
On Taxonomy, 
Taxidermy, and 

Dark Matter 

DAVID G. CERDEÑO 

��������	
���	�	
���


1	



We don’t know yet what DM is... but we do know many of its properties 
 
Good candidates for Dark Matter have to fulfil the following conditions 

•  Neutral (*) 

•  Stable on cosmological scales (*) 

•  Reproduce the correct relic abundance (*) 

•  Not excluded by current searches 

•  No conflicts with BBN or stellar evolution 

Many candidates in Particle Physics 

•  Axions and ALPs 

•  Weakly Interacting Massive Particles (WIMPs) 

•  Sterile Neutrinos 

•  SuperWIMPs and Decaying DM 

•  WIMPzillas 

•  Asymmetric DM 

•  SIMPs, CHAMPs, SIDMs 

•  Bose Einstein Condensate … 
... they have very different properties 
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Direct	DM	detec3on	

Dark matter MUST BE searched for in different ways... 
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Weakly-Interac3ng	Massive	Par3cles	
Inelas3c	DM	
Axion-like	par3cles	
Millicharged	par3cles	
	



Direct	DM	detec3on	 Collider	DM	searches	

Astro/Cosmo	probes	

Dark matter MUST BE searched for in different ways... 

Indirect	DM	detec3on	
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Accelerator 
Searches 

(production) 

Indirect Detection 
(annihilation or decay) 

Direct Detection 
(scattering) 

... probing DIFFERENT aspects of their interactions with ordinary matter 

“Redundant” detection can 
be used to extract DM 
properties. 

Constraints in one sector 
affect observations in the 
other two. 
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Current challenges for DARK MATTER 

MW2016	-	Mainz	

•  Experimental detection:  
Does DM feel other interactions apart from Gravity? 
Is the Electro-Weak scale related somehow related to DM? 
How is DM distributed? 

 
•  Determination of the DM particle parameters: 

Mass, interaction cross section, etc…  
 
•  What is the theory for Physics beyond the SM: 

DM as a window for new Physics 
Can we identify the DM candidate? 

 



Upper bounds on the SI cross section 

XENON10, XENON100, LUX (Xe), CDMSlite, SuperCDMS, Edelweiss (Ge), COUPP (CF3I), and 
CRESST (CaWO4) have not observed any DM signal, which constrains the scattering cross 
section 
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From a plot by Raimund Strauss	
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Including the latest SuperCDMS low-mass results 
 
Operating at High Voltage (~70V) 
116 kg day 
~0.3 keV threshold 



XENON10, XENON100, LUX (Xe), CDMSlite, SuperCDMS, Edelweiss (Ge), COUPP (CF3I), and 
CRESST (CaWO4) have not observed any DM signal, which constrains the scattering cross 
section 
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SuperCDMS	

CDMSlite	

EDELWEISS	low	thr.	

CRESST-comm.	(2009)	

CRESST-II		

CRESST		
(2011)	

DISCLAIMER:  
 
THIS PLOT ASSUMES 
•  Isothermal Spherical Halo 
•  WIMP with only spin-independent interaction 
•  coupling to protons = coupling to neutrons 
•  elastic scattering 

From a plot by Raimund Strauss	
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Upper bounds on the SI cross section 
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section is dσ/dER = σ̂AmA/(2v2µ2
A), with

σ̂A=
µ2
A

M4
∗

[fpZF p
A(ER) + fn(A−Z)Fn

A(ER)]
2
, (2)

where fp,n are the couplings to protons and neutrons,
normalized by the choice of mass scaleM∗, and F p,n

A (ER)
are the proton and neutron form factors for nucleus A.
F p
A(ER) and Fn

A(ER) are not identical. F p
A(ER) is

what has typically been measured, but Fn
A(ER) may also

be probed, for example, through neutrino and electron
parity-violating scattering off nuclei [14]. However, since
the isospin violation from this effect is small compared to
the potentially large effects of varying fn/fp, we will set
both form factors equal to FA(ER). With this approxi-
mation, the event rate simplifies to R = σAIA, where

σA =
µ2
A

M4
∗

[fpZ + fn(A− Z)]2 (3)

IA = NTnX

∫

dER

∫ vmax

vmin

d3v f(v)
mA

2vµ2
A

F 2
A(ER) , (4)

and σA is the zero-momentum-transfer SI cross section
from particle physics, and IA depends on experimental,
astrophysical, and nuclear physics inputs. If fn = fp,
we recover the well-known relation R ∝ A2. For IVDM,
however, the scattering amplitudes for protons and neu-
trons may interfere destructively, with complete destruc-
tive interference for fn/fp = −Z/(A− Z).
We assume that each detector either has only one el-

ement, or that the recoil spectrum allows one to distin-
guish one element as the dominant scatterer. But it is
crucial to include the possibility of multiple isotopes. The
event rate is then R =

∑

i ηiσAi
IAi

, where the sum is
over isotopes Ai with fractional number abundance ηi.
IVDM and current data. It will be convenient

to define two nucleon cross sections. The first is σp =
µ2
pf

2
p/M

4
∗
, the X-proton cross section. In terms of σp,

R = σp

∑

i

ηi
µ2
Ai

µ2
p

IAi
[Z + (Ai − Z)fn/fp]

2 . (5)

The second is σZ
N , the typically-derived X-nucleon cross

section from scattering off nuclei with atomic number
Z, assuming isospin conservation and the isotope abun-
dances found in nature. With the simplification that the
IAi

vary only mildly for different i, we find

σp

σZ
N

=

∑

i ηiµ
2
Ai
A2

i
∑

i ηiµ
2
Ai
[Z + (Ai − Z)fn/fp]2

≡ FZ . (6)

If one isotope dominates, the well-known result, FZ =
[Z/A+ (1− Z/A)fn/fp]−2, is obtained.
In Fig. 1 we show regions in the (mX ,σZ

N ) plane and
the (mX ,σp) plane for fn/fp = −0.7 that are favored and
excluded by current bounds. These include the DAMA
3σ favored region [15, 16], assuming no channeling [17]
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FIG. 1. Favored regions and exclusion contours in the
(mX ,σZ

N ) plane (top), and in the (mX ,σp) plane for IVDM
with fn/fp = −0.7 (bottom).

and that the signal arises entirely from Na scattering; the
CoGeNT 90% CL favored region [2]; 90% CL exclusion
contours from XENON100 [3] and XENON10 [4]; and
90% CL bounds from CDMS Ge and Si [5, 6]. The isotope
abundances are given in Tables I and II.

There are controversies regarding the exclusion con-
tours for xenon-based detectors at low mass [18]. The
energy dependence of the scintillation efficiency at low
energies is uncertain, and there are questions about the
assumption of Poisson fluctuations in the expected pho-
toelectron count for light dark matter. We have also not
accounted for uncertainties in the associated quenching
factors for Na, Ge and Si [19]. These issues can enlarge
some of the signal regions or alter some of the exclusion
curves of Fig. 1. We have also not adjusted the favored
regions and bounds to account for differences in the dark
matter velocity distributions adopted by the various anal-
yses, which would slightly shift the contours.

Remarkably, for −0.72 <∼ fn/fp <∼ −0.66, the DAMA-
and CoGeNT-favored regions overlap and the sensitivity
of XENON is sufficiently reduced to be consistent with
these signals, since this choice of fn/fp leads to nearly

Isospin-Violating Dark Matter can ease this discrepancy 
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Figure 6. Isospin-dependent couplings. Left: Combined parameter estimation of fn/fp, m� and �n

(not shown) using a global maximum likelihood method (see text for details). As expected, there
is a preference for fn/fp = �0.7 but the 2� confidence region extends up to fn/fp ⇥ �0.2. Right:
CDMS-Si allowed parameter region and XENON10/100 bounds for fn/fp = �0.7. In both plots, the
best-fit point is indicated with a white cross.
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Figure 7. Alternative choices for isospin-dependent couplings. No significant fine-tuning of fn/fp
is required to weaken the XENON10/100 bounds relative to CDMS-Si. Note the change of scales in
these figures.

strongest constraints on CDMS-Si arise from SIMPLE [55] and the CRESST-II commissioning
run [56] (not shown). For fn/fp = �0.7 these experiments require �n . 10�39 cm2 at
m� ⇥ 10GeV [36] and therefore do not significantly constrain the CDMS-Si preferred region.

In spite of the preference for fn/fp ⇥ �0.7, we observe that much larger values of fn/fp
still give a good fit to the data. At 1� confidence level, we find �0.76 < fn/fp < �0.58
and the 2� confidence region extends up to fn/fp ⇥ �0.2. To illustrate this point, we show
the cases fn/fp = �0.5 and fn/fp = �0.2 in Fig. 7. We conclude that little fine-tuning
is required to suppress the bounds from XENON10/100, in particular we do not require a
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The scattering amplitudes for proton and neutrons may 
interfere destructively 

The interference depends on the target nucleus 

XENON100 (Xe) and CDMS II (Si) 
results can be “reconciled” 

For Xe (Z=54, A~132) à   
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FIG. 1. Favored regions and exclusion contours in the
(mX ,σZ

N ) plane (top), and in the (mX ,σp) plane for IVDM
with fn/fp = −0.7 (bottom).

and that the signal arises entirely from Na scattering; the
CoGeNT 90% CL favored region [2]; 90% CL exclusion
contours from XENON100 [3] and XENON10 [4]; and
90% CL bounds from CDMS Ge and Si [5, 6]. The isotope
abundances are given in Tables I and II.

There are controversies regarding the exclusion con-
tours for xenon-based detectors at low mass [18]. The
energy dependence of the scintillation efficiency at low
energies is uncertain, and there are questions about the
assumption of Poisson fluctuations in the expected pho-
toelectron count for light dark matter. We have also not
accounted for uncertainties in the associated quenching
factors for Na, Ge and Si [19]. These issues can enlarge
some of the signal regions or alter some of the exclusion
curves of Fig. 1. We have also not adjusted the favored
regions and bounds to account for differences in the dark
matter velocity distributions adopted by the various anal-
yses, which would slightly shift the contours.

