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Local dark matter distribution

Dark matter (DM) halo in the
local neighborhood most likely
dominated by a smooth
component.

» “Standard Halo Model”: isothermal sphere with an isotropic
Maxwell-Boltzmann velocity distribution.

> local DM density: p, ~ 0.3 GeV cm—3
> typical DM velocity: v ~ 220 km/s

» Local DM flux: ~ 100,000 particles/cm?/s for a 100 GeV WIMP.

"Dark Matter in the Milky Way", MITP, 2 May 2016



Direct detection principles

» Look for energy deposited in low-background detectors by the
scattering of WIMPs in the dark halo of our galaxy.

» WIMP-nucleus collision:

» Elastic recoil energy:
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ma

Olap: angle of the nuclear recoil relative to the initial WIMP direction

» Minimum WIMP speed required to produce a recoil energy Eg:
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The differential event rate

» The differential event rate (event/keV/kg/day):
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» For the standard spin-independent and spin-dependent

scattering:
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Annual modulation

» Due to the motion of the Earth around the Sun, the velocity
distribution in the Earth’s frame changes in a year.
Drukier, Freese, Spergel, 1986

WIMP Wind
—

faet(v, 1) = fun(v + ve(t)) = fea (v + vstve(l))

Sun’s velocity wrt the Galaxy: vs ~ (0,220,0) + (11,12,7) km/s

Earth’s velocity: ve ~ 30 km/s

Nassim Bozorgnia "Dark Matter in the Milky Way", MITP, 2 May 2016



Velocity distribution £,,;(v)?

» The velocity distribution depends on the halo model.

» In the SHM, a truncated Maxwellian velocity distribution is
assumed

fa(v) ~ Nexp(—v2/V?) Vv < Vesc
0 V 2 Vesc

with v ~ 220 km/s, Vesc ~ 550 km/s.

» DM distribution could be very different from Maxwellian:
» Most likely both smooth and un-virialized components.

» the smooth component may not be Maxwellian.

"Dark Matter in the Milky Way", MITP, 2 May 2016



Hints for a signal

Phonons
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» Few experiments have reported "hints" for a signal:

» DAMA: scintillation (Nal)

» CDMS-Si: ionization + phonons (Si)

» CoGeNT: ionization (Ge)

» CRESST: scintillation + phonons (CaWQy,)

» Other experiments have found no evidence for DM.
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DAMA annual modulation signal

» Nal detectors; 9.30 modulation signal; 1.33 ton yr (14 yrs)
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» Two possible WIMP masses: m, ~ 10 GeV, m, ~ 80 GeV.
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DAMA annual modulation signal

» Nal detectors; 9.30 modulation signal; 1.33 ton yr (14 yrs)
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» Two possible WIMP masses: m, ~ 10 GeV, m, ~ 80 GeV.

» Steps forward:
» DAMA/LIBRA-phase 2 running with lower energy threshold.

» Other Nal detectors:

"Dark Matter in the Milky Way", MITP, 2 May 2016



CDMS-Si excess of events

» 140.2 kg day in 8 Si detectors. Observed 3 events against
expected background of 0.62 events.

» WIMP + background hypothesis favored over the known
background estimate at ~ 3o.
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» Maximum likelihood at m, = 8.6 GeV

"Dark Matter in the Milky Way", MITP, 2 May 2016



Constraints from other experiments

Spin-independent scattering:

» Strong tension between hints for a signal and exclusion limits:
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Constraints from other experiments

Spin-independent scattering:

» Strong tension between hints for a signal and exclusion limits:
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Constraints from other experiments

Spin-dependent scattering:

» Happens only in detector nuclei with an odd number of protons
and/or neutrons.

Neutron cross section Proton cross section
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Constraints from other experiments

Spin-dependent scattering:

» Happens only in detector nuclei with an odd number of protons
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» Warning: These kinds of plots assume the Standard Halo Model

and a specific DM-nucleus interaction.

Nassim Bozorgnia
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Direct detection Prospects

» Future experiments:
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Directional direct detection

» Measure both the energy and direction of WIMP-induced recoils.
Several experiments:

» Maximum WIMP flux come from one direction. = nuclear recoils
cluster around the same direction. = dipole feature in the recoil
rate; can be confirmed with only ~10 events [Spergel, 1988].

» No known backgrounds can mimic this directional signature!
Smoking gun evidence for DM.

