

Papastergis et al. 2012 



Abundance matching 
Halo mass-baryon mass (stars+HI) 

Papastergis et al. 2012 



Baryonic Tully Fisher 
in LCDM 

Di Cintio & Lelli 2016 
See also Dutton 2012 

McGaugh et al. 2012 



Wang et al. 2015 

















  

Jose Oñorbe                                                      onorbe@mpia.de

Could you explain the too big to fail 
problem and its relation with missing 

satellite and core/cusp?

Solutions:

➢ Star formation efficiency: 
subhalos are there but forming 
a galaxy depends on several 
baryonic processes: cooling 
mass, reionization, stellar 
feedback.

➢ Reduce the number of 
subhalos: Dark matter physics 
(WDM)

Missing Satellite problem: CDM predicts thousands of subhalos around the MW, 
why we see way less galaxies around us? (Moore+1999, Klypin+1999)

Sawala+2016



  

Jose Oñorbe                                                      onorbe@mpia.de

Could you explain the too big to fail 
problem and its relation with missing 

satellite and core/cusp?

Real solutions:

➢  Reduce the number of massive halos in the MW: 
reduce the MW halo mass.

➢ Reduced the inner density of subhalos:

● Baryon physics: dm cores (core/cusp)
● Dark matter physics: SIDM

➢ Errors in these observations? 

Too big to fail: observations of enclosed mass in 
nearby dwarfs indicate lower values than what LCDM 
(N-body simulations) predict (Boylan-Kolchin+2012)

First order solution: Most massive subhalos are dark. 
But they are too big to fail forming stars!

G
a

rr
is

o
n

-K
im

m
e

l+
2

0
1

4



In cosmological simulations, the mass of an individual gas or dark
matter ‘particle’ is millions of solar masses. Why can we expect that
the actual dark matter particles in the universe have the same phase
space distribution as such massive ‘particles’ in the simulations?

For a “standard” dark matter (DM) particle candidate with the mass of
the order GeV and a very small cross-section, one can describe the evolution
of structures in the Universe using a collisionless self-gravitating fluid. This
fluid can be fully-characterized by its phase-space density distribution f(~x,~v, t)
defined such that f(~x,~v, t)d3xd3v represents the mass at position ~x moving at
velocity ~v at time t. This is a statistical description of all the dark matter
particles in the system. The total mass in the system is:

Mtot =

∫ ∞

−∞
f(~x,~v, t)d3vd3x (1)

The DM density at any point in space is recovered by integrating over ve-
locities:

ρ(~x, t) =

∫ ∞

−∞
f(~x,~v, t)d3v (2)

The distribution f function obeys the Liouville theorem and if the only
force acting on the particle is the gravitational potential Φ(x), we can write a
closed system of equations for the formation of structures (ignoring here the
cosmological expansion factors):

∂f

∂t
+ ~v · ∂f

∂~x
− ~∇Φ · ∂f

∂~v
= 0, (3)

∇2Φ = 4πGρ(~x, t) = 4πG

∫ ∞

−∞
f(~x,~v, t)d3v (4)

This integro-differential system of equations in 7 dimensions (3 space, 3 ve-
locity and 1 time) is know as the Vlasov-Poisson system of equations and is
almost impossible to solve analytically in the general case.
One could try to solve this system directly by using simple discretisation meth-
ods. However, as the problem is 6-dimensional and that in general f will have
a very complex shape, it is almost impossible to do. Instead, one can approach
the problem using a Monte-Carlo approximation. To this end, one constructs f
as a sum of N dirac distributions in phase-space:

f(~x,~v) ≈ 1

N

N∑

i=0

miδ(~x− ~xi)δ(~v − ~vi), (5)

with mi = Mtot/N . In the limit N → ∞ this approximation will converge
towards the original distribution function f(~x,~v, t). Note that mi is unrelated
to the DM particle mass. Each term in the sum in equation 5 can be represented
as a “meta-particle” in the simulation codes that, i.e. a small body with a fixed
mass, a position and a velocity.

Inserting this version of f in the Vlasov-Poisson system leads to a much
simpler set of equations to solve for the individual meta-particles.
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