Remarkably, for −0.72 <∼ fn/fp <∼ −0.66, the DAMA-
and CoGeNT-favored regions overlap and the sensitivity
of XENON is sufficiently reduced to be consistent with
these signals, since this choice of fn/fp leads to nearly

The effective interaction of DM particles with nuclei can be more diverse than 
previously considered 

Fitzpatrick, Wick et al. 2012-2014 
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•  Asymmetric DM

•  Inelastic DM

•  Decaying DM (e.g., gravitinos)

•  Axions

•  Self-interacting DM

•  …


•  “Standard” WIMPs


-  Supersymmetry 
(neutralinos, sneutrinos)


-  Kaluza-Klein DM 

-  Inert Doublet Model

-  …


Taxonomy (Theory–biased)  
Predictions are tested with experimental results 

 

Construct a bestiary of “well motivated models” 
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Particle Physics models for dark matter 

Well motivated DM models in theories beyond the Standard Model (e.g., 
Supersymmetry) 

Minimal SUSY extension  

DGC, Muñoz, Seto 08 
 Arina, Fornengo 08 

Sneutrino 
 
Viable candidates in scenarios with Right-Handed 
sneutrinos 

Gravitino (Superpartner of the graviton) 
Axino (Superpartner of the axion) 

Extra-weakly interacting massive particles 

Goldberg ’83 
Ellis, Hagelin, Nanopoulos, Olive, Srednicki ’83 

 Krauss ‘83 

Neutralino 
 
Good annihilation cross section. it is a WIMP 
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Neutralino in the MSSM 

Figure 1 – Theoretical predictions for the spin-independent neutralino-nucleon scattering cross section in the
pMSSM10 and NUHM2 scenarios. Figure adapted from Ref.?.

Figure 2 – Theoretical predictions for the direct detection of the lightest neutralino (left) and the RH-sneutrino
(right) in the NMSSM. Solid lines correspond to current experimental constraints and dotted lines represent the
expected sensitivity of second generation detectors. The gray points are allowed by all experimental constraints,
whereas the black points can be excluded by current searches for gamma-ray lines of Fermi-LAT.

A recent analysis ? of the impact of the first LHC run on the MSSM parameter space
shows that the neutralino mass is confined to a range mχ̃0

1
≈ 100− 2000 GeV, the lowest mass

corresponding to scenarios in which no universality condition is imposed on the soft SUSY-
breaking parameters and the correct relic abundance is obtained through coannihilation effects
(a fine-tuned region with mχ̃1

0
≈ mZ/2 is still viable due to resonant annihilation through the Z

boson). The theoretical predictions for the direct detection of these particles show that a wide
range of the parameter space are within the reach of second generation experiments (see Fig. ??
where the results for the pMSSM and NUHM are summarised).

The neutralino properties are very sensitive to the details of the Higgs sector, and as such,
can vary significantly in extended models such as the NMSSM. In this scenario, the inclusion of
a singlino component and the presence of new annihilation channels have profound consequences
for neutralino searches ?,?. In particular, it has been shown that the NMSSM can accommodate
low-mass neutralino DM ?,?,?,?,?,?,?. The NMSSM can also be enlarged with an extra singlet su-
perfield that incorporates right-handed neutrinos (and sneutrinos) ?,? in order to accommodate a
see-saw mechanism that explains the smallness of neutrino masses. The right-handed (RH) sneu-
trino in the resulting construction is a viable DM candidate ? with interesting phenomenological
properties.

MSSM after LHC1  
Bagnaschi  et al. 2015 

•  Invisible Higgs decay 
	

Impose LHC1 bounds and explore the 
predictions of MSSM parameter space	

•  Bounds on SUSY masses 
	
•  Low-energy observables 
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The current bound on BR(Hà inv) sets constraints on the DM-Higgs coupling 
 
This also translates into (upper) bounds for the scattering cross section of low-mass WIMPs 
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The neutralino properties are very sensitive to the details of the Higgs sector, and as such,
can vary significantly in extended models such as the NMSSM. In this scenario, the inclusion of
a singlino component and the presence of new annihilation channels have profound consequences
for neutralino searches ?,?. In particular, it has been shown that the NMSSM can accommodate
low-mass neutralino DM ?,?,?,?,?,?,?. The NMSSM can also be enlarged with an extra singlet su-
perfield that incorporates right-handed neutrinos (and sneutrinos) ?,? in order to accommodate a
see-saw mechanism that explains the smallness of neutrino masses. The right-handed (RH) sneu-
trino in the resulting construction is a viable DM candidate ? with interesting phenomenological
properties.

MSSM after LHC1  
Bagnaschi  et al. 2015 

•  Invisible Higgs decay 
	

Impose LHC1 bounds and explore the 
predictions of MSSM parameter space	

•  Bounds on SUSY masses 
	
•  Low-energy observables 
	

•  Correct DM relic density 
	

The predictions for the scattering 
cross section still span many orders of 
magnitude  
 
(excellent motivation for more 
sensitive detectors)  

MW2016	-	Mainz	

Neutralino in the MSSM 
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Combined with LHC + Indirect searches à excellent coverage of SUSY parameter space 
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•  Scan in the parameter space imposing all constraints (direct, indirect and colliders) 

•  The full final state is studied 
Do not restrict the analysis to pure annihilation channels.  
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FIG. 3. Differential gamma ray spectrum for the points in Table I for pure (left panel) and predominant (right panel) annihilation
channels. The colour convention is as in Fig. 2. The experimental data and errors are extracted from Ref. [10], as well as the best fit for a
pure bb̄ channel, represented by a black dashed line.

Pure final states

Final state mÑ1
(GeV) ξ2⟨σv⟩0 (cm3/s) ΩÑ1

h2 χ2

H0
1H

0
1 (91.8%) 119.8 5.1× 10−26 0.094 21.9

A0
1A

0
1 (90.6%) 65.0 2.7× 10−26 0.109 22.3

bb̄ (90.2%) 46.1 1.9× 10−26 0.038 22.6

Mixed final states

Final state mÑ1
(GeV) ξ2⟨σv⟩0 (cm3/s) ΩÑ1

h2 χ2

A0
1A

0
1 (44.7%) 63.8 2.9× 10−26 0.061 20.8

bb̄ (42.1%) 63.2 2.9× 10−26 0.042 21.0

H0
1H

0
1 (71.4%) 121.4 5.4× 10−26 0.075 21.6

gg (38.8%) 39.6 1.4× 10−26 0.071 23.7

cc̄ (33.0%) 39.0 1.2× 10−26 0.099 25.4

H0
1H

0
2 (44.5%) 127.4 4.3× 10−26 0.054 25.9

A0
1A

0
1 (4τ ) (67.5%) 25.5 1.5× 10−26 0.068 27.4

W+W− (28.0%) 72.4 2.6× 10−26 0.104 29.2

TABLE I. Properties of the points that provide the best fit
to the GCE for different annihilation final states. We have
separated the solutions into pure final states (which have an
annihilation percentage into a given channel bigger than 90%)
and mixed final states (in which case we show the dominant
channel with its percentage).

Since mA0
1

< 2mb, these pseudoscalars cannot decay
into a pair of b quarks and instead they do it predomi-
nantly into a pair of τ leptons. The resulting process,

Ñ1Ñ1 → 2A0
1 → 4τ , leads to a leptonic final state

(with best fit around mÑ1
≈ 25 GeV), which differs

from the usual 2τ final state (whose best fit is around
10 GeV [10]). We have also found 2τ final states,
however, these appear only for mÑ1

! 5 GeV [53] and
therefore fall out of the 95% C.L.

• mÑ1
≈ 30 − 135 GeV. This region is populated by

points which present annihilation mainly into bb̄ (grey),
cc̄ (green), gg (violet), A0

1A
0
1 (cyan), H0

1H
0
1 (blue) and

H0
1H

0
2 (dark blue).

The best fit for a pure annihilation into a bb̄ pair is
obtained for mÑ1

= 46.1 GeV (see Table I), in good
agreement with Ref. [10], but it shifts to larger masses
mÑ1

= 63.1 GeV if mixed final states are considered.
Very few solutions with dominant cc̄ and gg final states
are found. These channels dominate when the up com-
ponent of the lightest Higgs is larger than the down com-
ponent, which enhances the Higgs coupling to up-type
fermions and top loop contributions to gg final states.
However, these loop contributions also enhance the γγ
line production and most of the points are excluded
for this reason. Besides, these final states are always
related to the resonant annihilation of RH sneutrinos
through a light singlet-like H0

1 [53] and typically have
a smaller relic abundance than the lower bound consid-
ered in this article. This also happens for other channels
when mÑ1

≈ mH0
2
/2 ≈ 63 GeV, and explains the gap in

the plot.
The annihilation into a pair of CP even Higgs bosons

takes place mostly for mÑ1

>∼ 60 GeV. These subse-

quently decay mainly into bb̄ (if the down component

Points fitting the GCE at 90% CL 

DGC, Peiró, Robles JCAP 08 (2014) 005 
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Right-handed sneutrino in the NMSSM and the GCE 



•  Many of these points can be checked by G2 direct detection experiments  

DGC, Peiró, Robles JCAP 08 (2014) 005 

Once more: Complementarity of DM searches 

MW2016	-	Mainz	 17	

Right-handed sneutrino in the NMSSM and the GCE 



Excellent motivation for direct searches at low masses  
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Neutralino and Right-handed sneutrino in the NMSSM 

Neutralino	
NMSSM	

WIMP mass [GeV/c2]	
DGC, Peiró, Robles JCAP 08 (2014) 005 

DGC, Peiró Robles, 2015 

Extensions of the MSSM can be more flexible (new light mediators) 
 
Low-mass SUSY WIMPs are still viable (1-100 GeV) 

MW2016	-	Mainz	 18	



WIMPs behave very similarly (not surprisingly) 

Information on spin-dependent WIMP couplings can prove important to distinguish models 
3

FIG. 1: Theoretical predictions for σSD
p versus σSI

p obtained from a set of random scans in the various supersymmetric (effMSSM
and supergravity-inspired) scenarios (left) and in the UED scenario (right). All the points fulfil existing experimental constraints
and reproduce the correct dark matter relic density. The current and projected sensitivities of the CDMS detector (25 kg stage)
are also represented with solid and dot-dashed lines, respectively, together with the potential reach of COUPP (dashed lines).
The sensitivity of COUPP at 1 ton target mass is based on the goal of matching the lowest alpha-emitter concentrations so far
achieved in neutrino experiments [7] (e.g., KAMLAND [11]).

mq(1) . The resulting spin-dependent and -independent
LKP detection cross section is represented in Fig. 1b),
where (in view of the aforementioned theoretical uncer-
tainties on the B(1) parameters) we took a rather liberal
approach, and let the B(1) mass mB(1) , and the normal-
ized mass difference between the first level KK quarks
and the B(1), Rq(1) ≡ (mB(1) − mq(1))/mB(1) , to vary in-
dependently in the range 300 GeV ≤ mB(1) ≤ 2000 GeV,
and 0.01 ≤ Rq(1) ≤ 0.5. Note that masses mB(1) ! 300
GeV are excluded by electroweak precision data [25, 26].
As one can see, LKP models tend to populate a differ-
ent region of the parameter space with respect to SUSY
scenarios, due to the larger spin-dependent cross-section.

