The Structure of Simulated Dark Matter Haloes

Aaron A. Dutton (NYU Abu Dhabi)

Matthieu Schaller (Durham)

Dark Matter in the Milky Way, Mainz, May 2016

Outline

1) The Goal: Simulating the Milky Way

2) Dissipationless Cold Dark Matter simulations

3) Hydrodynamical CDM simulations

4) Other Dark Matter models

The Milky Way is Unusually Efficient at forming stars, and smaller than typical disks

Behroozi et al. 2013

Hammer et al. 2007

The MW probably does not live in a typical DM halo

"Via Lactea" Cold Dark Matter (only)

Diemand, Kuhlen, Madau 2006

800x600 kpc

Density profile

Einasto fits CDM haloes better than NFW

(Merritt et al. 2005, Gao et al. 2008; Stadel et al. 2009; Navarro et al. 2010)

Stadel et al. 2009

3 billion particles

ghalo

Concentration vs Mass

Navarro, Frenk, White 1996

Lower mass haloes are (slightly) denser

Lower mass haloes form earlier

The universe was denser when they collapsed

 $M = 3.3 \times 10^{13} \, M_{\odot}$

Einasto structural parameters Planck 2014 Cosmology

Summary of Dissipationless CDM Simulations

- Einasto profile (M₂₀₀, c, α)
- M₂₀₀ ≈ 10¹² M_☉
- c ≈ 6 18 (2σ)
- α ≈ 0.08 0.32 (2σ)

Several physical process can modify the structure of DM haloes

Smooth and Slow Accretion: "Adiabatic Contraction"
r M(r) = const. (Blumenthal et al. 1986, Gnedin et al. 2004)

Dynamical Friction: Expansion

- Satellite/clumpy accretion

(e.g., El-Zant et al. 2001; Johansson et al. 2009)

- Galactic bars (Weinberg & Katz 2002)

Gas Outflows: Expansion

- Strong mass outflows

(e.g., Navarro et al. 1996; Read & Gilmore 2005)

- Rapid Perturbations to potential
 - (e.g., Pontzen & Governato 2012)

George

Halo expansion driven by SN feedback

particles moving in a rapidly fluctuating potential gain energy

Pontzen & Governato 2012

(see also Navarro, Eke, Frenk 1996; Read & Gilmore 2005; Mashchenko et al. 2008)

Halo expansion driven by SN feedback

particles moving in a rapidly fluctuating potential gain energy

Pontzen & Governato 2012

Dutton et al. in prep

(see also Navarro, Eke, Frenk 1996; Read & Gilmore 2005; Mashchenko et al. 2008)

Different hydro codes and subgrid models

name	code	n _{th} / [cm ⁻³]	feedback
FIRE	GIZMO	100	thermal+
MaGICC/NIHAO	GASOLINE	10	thermal blastwave
Illustris	AREPO	0.13	kinetic
EAGLE	GADGET-3	~0.1	thermal stocastic

Dark Matter Mass Resolution

Other factors:

What gas scales are resolved?

Is the ISM correctly modeled on these scales?

Inner Dark Matter density slopes

Fit for power-law slope, α , between 1 and 2% of R_{vir}

Di Cintio et al. 2014a, MNRAS, 437, 415

DM slope correlates with star formation efficiency

Di Cintio et al. 2014a, MaGICC simulations (Stinson et al. 2013)

NIHAO (upgrade to MaGICC)

Wang, Dutton, Stinson, Macciò et al. 2015, MNRAS, 454, 83

NIHAO (upgrade to MaGICC)

Competition: inflows (contraction) vs outflows (expansion)

Tollet et al. 2016, MNRAS, 456, 3542

NIHAO Milky Way analogues

 $M_{star}=6.1e10 M_{\odot}$, $R_{star}=4.3 \text{ kpc}$

M_{star}=2.1e10 M_☉, R_{star}=3.6 kpc

Chan, Keres, Oñorbe, Hopkins, Muratov, Faucher-Giguère, Quataert, 2015, MNRAS, 454, 2981

 $M_{star}=6.1e10 M_{\odot}, R_{star}=4.3 kpc$ $M_{star}=2.1e10 M_{\odot}, R_{star}=3.6 kpc$

Chan, Keres, Oñorbe, Hopkins, Muratov, Faucher-Giguère, Quataert, 2015, MNRAS, 454, 2981

AREPO

Milky Way mass zoom-ins

Marinacci, Pakmor, Springel, 2014, MNRAS, 437, 1750

AREPO Contraction or no change

Radius

Marinacci, Pakmor, Springel, 2014, MNRAS, 437, 1750

EAGLE Schaye et al. 2015, MNRAS, 446, 521

Forms galaxies with the right amount of stars (assuming a Milky Way IMF)

EAGLE Slight Contraction or no change

Schaller et al. 2015, MNRAS, 451, 1247

Challenge: Select a good MW host

Issue 1: What is the MW halo mass ?

a- Use abundance-matching

b- Use the number of (large) satellites

c- Use the internal structure (see later)

Challenge: Select a good MW host

Issue 1: What is the MW halo mass ?

a- Use abundance-matching

b- Use the number of (large) satellites

- c- Use the internal structure (see later)
- Issue 2: What is the MW internal structure ?
- a- Use rotation curve data
- b- Use local density estimate

c- Use morphology

d- Use SF history ?

Calore et al., 2015, JCAP, 12, 053

Challenge: Select a good MW host

Issue 1: What is the MW halo mass ?

- a- Use abundance-matching
- b- Use the number of (large) satellites
- c- Use the internal structure (see later)
- Issue 2: What is the MW internal structure ?
- a- Use rotation curve data
- b- Use local density estimate
- c- Use morphology
- d- Use SF history ?

Issue 3: What is the environment of the MW ?

M33

Gottloeber et al., 2010, 1005:2687

EAGLE MW-zooms

- Zoom regions containing a MW and M31 galaxy.
- Regions chosen to match dynamical properties of the Local Group.
- EAGLE code.
- Resolution of 10^4 for the gas/stars.

Sawala et al., 2016, MNRAS, 457, 1931 Fattahi et al., 2016, MNRAS, 457, 844

EAGLE MW-zooms

Schaller et al., 2016, MNRAS, 455, 4442

Illustris - GAIA halo selection

Taylor et al., 1510:06409

Lovell et al., 2014, MNRAS, 439, 300

Di Cintio, Governato, et al., in prep

Summary

- The Milky Way is at the mass scale where contraction from gas accretion and expansion from gas outflows roughly cancels out for resolved scales: 0.01 < r/r_{vir} < 1.
- Selecting MW halos can be difficult and could explain differences. Select by stellar/halo mass ? SFR ? Satellite count ? Dynamics ? Environment ?
- Different hydro codes and sub-grid models give similar results (for weak halo response). Non-spherical symmetry not very much explored.
- What happens below 1% of the viral radius (~2 kpc)?