"Dark Matter in the Milky Way", MITP, 2 May 2016



Directional direct detection

» Measure both the energy and direction of WIMP-induced recoils.
Several experiments:

» Maximum WIMP flux come from one direction. = nuclear recoils
cluster around the same direction. = dipole feature in the recoil
rate; can be confirmed with only ~10 events [Spergel, 1988].

» No known backgrounds can mimic this directional signature!
Smoking gun evidence for DM.

» Other directional features: ring-like features and aberration

Bozorgnia, Gelmini, Gondolo, 1205.2333
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Interpretation of results

» Multiple uncertainties in the interpretation of direct detection data
from:

» astrophysics: local DM density and velocity distribution

» particle physics: differential cross section

» nuclear physics: nuclear form factors, spin content, ...

> : scintillation efficiency, ionization yield,
quenching factors, ...

» Different approaches and methods have been developed to
overcome these uncertainties.

"Dark Matter in the Milky Way", MITP, 2 May 2016



Astrophysical uncertainties

» Local DM density: normalization factor in the event rate.

» DM velocity distribution: enters in the halo integral. = Different
experiments (energy threshold, target nuclei) probe different DM
speed ranges, and thus their dependence on the DM velocity
distribution varies.

"Dark Matter in the Milky Way", MITP, 2 May 2016



Astrophysical uncertainties

» Local DM density: normalization factor in the event rate.

» DM velocity distribution: enters in the halo integral. = Different
experiments (energy threshold, target nuclei) probe different DM
speed ranges, and thus their dependence on the DM velocity
distribution varies.

» Methods to tackle astrophysical uncertainties:

» Astrophysics independent methods: compare different
experiments without making assumptions about the DM
distribution.

» Model or parametrize the DM distribution: use information from
astronomical data, and/or cosmological simulations.

"Dark Matter in the Milky Way", MITP, 2 May 2016



Astrophysics independent methods

Comparison of experiments in vy, space: Fox, Kribs, Tait, 1011.1910; Fox, Liu,
Weiner, 1011.1915, and applied in many other works

2my u2
— XA R(Eg, t)=

7 _p 77 v /t
— astrophysics

particle physics

» r.h.s. is independent of experiment.

» For fixed DM mass and interaction type, transform observed
spectrum into function of v, using the L.h.s.

» compare experiments without specifying the r.h.s.
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' E
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Vmin
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Astrophysics independent methods
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» Conflict between hints and null results persists, independent of
assumptions about the DM distribution.

"Dark Matter in the Milky Way", MITP, 2 May 2016



DM distribution from simulations

» DM velocity distributions from cosmological N-body simulations
without baryons, deviate substantially from a Maxwellian.
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» Significant systematic uncertainties since the impact of baryons
are neglected.

» Realistic cosmological simulations with baryons have recently
become possible!

"Dark Matter in the Milky Way", MITP, 2 May 2016



DM distribution from simulations

» Previous hydrodynamic simulations predicted velocity
distributions different from a Maxwellian [Ling et al. 2009, Eris 2013,
NIHAO 2015].

» To make more precise predictions:

» Identify Milky Way (MW) analogues using observed MW
kinematical data: rotation curves, total stellar mass.
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Bozorgnia et al. 1601.04707
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DM distribution from simulations
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» Halo integrals and hence direct detection event rates obtained
from a Maxwellian velocity distribution with a free peak speed are
similar to those obtained directly from the simulated haloes
[Bozorgnia et al. 1601.04707, Kelso et al. 1601.04725, Sloane et al.
1601.05402].

"Dark Matter in the Milky Way", MITP, 2 May 2016



DM distribution from simulations

» Best fit peak speed of the Maxwellian: 223 — 289 km /s. = shift
of allowed regions and exclusion limits by a few GeV at low DM
masses compared to SHM [Bozorgnia et al. 1601.04707].

Fix local ppy; = 0.3 GeV cm—3

» Shift in the allowed
regions and exclusion
limits occurs in the
same direction. =
compatibility between
different experiments is
not improved.
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» Current direct detection experiments are probing a large region
of the WIMP parameter space.

» Difficult to make the remaining hints for a signal consistent with
null results ...
even with methods to overcome astrophysical uncertainties,
and for many non-standard particle physics models.

with new data to come as experiments improve their sensitivity
and become larger (multi-ton scales).

"Dark Matter in the Milky Way", MITP, 2 May 2016