WIMP Discovery and Identification. The discovery of
neutralino DM might take place through either scalar or
axial coupling. In contrast, discovery of LKP DM is for
most, but not all, models expected to occur through ax-
ial coupling. The ability of COUPP to run with a target
such as CF3I, which has optimal SI, SDn, and SDp cou-
plings, is an advantage of this experiment in the race
for first detection. Supposing an experiment succeeds in
directly detecting DM particles, it is interesting to con-
sider how the nature of the DM (e.g. neutralino or LKP)
might be determined. The possibility of running with a
range of detection fluids makes COUPP well-poised to
determine the nature of DM upon successful detection.
As shown in Fig. 2(a), measurement of an event rate in a
single detector does reduce allowed models, but does not
generally place significant constraints on coupling param-
eters or on the nature of detected DM (i.e. neutralino or
LKP). However, as shown in Fig. 2b), subsequent detec-

tion of an event rate on a second target does substantially
reduce the allowed range of coupling parameters, and al-
lows, in most cases, an effective discrimination between
neutralino and LKP DM (it has recently been pointed
out [27] that a combination of direct and indirect detec-
tion techniques might also help distinguishing between
these two candidates). The combination of detector flu-
ids used in Fig. 2 is effective in reducing the allowed range
of σSI

p /σSD
p because massive iodine nuclei have a large SI

coupling, while fluorine nuclei have a large SDp coupling.
It must be noted that fluorine and iodine have very simi-
lar neutron cross sections. Monte Carlo simulations show
that CF3I and C3F8 or C4F10 exhibit essentially the same
response to any residual neutron background, i.e., neu-
trons cannot mimic an observed behavior such as that
described in the discussion of Fig. 2. Other combinations
of targets such as germanium and silicon are more prone
to systematic effects where residual neutron recoils can
mimic the response expected from a WIMP with domi-
nant spin-independent couplings.

Conclusions. As we have shown with Fig. 1, in cer-
tain phenomenological scenarios a detector sensitive ex-
clusively to one mode of interaction may lack sensitivity
to a large fraction of WIMP candidates. The possibility of
operating experiments, such as COUPP, with a range of
detection fluids, makes them ideally suited to determine
the nature of dark matter upon successful detection, i.e.,
to distinguish between LKP and neutralino candidates,
and in the second case, to pinpoint the properties of the
particle in an otherwise vast supersymmetric parameter
space. The arguments presented here for the case study

Kaluza-Klein DM	Neutralino	

“Advance in both fronts” (spin-dependent and -independent) to gain discriminating power 

There can be correlations in the “phenomenological parameters”  

Bertone, DGC, Collar, Odom ‘07 
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•  Experimental data allow us to reconstruct “phenomenological 
parameters”.  
 

  mX, σSI, σSD, <σv>ij 
 
•  Theoretical models tend to produce similar results  

(e.g., most WIMPs are alike) 

If there is a positive detection of DM, can we identify the underlying model?  

•  Data from different experiments has to be combined in order to 
remove degenerate solutions (and reduce the effect of 
uncertainties) 

Problem:  

Solution:  

Strategies that allow the identification of DM from future data  

MW2016	-	Mainz	 20	
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Taxidermy (Phenomenology-driven) 

Identify some basic 
features from a 
positive 
observation 

Interpret experimental results in terms of simplified models or effective Lagrangians 

 

(Galactic Centre Emission)	

MW2016	-	Mainz	 22	



Identify some basic 
features from a 
positive 
observation 

Perform a 
complementary 
measurement with 
other search 
technique 

(Galactic Centre Emission)	

(Signal in various direct detection 
targets or at the LHC)	

Taxidermy (Phenomenology-driven) 
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Identify some basic 
features from a 
positive 
observation 

Perform a 
complementary 
measurement with 
other search 
technique 

Some data might be more 
difficult to explain in terms 
of “standard” DM models 

(Galactic Centre Emission)	

(Signal in various direct detection 
targets or at the LHC)	

(DAMA annual modulation)	

Taxidermy (Phenomenology-driven) 
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Identify some basic 
features from a 
positive 
observation 

Perform a 
complementary 
measurement with 
other search 
technique 

©	Esteban	Seimandi	
				Animalia	Exs3nta	

Some data might be more 
difficult to explain in terms 
of “standard” DM models 

This motivates working with general frameworks, where 
little or nothing is assumed for the DM particle	

Taxidermy (Phenomenology-driven) 
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Identification of Dark Matter 

Given a DM direct detection, the DM mass and couplings can be determined from the 
observed number of events and energy spectrum. 

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(

σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)

, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.

For spin 1 is different.]The explicit expressions for the scattering cross section de-

pend on the specific particle physics model. The WIMP-nucleon interactions can be

described by means of an effective Lagrangian,

L ⊃ αS
q χ̄χq̄q + αV

q χ̄γµχq̄γ
µq + αA

q (χ̄γ
µγ5χ)(q̄γµγ5q) . (2.4)

The scalar (S) and vector (V) couplings contribute to the spin-independent part of

the cross section, while the coupling to the quark axial current (A) contributes to the

spin-dependent one.

Regarding the spin-dependent contribution it is customary to define the WIMP

couplings to proton and neutrons as

ap =
∑

q=u,d,s

αA
q√

2GF

∆p
q ; an =

∑

q=u,d,s

αA
q√

2GF

∆n
q , (2.5)

and

Λ =
1

J
[ap⟨Sp⟩+ an⟨Sn⟩] . (2.6)

The resulting differential cross section can then be expressed (in the case of a fermionic

WIMP [DC: Is it not possible to use a parametrization which is independent

of fermions-bosons? The kinematical pre-factor is different but as long as

we do not relate it to fundamental parameters...]) as
(

dσWN

dER

)

SD

=
16mN

πv2
Λ2G2

FJ(J + 1)
S(ER)

S(0)
, (2.7)

3

Nuclear form factors 

1 Introduction

2 Direct dark matter detection

Let us start by briefly reviewing some basic expressions describing the WIMP rate in

direct dark matter detection [1] (for a recent review see Ref. [2]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER: vmin =√
(mNER)/(2µ2

N) and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(
σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)
, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.

2

Theoretical input 

Figure 1: The dependence of the spin independent differential event rate on the WIMP mass
and target. The solid and dashed lines are for Ge and Xe respectively and WIMP masses of
(from top to bottom at ER = 0keV) 50, 100 and 200 keV. The scattering cross-section on
the proton is taken to be σSI

p = 10−8 pb.

4.2 Time dependence

The Earth’s orbit about the Sun leads to a time dependence, specifically an annual modula-
tion, in the differential event rate [29; 49]. The Earth’s speed with respect to the Galactic
rest frame is largest in Summer when the component of the Earth’s orbital velocity in the
direction of solar motion is largest. Therefore the number of WIMPs with high (low) speeds
in the detector rest frame is largest (smallest) in Summer. Consequently the differential event
rate has an annual modulation, with a peak in Winter for small recoil energies and in Summer
for larger recoil energies [50]. The energy at which the annual modulation changes phase is
often referred to as the ‘crossing energy’.

Since the Earth’s orbital speed is significantly smaller than the Sun’s circular speed the
amplitude of the modulation is small and, to a first approximation, the differential event rate
can, for the standard halo model, be written approximately as a Taylor series:

dR

dER
≈

¯(

dR

dER

)

[1 +∆(ER) cosα(t)] , (27)

where α(t) = 2π(t − t0)/T , T = 1 year and t0 ∼ 150 days. In fig. 2 we plot the energy

dependence of the amplitude in terms of vmin (recall that vmin ∝ E1/2
R with the constant of

proportionality depending on the WIMP and target nuclei masses). The amplitude of the
modulation is of order 1-10 %.

The Earth’s rotation provides another potential time dependence in the form of a diur-
nal modulation as the Earth acts as a shield in front of the detector [51; 52], however the

10

Xe	
G
e 

50 GeV 
100 GeV 
200 GeV 

The energy spectrum depends on the 
WIMP mass and the mass of the target 
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Identification of Dark Matter with direct detection experiments 

Given a DM direct detection, the DM mass and couplings can be determined from the 
observed number of events and energy spectrum. 

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(

σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)

, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.

For spin 1 is different.]The explicit expressions for the scattering cross section de-

pend on the specific particle physics model. The WIMP-nucleon interactions can be

described by means of an effective Lagrangian,

L ⊃ αS
q χ̄χq̄q + αV

q χ̄γµχq̄γ
µq + αA

q (χ̄γ
µγ5χ)(q̄γµγ5q) . (2.4)

The scalar (S) and vector (V) couplings contribute to the spin-independent part of

the cross section, while the coupling to the quark axial current (A) contributes to the

spin-dependent one.

Regarding the spin-dependent contribution it is customary to define the WIMP

couplings to proton and neutrons as

ap =
∑

q=u,d,s

αA
q√

2GF

∆p
q ; an =

∑

q=u,d,s

αA
q√

2GF

∆n
q , (2.5)

and

Λ =
1

J
[ap⟨Sp⟩+ an⟨Sn⟩] . (2.6)

The resulting differential cross section can then be expressed (in the case of a fermionic

WIMP [DC: Is it not possible to use a parametrization which is independent

of fermions-bosons? The kinematical pre-factor is different but as long as

we do not relate it to fundamental parameters...]) as
(

dσWN

dER

)

SD

=
16mN

πv2
Λ2G2

FJ(J + 1)
S(ER)

S(0)
, (2.7)

3

Nuclear form factors 

1 Introduction

2 Direct dark matter detection

Let us start by briefly reviewing some basic expressions describing the WIMP rate in

direct dark matter detection [1] (for a recent review see Ref. [2]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER: vmin =√
(mNER)/(2µ2

N) and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(
σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)
, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.

2

The energy spectrum depends on the 
WIMP mass and the mass of the target 

7

Figure 2. The distribution of the maximum likelihood WIMP masses, mχ, and cross-
sections, σp, for exposures of (top row, left to right and then bottom row left to right)
E = 3 × 102, 3 × 103, 3 × 104 and 3 × 105 kg day. For E = 3 × 102 kg day we explicitly
plot the results from all 104 Monte Carlo experiments. For the larger exposures we
plot contours containing 68% and 95% of the probability distribution. In each panel
the large cross denotes the input parameters: mχ = 100 GeV, σp = 10−7 pb.

carried out assuming a Maxwellian speed distribution with vc = 220 km s−1. For each

experiment the extended likelihood is maximized for WIMP parameters which produce

an expected number of events equal to the actual number of events observed in that
experiment: λ(mχ, σp) = Nexpt. This means that, for fixed exposure, the ML parameters

are localized on curves corresponding to fixed Nexpt. For a given experiment the position

of the ML parameters on the curve depends on the energies of the observed events. For

E = 3 × 102 kg day, λin = 7.8, which is sufficiently small that the stratification of ML

parameters is clearly visible and we hence plot the actual pairs of mχ − σp values. For

the larger exposures the mean number of events expected is proportionately larger, the
stratification is no longer visible, the ML values are better localized in the mχ−σp plane

and we instead plot contours containing 68% and 95% of the simulated experiments.

We calculate the continuous probability distribution of mχ and σp by smoothing the ML

values from the 104 Monte Carlo simulations with a double gaussian kernel and summing
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plot the results from all 104 Monte Carlo experiments. For the larger exposures we
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experiment: λ(mχ, σp) = Nexpt. This means that, for fixed exposure, the ML parameters
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E = 3 × 102 kg day, λin = 7.8, which is sufficiently small that the stratification of ML
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the larger exposures the mean number of events expected is proportionately larger, the
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and we instead plot contours containing 68% and 95% of the simulated experiments.
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5

Parameter Prior range Prior constraint
log10 (m�/GeV) (0.1, 3.0) Uniform prior
log10 (⇥

p
SI/pb) (�10,�6) Uniform prior

�0/(GeV/cm3) (0.001, 0.9) Gaussian: 0.4± 0.1
v0/(km/s) (80, 380) Gaussian: 230± 30
vesc/(km/s) (379, 709) Gaussian: 544± 33
k (0.5, 3.5) Uniform prior

TABLE II: Parameters used in our analysis, with their prior range (middle column) and the prior constraint adopted (rightmost
column). See Section IV and V for further details.

Carlo Markov Chain (MCMC) techniques would be suf-
ficient to explore it. However, MultiNest also computes
the Bayesian evidence (which MCMC methods do not re-
turn), as it is an implementation of the nested sampling
algorithm [52]. In this work, we run MultiNest with 2000
live points, an e⇤ciency parameter of 1.0 and a tolerance
of 0.8 (see [49, 50] for details).

V. VELOCITY DISTRIBUTION AND
GALACTIC MODEL PARAMETERS

We now move onto discussing our modeling of the ve-
locity distribution function and the Galactic model pa-
rameters that are input for Eq. (3). We model only
the smooth component of the velocity distribution –
recent results from numerical simulations indicate that
the velocity distribution component arising from lo-
calised streams and substructures is likely sub-dominant
in the calculation of direct dark matter detection sig-
nals [53, 54].

We model the velocity distribution function as spheri-
cal and isotropic, and parameterise it as [55],

f(w) =

⇤
1
Nf

⌅
exp

�
v2
esc�w2

kv2
0

⇥
� 1

⇧k
if w ⇤ vesc

0 if w > vesc
. (12)

This velocity distribution function was found to be flex-
ible enough to describe the range of dark matter halo
profiles found in cosmological simulations [55]. Boosting
into the rest frame of the Earth implies the transforma-
tion w2 = v2+v2e+2vvecos�, where � is the angle between
�v and �ve ⌅ �vlsr. The shape parameter that determines
the power law tail of the velocity distribution is k, the
escape velocity is vesc, while v0 is a fit parameter that we
discuss in detail below, and Nf is the appropriate nor-
malisation constant. The special case k = 1 represents
the standard halo model with a truncated Maxwellian
distribution, and the corresponding expressions for Nf

and F have been derived analytically in the literature –
see for instance [18]. Note as well that, for any value
of k, this distribution matches a Maxwellian distribution
for su⇤ciently small velocities w and if vesc > v0.

The high-velocity tail of the distributions found in nu-
merical simulations of pure dark matter galactic halos are
well modelled by 1.5 < k < 3.5 [55]. In our analysis we
will expand this range to also include models that behave

similar to pure Maxwellian distributions near the tail of
the distribution, so that in our analysis we vary k in the
range

k = 0.5� 3.5 (flat) . (13)

We adopt an uniform (i.e., flat) prior within the above
range for k.
The range we take for the vesc is motivated by the re-

sults of Ref. [56], where a sample of high-velocity stars is
used to derive a median likelihood local escape velocity
of v̄esc = 544 km/s and a 90% confidence level interval
498 km/s < vesc < 608 km/s. Assuming Gaussian errors
this translates into a 1⇤ uncertainty of 33 km/s. It is im-
portant to note that this constraint on the escape velocity
is derived assuming a range in the power law tail for the
distribution of stars in the local neighbourhood, which
is then related to the power law tail in the dark matter
distribution [56]. Motivated by obtaining conservative
limits on the reconstructed mass and cross-section of the
dark matter, in our modelling we will not include such
correlations between the escape velocity and the power
law index k, so that in the end we take a Gaussian prior
on vesc with mean and standard deviation given by

vesc = 544± 33 km/s (1⇤) . (14)

Having specified ranges for vesc and k, it remains to
consider a range for v0 in Eq. (12). As defined in that
equation, the quantity v0 does not directly correspond
to the local circular velocity, vlsr, but rather is primarily
set by vlsr and the dark matter profile. Following a pro-
cedure similar to that discussed in Ref. [55], we find the
range of values v0 compatible with a given a dark matter
halo profile, ⇥0 and a range for vlsr. For the above range
in vlsr and the values ⇥0 in Eq. (16) below, we find that
the parameter v0 can take values in the range 200� 300
km/s for pure Navarro-Frenk-White (NFW) dark matter
halos with outer density slopes ⇥ ⇧ r�3. Larger values of
v0 are allowed for steeper outer density slopes, though the
range is found to not expand significantly if we restrict
ourselves to models with outer slopes similar to the NFW
case. With these caveats in mind regarding the mapping
between v0 and vlsr for steeper outer slopes, for simplic-
ity and transparency in our analysis, we will consider a
similar range for v0 as for the local circular velocity, so
we take v0 = vlsr (that holds in the case of the standard
halo model).
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FIG. 1: The joint 68% and 95% posterior probability contours in the m� � �p
SI plane for the three DM benchmarks

(m� = 25, 50, 250 GeV) with fixed Galactic model, i.e. fixed astrophysical parameters. In the left frame we show the re-
construction capabilities of Xe, Ge and Ar configurations separately, whereas in the right frame the combined data sets Xe+Ge
and Xe+Ge+Ar are shown.

For the local circular velocity and its uncertainty, a va-
riety of measurements presents a broad range of central
values and uncertainties [57]. To again remain conserva-
tive we use an interval bracketing recent determinations:

v0 = vlsr = 230± 30 km/s (1⇥) , (15)

where we take a Gaussian prior with the above mean and
standard deviation. To account for the variation of the
local density of dark matter in our modeling, we will take
a mean value and error given by [58, 59]

�0 = 0.4± 0.1 GeV/cm3 (1⇥) , (16)

There are several other recent results that determine �0,
both consistent [60] and somewhat discrepant [61] with
our adopted value. Even in light of these uncertainties,
we take Eq. (16) to represent a conservative range for the
purposes of our study.

For completeness Table II summarises the information
on the parameters used in our analysis.

VI. RESULTS

A. Complementarity of targets

We start by assuming the three dark matter bench-
mark models described in Section II (m� = 25, 50, 250
GeV with ⇥p

SI = 10�9 pb) and fix the Galactic model
parameters to their fiducial values, �0 = 0.4 GeV/cm3,
v0 = 230 km/s, vesc = 544 km/s, k = 1. With the exper-
imental capabilities outlined in Section III, we generate

mock data that in turn are used to reconstruct the poste-
rior for the DM parameters m� and ⇥p

SI . The left frame
of Fig. 1 presents the results for the three benchmarks
and for Xe, Ge and Ar separately. Contours in the figure
delimit regions of joint 68% and 95% posterior probabil-
ity. Several comments are in order here. First, it is ev-
ident that the Ar configuration is less constraining than
Xe or Ge ones, which can be traced back to its smaller A
and larger Ethr. Moreover, it is also apparent that, while
Ge is the most e�ective target for the benchmarks with
m� = 25, 250 GeV, Xe appears the best for a WIMP with
m� = 50 GeV (see below for a detailed discussion). Let
us stress as well that the 250 GeV WIMP proves very
di⇤cult to constrain in terms of mass and cross-section
due to the high-mass degeneracy explained in Section II.
Taking into account the di�erences in adopted values and
procedures, our results are in qualitative agreement with
Ref. [27], where a study on the supersymmetrical frame-
work was performed. However, it is worth noticing that
the contours in Ref. [27] do not extend to high masses
as ours for the 250 GeV benchmark – this is likely be-
cause the volume at high masses in a supersymmetrical
parameter space is small.

In the right frame of Fig. 1 we show the reconstruction
capabilities attained if one combines Xe and Ge data,
or Xe, Ge and Ar together, again for when the Galac-
tic model parameters are kept fixed. In this case, for
m� = 25, 50 GeV, the configuration Xe+Ar+Ge allows
the extraction of the correct mass to better than O(10)
GeV accuracy. For reference, the (marginalised) mass
accuracy for di�erent mock data sets is listed in Table
III. For m� = 250 GeV, it is only possible to obtain a
lower limit on m�.

Pato, Baudis et al. ‘11 

fk(v) ∝ (vesc − v)k. In the limit of vanishing k, Fk(v) can be reduced to SHM. 3

Comparing with numerical simulations, [34]: k = [0.5, 3.5]. Furthermore vesc and

v⊙ are vesc =[478, 610] km s−1 km/s and v⊙ = [170, 290] km s−1 at the 1σ level. In

addition, the local density of WIMPs is in the range ρ⊙ = [0.2, 0.6] GeV cm−3 [DC:

references?]

Nuisance parameter Range Prior distribution

ρWIMP,⊙ [0.2, 0.6] GeV cm−3 normal

vesc [478, 610] km s−1 normal

v⊙ [170, 290] km s−1 normal

k [0.5, 3.5] flat

For the efficiency in the numerical evaluation, we have explicitly calculated fk(v) in

terms of the incomplete beta function, B(a, b; x) which is tabulated well in the most of

the compilers for the argument a, b > 0 and 0 < x < 1. The result is in the appendix.

2.1 Determination of WIMP properties

If a positive signal is obtained in a direct detection experiment, the observed number

of events and (if the experiment provides it) the corresponding recoil energies can

be used to reconstruct the properties of the DM particle. For the present paper we

follow a phenomenological approach where, instead of assuming a particular particle

physics model (e.g. Supersymmetry or Universal Extra-Dimensions), we characterize

the WIMP simply by its massmχ, spin-dependent and spin-dependent interaction cross

sections: σSI , σSD
p and σSD

n
4.

The amplitude of the event rate directly depends on the total cross section with

the nucleons, so that, assuming a particular halo model, the total number of recoil

events can be used to reconstruct this observable. Normally the additional assumption

of σSD
p = σSD

n = 0 is made, since the spin-dependent cross section usually dominates

(for heavy enough targets), and the technique mentioned above is used to reconstruct

directly the value of σSI . We will, however, avoid this assumption and consider the

more general case where this contribution is non-vanishing.

3In some works, k → 1 which results in smooth truncation of Maxwell-Boltzmann distribution in

fact is described as a SHM limit. The disagreement may come from the different definition of SHM

for which we adopted an abruptly truncated Maxwell-Boltzmann distribution as described in the text.
4Note that in the following we will not distinguish between spin-independent coupling to protons

and neutrons and will only consider the total spin-independent cross section.
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FIG. 2: The joint 68% and 95% posterior probability contours in the m� � ⇥p
SI plane for the case in which astrophysical

uncertainties are taken into account. In the left frame, the e�ect of marginalising over �0, v0 and all four (�0, v0, vesc, k)
astrophysical parameters is displayed for a Xe detector and the 50 GeV benchmark WIMP. In the right frame, the combined
data sets Xe+Ge and Xe+Ge+Ar are used for the three DM benchmarks (m� = 25, 50, 250 GeV).

Percent 1⇥ accuracy
m� = 25 GeV m� = 50 GeV

Xe 6.5% (14.3%) 8.1% (20.4%)
Ge 5.5% (16.0%) 7.0% (29.6%)
Ar 12.3% (23.4%) 14.7% (86.5%)

Xe+Ge 3.9% (10.9%) 5.2% (15.2%)
Xe+Ge+Ar 3.6% (9.0%) 4.5% (10.7%)

TABLE III: Marginalised percent 1⇥ accuracy of the DM mass reconstruction for the benchmarks m� = 25, 50 GeV. Figures
between brackets refer to scans where the astrophysical parameters were marginalised over (with priors as in Table II), while
the other figures refer to scans with the fiducial astrophysical setup.

Fig. 2 shows the results of a more realistic analysis,
that keeps into account the large uncertainties associated
with Galactic model parameters, as discussed in Section
V. The left frame of Fig. 2 shows the e�ect of varying
only �0 (dashed lines, blue surfaces), only v0 (solid lines,
red surfaces) and all Galactic model parameters (dotted
lines, yellow surfaces) for Xe and m� = 50 GeV. The
Galactic model uncertainties are dominated by �0 and
v0, and, once marginalised over, they blow up the con-
straints obtained with fixed Galactic model parameters.
This amounts to a very significant degradation of mass
(cf. Table III) and scattering cross-section reconstruction.
Inevitably, the complementarity between di�erent targets
is a�ected – see the right frame of Fig. 2. Still, for the
50 GeV benchmark, combining Xe, Ge and Ar data im-
proves the mass reconstruction accuracy with respect to
the Xe only case, essentially by constraining the high-
mass tail.

In order to be more quantitative in assessing the use-
fulness of di�erent targets and their complementarity, we
use as figure of merit the inverse area enclosed by the
95% marginalised contour in the log10(m�)� log10(⇥

p
SI)

plane inside the prior range. Notice that for the 250

GeV benchmark the degeneracy between mass and cross-
section is not broken – this does not lead to a van-
ishing figure of merit (i.e. infinite area under the con-
tour) because we are restricting ourselves to the prior
range. Fig. 3 displays this figure of merit for several
cases, where we have normalised to the Ar target at
m� = 250 GeV with fixed Galactic model. Analyses
with fixed Galactic model parameters are represented by
empty bars, while the cases where all Galactic model pa-
rameters are marginalised over with priors as in Table II
are represented by filled bars. Firstly, one can see that all
three targets perform better for WIMP masses around 50
GeV than 25 or 250 GeV if the Galactic model is fixed.
When astrophysical uncertainties are marginalised over,
the constraining power of the experiments becomes very
similar for benchmark WIMP masses of 25 and 50 GeV.
Secondly, Fig. 3 also confirms what was already appar-
ent from Fig. 1: Ge is the best target for m� = 25, 250
GeV (although by a narrow margin), whereas Xe appears
the most e�ective for a 50 GeV WIMP (again, by a nar-
row margin). Furthermore, the inclusion of uncertainties
drastically reduces the amount of information one can
extract from the data: the filled bars are systematically

Binney, Tremaine ‘08 
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Uncertainties in the spin-dependent form factors 

[DC: This is another possibility - better? - check Vergados]

(
dσWN

dER

)

SD

=
16G2

FmN

πv2
(J + 1)

J
(ap⟨Sp⟩+ an⟨Sn⟩)2

S(ER)

S(0)
, (2.8)

(using d|q⃗|2 = 2mNdER). The form factor is commonly expressed as a decomposition

into isoscalar, a0 = ap + an, and isovector, a1 = ap − an, couplings

S(q) = a20S00(q) + a0a1S01(q) + a21S11(q) , (2.9)

where the parameters Sij are determined experimentally. [DC: Here goes a brief

comment on the uncertainties or the problems to determine these for some

materials]

For the spin-independent interaction, the nuclear form factor for coherent interac-

tions F 2(q) is a Fourier transform of the nucleon distribution function,

FA(q) =

∫
e−iqxρA(x)d

3x (2.10)

where the label A stands for different nuclei. In this case ρA(x) is normalized such that

FA(0) = 1. We use the Fermi distribution,

ρA(x) =
cnorm

1 + exp[(r −RA)/a]
(2.11)

properly normalized with the previous condition, which gives the Woods-Saxon form

factor. For all nuclei we use

RA = (1.23A1/3 − 0.6) fm (2.12)

for a surface thickness, a = 0.52 fm. [MP: Should we say here that corrections

to this Fermi distribution function, in the inner part, are not important in

the energy range we are working with?]

[DC: Comment on the hadronic uncertainties - Please JHH, MP and

MF take a look at this comment and let me know if you agree] Notice that

uncertainties in the hadronic matrix elements are crucial if we were to determine the

fundamental WIMP-quark couplings in the effective Lagrangian of Eq. (2.4) (since they

can lead to a shift of about an order of magnitude in the predicted σSI
0 [5]). However,

our analysis just aims at determining the ”phenomenological” WIMP parameters and

is therefore not affected by these uncertainties. [JHH: I agree with this paragraph,

and I added Ref. by Ellis about hadronic uncertainty.]
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3

the recoil energy, and µN = mNmχ/(mN + mχ) is the

reduced mass. The total event rate is calculated by in-

tegrating Eq. (1) over all the possible recoil energies in a

window defined by a threshold energy ET and a maximal

energy Emax, both depending on the experiment1.

In general, the WIMP-nucleus cross-section is sepa-

rated into a SI and a SD contribution, as follows:

dσ

dER
=

mN

2µ2
Nv2

(

σSI,N
0 F 2

SI(ER) + σSD,N
0 F 2

SD(ER)
)

,

(2)

where σSI,N
0 and σSD,N

0 are the SI and SD WIMP-

nucleus cross-sections at zero momentum transfer.

FSI(ER) and FSD(ER) are the SI and SD form factors

that account for the coherence loss which leads to a sup-

pression of the event rate for heavy WIMPs or heavy

nuclei. The differential rate, dR/dER, depends on the

recoil energy ER through the form factors and the mini-

mal velocity vmin(ER).

The total number of recoils, as well as their distribu-

tion in energy, are affected by uncertainties in the nuclear

form factors (both SI and SD) and in the parameters de-

scribing the DM halo (usually referred to as astrophysical

uncertainties). Determining the impact of these is cru-

cial to understand the capability of a DM experiment to

reconstruct the properties of the WIMP.

The role of astrophysical uncertainties has been widely

addressed in the literature. They are known to signifi-

cantly affect the reconstruction of both the mass and

scattering cross-section of the DM [31, 33, 43–46] Since

the subject of our work is to study the effect of nuclear

uncertainties from the form factors, we do not include

astrophysical ones. We therefore consider a fixed model

for the the DM halo, namely the Standard Halo Model

with a escape velocity of vesc = 544 km s−1 , a central

velocity v0 = 230 km s−1 [47–51], and a local dark matter

density ρ0 = 0.4 GeV cm−3 [52–55].

A. Uncertainties in the SI form factors

Regarding SI interactions, the so-called Woods-Saxon

form factor is the Fourier transform of the nucleon dis-

1 In order to take into account the energy resolution of the detec-

tor, the differential rate is convoluted with a Gaussian, whose

standard deviation is a function of the recoil energy, as done in

Ref. [41].

tribution function ρA(x),

FSI(q) =

∫

e−iqxρA(x)d
3x , (3)

where q =
√
2mNER is the momentum transfer. The

Fermi distribution is assumed for the nucleon distribu-

tion,

ρA(x) ∝
1

1 + exp[(r −RA)/a]
, (4)

where RA = (1.23A1/3 − 0.6) fm, A is the nucleon num-

ber and a = 0.5 fm the surface thickness of the nucleus.

Although other parametrizations can be found in the lit-

erature, the Wood-Saxon form factor provides a good de-

scription of the nuclear structure for energies in the range

between 1-100 keV, typical of WIMP scatterings. It has

been shown in Ref. [35] that the differences in the SI form

factors due to small deformations of the nuclei can be

safely neglected. In fact, we have explicitly checked that

this is indeed the case when using realistic nuclear den-

sity profiles obtained from a state-of-the art mean field

calculation. Thus, throughout this paper we consider the

form factor in Eq. (3) with no associated uncertainty.

B. Uncertainties in the SD form factors

On the other hand, the effect of uncertainties in the

SD form factors has not been addressed in the literature.

The SD contribution to the WIMP-nucleus differential

cross-section in Eq. (2) can be expanded as a function

of the WIMP couplings to the matrix elements of the

axial-vector currents in protons (ap) and neutrons (an),
(

dσ

dER

)

SD

=
16G2

FmN

πv2
(J + 1)

J

(ap⟨Sp⟩+ an⟨Sn⟩)2 F 2
SD(ER) , (5)

where J is the total spin of the nucleus and ⟨Sp⟩ (⟨Sn⟩) is
the proton (neutron) spin averaged over the nucleus. The

SD form factor F 2
SD(ER) = S(ER)/S(0), is commonly

expressed as a decomposition into isoscalar (a0 = ap+an)

and isovector (a1 = ap − an) couplings,

S(q) = a20S00(q) + a0a1S01(q) + a21S11(q), (6)

where q is the momentum transfer. The quantities

S00(q), S11(q) and S01(q) are the spin-dependent struc-

ture functions (SDSFs), and are computed using nu-

clear physics models, whereas the couplings ap and an
(and consequently a0 and a1) are specific of the parti-

cle physics model for DM and are computed from the

3

the recoil energy, and µN = mNmχ/(mN + mχ) is the

reduced mass. The total event rate is calculated by in-

tegrating Eq. (1) over all the possible recoil energies in a

window defined by a threshold energy ET and a maximal

energy Emax, both depending on the experiment1.

In general, the WIMP-nucleus cross-section is sepa-

rated into a SI and a SD contribution, as follows:

dσ

dER
=

mN

2µ2
Nv2

(

σSI,N
0 F 2

SI(ER) + σSD,N
0 F 2

SD(ER)
)

,

(2)

where σSI,N
0 and σSD,N

0 are the SI and SD WIMP-

nucleus cross-sections at zero momentum transfer.

FSI(ER) and FSD(ER) are the SI and SD form factors

that account for the coherence loss which leads to a sup-

pression of the event rate for heavy WIMPs or heavy

nuclei. The differential rate, dR/dER, depends on the

recoil energy ER through the form factors and the mini-

mal velocity vmin(ER).

The total number of recoils, as well as their distribu-

tion in energy, are affected by uncertainties in the nuclear

form factors (both SI and SD) and in the parameters de-

scribing the DM halo (usually referred to as astrophysical

uncertainties). Determining the impact of these is cru-

cial to understand the capability of a DM experiment to

reconstruct the properties of the WIMP.

The role of astrophysical uncertainties has been widely

addressed in the literature. They are known to signifi-

cantly affect the reconstruction of both the mass and

scattering cross-section of the DM [31, 33, 43–46] Since

the subject of our work is to study the effect of nuclear

uncertainties from the form factors, we do not include

astrophysical ones. We therefore consider a fixed model

for the the DM halo, namely the Standard Halo Model

with a escape velocity of vesc = 544 km s−1 , a central

velocity v0 = 230 km s−1 [47–51], and a local dark matter

density ρ0 = 0.4 GeV cm−3 [52–55].

A. Uncertainties in the SI form factors

Regarding SI interactions, the so-called Woods-Saxon

form factor is the Fourier transform of the nucleon dis-

1 In order to take into account the energy resolution of the detec-

tor, the differential rate is convoluted with a Gaussian, whose

standard deviation is a function of the recoil energy, as done in

Ref. [41].

tribution function ρA(x),

FSI(q) =

∫

e−iqxρA(x)d
3x , (3)

where q =
√
2mNER is the momentum transfer. The

Fermi distribution is assumed for the nucleon distribu-

tion,

ρA(x) ∝
1

1 + exp[(r −RA)/a]
, (4)

where RA = (1.23A1/3 − 0.6) fm, A is the nucleon num-

ber and a = 0.5 fm the surface thickness of the nucleus.

Although other parametrizations can be found in the lit-

erature, the Wood-Saxon form factor provides a good de-

scription of the nuclear structure for energies in the range

between 1-100 keV, typical of WIMP scatterings. It has

been shown in Ref. [35] that the differences in the SI form

factors due to small deformations of the nuclei can be

safely neglected. In fact, we have explicitly checked that

this is indeed the case when using realistic nuclear den-

sity profiles obtained from a state-of-the art mean field

calculation. Thus, throughout this paper we consider the

form factor in Eq. (3) with no associated uncertainty.

B. Uncertainties in the SD form factors

On the other hand, the effect of uncertainties in the

SD form factors has not been addressed in the literature.

The SD contribution to the WIMP-nucleus differential

cross-section in Eq. (2) can be expanded as a function

of the WIMP couplings to the matrix elements of the

axial-vector currents in protons (ap) and neutrons (an),
(

dσ

dER

)

SD

=
16G2

FmN

πv2
(J + 1)

J

(ap⟨Sp⟩+ an⟨Sn⟩)2 F 2
SD(ER) , (5)

where J is the total spin of the nucleus and ⟨Sp⟩ (⟨Sn⟩) is
the proton (neutron) spin averaged over the nucleus. The

SD form factor F 2
SD(ER) = S(ER)/S(0), is commonly

expressed as a decomposition into isoscalar (a0 = ap+an)

and isovector (a1 = ap − an) couplings,

S(q) = a20S00(q) + a0a1S01(q) + a21S11(q), (6)

where q is the momentum transfer. The quantities

S00(q), S11(q) and S01(q) are the spin-dependent struc-

ture functions (SDSFs), and are computed using nu-

clear physics models, whereas the couplings ap and an
(and consequently a0 and a1) are specific of the parti-

cle physics model for DM and are computed from the
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Figure 1: Maximum value of u as a function of the number of nucleons for mDM =

100 GeV. The black curve corresponds to vesc = 550 Km/s and the gray one corresponds

to vesc = 700 Km/s.

ER =
uib

−2
i

mi
(2.25)

where bi = A1/6
i fm is the oscillator size parameter for the nucleus i, and mi its mass.

As we mentioned before, it is also convenient to define yi ≡ 2ui. We can also define the

maximum of each of this variables depending on the dark matter mass and the escape

velocity, in the same way that it is possible to define the maximum recoil energy. As

it can be seen in Fig. 1 the dimensionless variable u is in general bigger than 1 except

for light nuclei A < 50 or very light dark matter.

So, we have F sh1
ij (ER) and F sh2

ij (ER). The point now is, is it possible to find a

function which connects both models sh1 and sh2 in a continous way?, and the answer

is yes. As we said the functional form of these Fij functions is a polynomial times a

supressing exponential factor both depending of the u variable. For the moment let’s

assume that umax for sh1 and sh2 is lower than one, then the obvious parametrization

which connects sh1 and sh2 is,

Fij(ER) → Fij(ER) exp(−κER) with κ = [κ1,κ2]. (2.26)

When κ = κ1 we recover sh1 and the same for κ2 and sh2. As an example to this,

in Fig. 2 we plot the form factors for Na23 for ap/an = ±1. We can see that this

exponential parametrization can connect different shell-model calculations with an

7

4

diagrams describing the WIMP-nucleon interaction. In

order to continue with a model independent approach we

assume a specific relation between ap and an, and con-

sider the cases2 ap/an = ±1. Under this assumption,

Eq. (5) reduces to

(

dσ

dER

)

SD

=

⎧

⎨

⎩

64G2
FmN

v2(2J+1) a
2
p S00(q) ; ap

an
= 1 ,

64G2
FmN

v2(2J+1) a
2
p S11(q) ; ap

an
= −1 .

(7)

The SDSFs S00(q) and S11(q) can be calculated using

a shell-model (ShM) description of the atomic nucleus,

where the nuclear spin properties are obtained by the

wave functions of a few valence nucleons, those which do

not cancel out the spin of the nucleus in pairs. In par-

ticular, S00(q) and S11(q) are related to the transverse

electric and longitudinal projections of the axial current.

To calculate these quantities in the ShM, the nucleons are

placed in energy levels according to the exclusion princi-

ple, assuming a particular interaction between nucleons

(typically a harmonic oscillator potential) and including

as many excited states as possible, making this kind of

calculation very difficult.

ShM calculations are generally more reliable for heavy

nuclei than for light ones. The same holds for nuclei

close to magic numbers, elements featuring closed shells

being more easily modeled. An example is 19F, that has

9 protons and 10 neutrons, thus only one proton above a

magic number. On the other hand, the nucleus of 73Ge is

much more difficult to model since it has 32 protons and

41 neutrons, the nearest closed shell being the one with

28 nucleons. In this case, deviations of the real nucleus

from the ShM should be expected, as well as differences

in the results when different ShMs are used. In the first

part of the paper we consider the case of germanium, for

which the only natural isotope that contributes to the

SD cross-section is 73Ge.

In the case of 73Ge, various ShM calculations are avail-

able in the literature. We consider two different, com-

monly used parametrizations, from Ressel et al. [37]

and Dimitrov et al. [38], to which we refer as R- and

D-models, respectively. They differ in the methodology

2 This is equivalent to reducing by one the dimensionality of our

parameter space, assuming a relation between σSD, p and σSD,n.

Our analysis can easily be extended to consider the full four-

dimensional parameter space (mχ, σ
SI , σSD,p, σSD,n), but

this renders the discussion more cumbersome. Furthermore, par-

ticle models for DM generally predict |σSD,n| ≈ |σSD,p|.

and in the choice of the nuclear interaction potential, but

both reproduce the value of the magnetic momentum of
73Ge. The SDSFs in both cases can be expressed as a

function of the adimensional quantity u, related to the

momentum transfer as u = (qb)2/2, where b is the oscil-

lator size parameter, b = A1/6.

The SDSFs for the R-and D-models are plotted as a

function of u in Fig. 1 by means of red dashed and solid

red lines, respectively. The left (right) panel refers to the

case ap/an = 1 (ap/an = −1). The vertical, black dashed

lines indicate the values of u that correspond to the

WIMP search window that we use in our analysis, from

a threshold energy of 10 keV, to an energy of 100 keV

(as currently done in CDMS-II). The dotted blue lines

indicate a gaussian approximation (see Eq. (8) below).

Finally, the blue areas represent the regions spanned by

a family of curves, obtained by a parametrization which

interpolates between the R- and D-models that will be

introduced in Sec. V.

The two SDSFs differ in the zero momentum value

(the R-model being larger for the whole energy range of

interest for direct detection), and also in the shape at

large energies. They both start as decreasing power-laws

at low-energy flattening out as u increases. However the

transition happens sooner for the R-model (around u =

0.5) than for the D-model. The slope for the D-model is

also slightly steeper than for the R-model, especially in

S11(q). As we will see in Sec. IV these differences play

an important role when determining the DM parameters.

There are finally some nuclei for which ShM compu-

tations of their form factors are not available. In these

cases an approximation was introduced in Ref. [56] that

works well in the low momentum transfer regime, but

fails towards larger values of q,

Sij(q) = S(0) e−
q2R2

4 , (8)

where R, is an effective radius, measured in fm, which

can be written as,

R = 0.92A1/3 + 2.68− 0.78
√

(A1/3 − 3.8)2 + 0.2 . (9)

III. DETERMINATION OF WIMP

PROPERTIES

We consider a set of benchmark scenarios (BM1, BM2

and BM3) listed in Table I, that define the phenomeno-

logical DM parameters (mχ, σSI , σSD). These bench-

marks are consistent with possible particle physics mod-

Variations in  
 
•  Zero-momentum value 
•  Slope 
•  Plateau 

Ressel, et al. ‘93 

ShM COMPUTATIONS: 

Dimitrov, et al. ‘94 

 
 
 

Spin-dependent structure functions: 
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2.1 Determination of WIMP properties

Upon a positive dark matter detection the ”phenomenological” WIMP properties, i.e.,

its mass and spin-dependent and -independent1 couplings to nuclei,

�
m, ⇥SI , ⇥SD

p , ⇥SD
n

⇥
(2.21)

can be reconstructed.

First, knowing the total WIMP rate in Eq. (2.2), and for a given choice of parameters

for the dark matter halo, the WIMP-nucleus elastic scattering cross section can be

determined with a certain precision (depending on the WIMP mass). Furthermore, the

dependence of the recoil energy spectrum (2.1) on the WIMP mass allows the WIMP

mass to be estimated from the energies of detected events. Normally this strategy is

applied to the determination of the WIMP mass and the spin-independent coupling

(e.g. Ref. [6]), since the latter usually dominates over spin-dependent contributions (for

heavy enough targets). However, in general both the spin-dependent and -independent

contribute to the detection rate and with only one target only the total WIMP-Nucleus

scattering cross section (2.3) can be determined. [DC: This is the idea but it

sounds a bit confusing...]

[DC: Comment on Green’s results? - when is the determination of the

mass good, etc Do not forget here the papers by Drees + collaborators.]

[DC: Comment here about uncertainties? - astro uncertainties?] [DC:

Note about the background - Mattia - Zaragoza group?]

[DC: Ji-Haeng, please include here the relevant formulae] [JHH: Though

redundant, this formula may clarify our basic idea] Combining Eq. (2.2) with

Eq. (2.3), we can see the degeneracy in the spin-dependent and -independent cross

section as follows

R = CSI(target,mN) ⇥
SI

0 + CSD(target,mN)

⇤
2Sp

⌃
⇥SD
p 0

+ 2Sn

⌃
⇥SD
n 0

⌅2

, (2.22)

where CSI/SD(target,mN) �
⇧
dER

⇧
dv(�0f(v)/2µ2

Nm�v)F 2
SI/SD.

R1 = A1⇥
SI
0 +

⇤
Bp

1

⌃
⇥SD,p
0 +Bn

1

⌃
⇥SD,n
0

⌅2

, (2.23)

1Notice that in the following we will not distinguish between spin-independent coupling to protons

and neutrons and will only consider the total spin-independent cross section.

6

Degeneracies in reconstructing the phenomenological parameters.  

The same detected rate can be due to different combinations of SI-SD interactions 

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(

σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)

, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.

For spin 1 is different.]The explicit expressions for the scattering cross section de-

pend on the specific particle physics model. The WIMP-nucleon interactions can be

described by means of an effective Lagrangian,

L ⊃ αS
q χ̄χq̄q + αV

q χ̄γµχq̄γ
µq + αA

q (χ̄γ
µγ5χ)(q̄γµγ5q) . (2.4)

The scalar (S) and vector (V) couplings contribute to the spin-independent part of

the cross section, while the coupling to the quark axial current (A) contributes to the

spin-dependent one.

Regarding the spin-dependent contribution it is customary to define the WIMP

couplings to proton and neutrons as

ap =
∑

q=u,d,s

αA
q√

2GF

∆p
q ; an =

∑

q=u,d,s

αA
q√

2GF

∆n
q , (2.5)

and

Λ =
1

J
[ap⟨Sp⟩+ an⟨Sn⟩] . (2.6)

The resulting differential cross section can then be expressed (in the case of a fermionic

WIMP [DC: Is it not possible to use a parametrization which is independent

of fermions-bosons? The kinematical pre-factor is different but as long as

we do not relate it to fundamental parameters...]) as
(

dσWN

dER

)

SD

=
16mN

πv2
Λ2G2

FJ(J + 1)
S(ER)

S(0)
, (2.7)

3

Integrating in energies and velocities 

 
 
 

 
 
 

 
 
 

Target-dependent 

Nuclear form factors 

A single experiment cannot determine the three WIMP couplings (the shape of the differential 
rate allows a determination of the WIMP mass) 

1 Introduction

2 Direct dark matter detection

Let us start by briefly reviewing some basic expressions describing the WIMP rate in

direct dark matter detection [1] (for a recent review see Ref. [2]).

The differential event rate for the elastic scattering of a WIMP with mass mχ off a

nucleus with mass mN is given by

dR

dER
=

ρ0
mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv , (2.1)

where ρ0 is the local WIMP density and f(v) is the WIMP speed distribution in the

detector frame normalized to unity. The integration over WIMP speeds is performed

from the minimum WIMP speed which can induce a recoil of energy ER: vmin =√
(mNER)/(2µ2

N) and a escape velocity vesc, the maximum speed in the Galactic rest

frame for WIMPs which are gravitationally bound to the Milky Way. The total event

rate is then calculated by integrating the differential event rate over all the possible

recoil energies,

R =

∫ ∞

ET

dER
ρ0

mN mχ

∫ ∞

vmin

vf(v)
dσWN

dER
(v, ER) dv . (2.2)

Here ET is the threshold energy, the smallest recoil energy which the detector is capable

of measuring, and is a crucial parameter of the experimental setup.

In general, the WIMP-nucleus cross section can be separated into a spin-independent

(scalar) and a spin-dependent contribution, and the total WIMP-nucleus cross section

is calculated by adding coherently the above spin and scalar components, using nuclear

wave functions. The differential cross section thus reads

dσWN

dER
=

mN

2µ2
Nv

2

(
σSI
0 F 2

SI(ER) + σSD
0 F 2

SD(ER)
)
, (2.3)

where σSI, SD
0 are the spin-independent and -dependent cross sections at zero momen-

tum transfer, and the form factors FSI, SD(ER) account for the coherence loss which

leads to a suppression in the event rate for heavy WIMPs or nucleons in the spin-

independent and -dependent contributions.

[DC: Not sure we should start with this since we do not determine the ex-

pressions of the effective Lagrangian and this is actually only for Fermions.

2
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Figure 3: The same as inf Fig. 2, but for the benchmark point L-SI.

15

A single experiment cannot determine all the WIMP couplings, a combination of 
various targets is necessary. 

We need multiple experiments (with various targets) 

M1, M2, M3 (1.18)

m2

L1,3
, m2

E1,3
(1.19)

m2

Q1,3
, m2

U1,3
, m2

D1,3
(1.20)

AE, AU , AD (1.21)

m2

Hd
, m2

Hu
(1.22)

M, m, A, tanβ, sign(µ) (1.23)

tanβ ≡
⟨Hu⟩

⟨Hd⟩
(1.24)

σSI
0

= 10−9 pb

σSD
0

= 10−5 pb

mW = 50GeV

ϵ = 300 kg yr (1.25)

3

We use s imulated data to assess the 
reconstruction of DM parameters 
 
Astrophysical and nuclear uncertainties included 
 
Prospects for SuperCDMS (Ge) 
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A single experiment cannot determine all the WIMP couplings, a combination of 
various targets is necessary. 

A combination of Germanium and Xenon greatly helps in reconstructing the DM 
parameters 
 
Targets with different sensitivities to SI and SD cross section are needed (e.g., F, Al) 
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Figure 3: The same as inf Fig. 2, but for the benchmark point L-SI.
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A single experiment cannot determine all the WIMP couplings, a combination of 
various targets is necessary. 

A combination of Germanium and Xenon greatly helps in reconstructing the DM 
parameters 
 
Targets with different sensitivities to SI and SD cross section are needed (e.g., F, Al) 
 
This is an excellent tool to help design future experiments. 
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Figure 6: The same as in Fig. 5 but for the case of BM2.
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Are we being too conservative in describing DM-nucleus interactions? 

/ Physics Procedia 00 (2014) 1–10 2

• inelastic interactions need only be considered in unusual cases where a target nucleus has an excited state within
⌃ 100 keV of the ground state; and

• a proper quantum mechanical treatment of the elastic scattering cross section should take into account the size
of the nucleus, as qRnucleus & 1.

Because the WIMP will, in most cases, only scatter elastically, one also sees that parity and time-reversal selection
rules that operate for diagonal matrix elements will limit what can be learned in direct detection experiments.

While we know little about dark matter interactions with ordinary matter, their possible associations with elec-
troweak interactions suggests using the standard model as a guide. In electromagnetism, elastic scattering can occur
through charge or magnetic interactions. Both interactions involve nontrivial isospin – the charge coupling is only to
protons, while the magnetic coupling involves the distinct proton and neutron magnetic moments. Magnetic elastic
scattering occurs through two interfering three-vector operators, spin ⌃�(i) and orbital angular momentum ⌃⇧(i). For
weak interactions, the weak charge operator couples primarily to neutrons, while the axial-charge operator ⌃�(i) · ⌃p(i)
makes e⇥ectively no contribution to elastic scattering, apart from small recoil corrections, due to the constraints im-
posed by parity and time-reversal invariance. One might expect, consequently, that the WIMP-nuclear interaction will
involve a variety of operators as well as couplings that depend on isospin.

In part for historical reasons, WIMP elastic scattering experiments are most often analyzed by assuming the
interaction is simpler than those described above: isoscalar, coupled either to the nucleon number operator 1(i) (spin-
independent or SI) or the nucleon spin �(i) (spin-dependent or SD) [3, 6, 7]. These are the operators for a point
nucleus. While a form factor is often introduced to account phenomenologically for the fact that the momentum
transfer is large on the nuclear scale, the quantum mechanical consequences of o(1) operators like ⌃q · ⌃r(i) have been
largely neglected.

Recently there have been e⇥orts to treat the WIMP-nucleon interaction in more generality, using the tools of ef-
fective field theory (EFT) [8, 9, 10, 11]. We describe the approach of [9, 11] in Sec. 2 and its consequences for
WIMP-nucleus elastic scattering. Consistent with general symmetry arguments, six independent nuclear response
functions are identified, in contrast to the two assumed in SI/SD treatments. The new operators are associated with
derivative couplings, where a proper treatment of ⌃q · ⌃r(i) is essential due to the need to identify associated parity- and
time-reversal-conserving elastic operators. When this is done, we find that velocity-dependent interactions lead to
cross sections ⌃ q2/m2

N G2
F ⌃ 10�2 G2

F , where mN in the nucleon mass and GF the weak coupling constant, in contrast
to the SI/SD result, ⌃ v2

T G2
F ⌃ 10�6 G2

F . Our e⇥ective theory treatment shows that much more can be learned about
the properties of WIMP dark matter from elastic scattering experiments than is generally appreciated. However, it
also shows that a greater variety of experiments will be necessary to extract this information and to eliminate possible
sources of confusion, when competing experiments are compared.

2. The Nuclear Elastic Response from E↵ective Theory

Here we summarize the e⇥ective theory construction of the WIMP-nucleon interaction of Ref. [9, 11]. Details can
be found in the original papers. The Lagrangian density for the scattering of a WIMP o⇥ a nucleon is taken to have
the form

Lint(⌃x) = c �⇤⇥(⌃x)O⇥�⇥(⌃x) �⇤N(⌃x)ON�N(⌃x), (1)

where the �(⌃x) are nonrelativistic fields and where the WIMP and nucleon operators O⇥ and ON may have vector
indices. The operators O⇥ and ON are then allowed to take on their most general form, constrained by imposing
relevant symmetries. The construction was done in the nonrelativistic limit to second order in the momenta. Thus the
relevant operators are those appropriate for use with Pauli spinors. The Galilean-invariant amplitudes take the form

N⇤

i=1

�
cn

i O n
i + cp

i O
p
i

⇥
, (2)

where the coupling coe⇤cients ci may be di⇥erent for proton and neutrons. The number N of such operators Oi –
which have the product form Oi

⇥ ⌅ Oi
N – depends on the generality of the particle physics description.
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These operators contribute to six types of response105

functions, as well as two types of interference. The spin-106

independent response is denoted M and is typically the107

strongest of the six functions since it is related to the108

number of nucleons in the target nucleus. The main con-109

tribution to this response comes from the standard spin-110

independent operator O1, but it also contains higher-111

order contributions from operators 5, 8, and 11. There112

are two spin-dependent responses, ⇥� and ⇥��, which cor-113

respond to projections of spin parallel and perpendicular114

to the momentum transfer. A linear combination of these115

two responses yields the standard spin-dependent opera-116

tor O4. Many of the other operators also appear in one117

of these two responses. The � response, a novel type of118

response introduced in the e⌅ective field theory, is related119

to the net angular momentum of an unpaired nucleon and120

contains contributions from operators 5 and 8. A second121

novel response is ⇤��, which is is sensitive to the product122

of angular momentum and spin. This response tends to123

favor heavier elements and is the dominant response for124

O3. The last response considered in the e⌅ective field125

theory, ⇤̃�, contains contributions from operators 3, 12,126

and 15. ⇤̃� is discussed less frequently in the literature127

since it is di⌃cult to find a model that produces this128

response, but we consider it here for completeness.129

The e⌅ective field theory also includes two operator-130

operator interference terms: ⇥�� andM⇤��. ⇥� interferes131

with � because responses which are dependent on veloc-132

ity are sensitive to properties such as angular momentum133

which depend on the motion of the nucleon within the nu-134

cleus. This interference term is particularly significant for135

germanium, which has large responses to both ⇥� and �.136

The ⇥�� response contains interference between O4 and137

O5, as well as between O8 and O9. In addition, since138

both M and ⇤�� are scalar responses, interference be-139

tween the two can be significant, especially for elements140

like xenon which have large responses to both. The M⇤��
141

response contains interference between operators O1 and142

O3, operators O11 and O12, and operators O11 and O15.143

The strength of an EFT interaction is governed by nu-144

merical coe⌃cients associated with each of the operators,145

one for each operator and isospin. These coe⌃cients are146

here labeled c�i with i indicating operator number and147

� = 0 or 1 indicating isoscalar (cp = cn) and isovector148

(cp = �cn), respectively. They are generalized versions149

of fn and fp and can take on any value, positive or neg-150

ative. The coe⌃cients appear as c�i c
� 0

j in the interaction,151

indicating that operators interfere at most pair-wise.152

This paper discusses the Fitzpatrick et al. e⌅ective field153

theory in the context of current and proposed direct de-154

tection experiments. We present exclusion limits on EFT155

operator coe⌃cients using the optimum interval method.156

We discuss the di⌅erences in energy spectra that arise for157

arbitrary EFT interactions and examine how this energy158

dependence may a⌅ect future experiments if WIMP can-159

didate events are observed. We also consider the vari-160

ation in interaction strength across the elements com-161

monly used as direct detection targets and discuss pos-162

sible ways of exploring interference using experimental163

results. Finally, we discuss the implications of this e⌅ec-164

tive field theory for the G2 direct detection experiments.165

EXCLUSION LIMITS ON A SET OF EFT166

OPERATORS167

The strength of the interaction in the EFT frame-168

work is governed by a set of 28 numerical coe⌃cients169

corresponding to the 14 operators, one for each isospin.170

Other work has attempted to find global fits in this many-171

dimensional EFT parameter space using combined data172

from many direct detection experiments [21]. However,173

since the parameter space is large and relatively uncon-174

strained by current experiments, we choose to calculate175

exclusion limits on the coe⌃cients for individual EFT176

operator for three di⌅erent target elements: germanium177

(SuperCDMS LT and CDMS-II), silicon (CDMS-II), and178

xenon (LUX). This is the first EFT experimental result179

that includes all three target elements that will be used180

in the G2 experiments. In addition, the optimum inter-181

val method provides a more accurate calculation of the182

limits since it includes information about the candidate183

event energies and energy-dependent detection e⌃ciency184

that is lost in likelihood methods that consider a single185
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strongest of the six functions since it is related to the108

number of nucleons in the target nucleus. The main con-109

tribution to this response comes from the standard spin-110

independent operator O1, but it also contains higher-111

order contributions from operators 5, 8, and 11. There112
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The most general effective Lagrangian contains up to 14 (x2) different operators 
that induce six types of response functions and two new interference terms 

Haxton, Fitzpatrick 2012-2014 

Spin-Indep. 

Spin-Dep. 

Angular  
momentum 
of unpaired  
nucleon 

Angular  
momentum 
and spin 
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TABLE VIII. Operators for a spin-1
2 WIMP via a neutral mediator

Scalar Mediator

‰̄‰q̄q ≠æ
3

h

N
1 ⁄1
m

2
„

4
O1

‰̄‰q̄“5q ≠æ
3

h

N
2 ⁄1
m

2
„

4
O10

‰̄“5‰q̄q ≠æ
3

≠h

N
1 ⁄2mN

m

2
„m‰

4
O11

‰̄“5‰q̄“5q ≠æ
3

h

N
2 ⁄2mN

m

2
„m‰

4
O6

Vector Mediator

‰̄“µ‰q̄“
µ

q ≠æ
3

≠h

N
3 ⁄3
m

2
G

4
O1

‰̄“µ‰q̄“
µ

“5q ≠æ
3

≠2h

N
4 ⁄3

m

2
G

4 1
≠O7 + mN

m‰
O9

2

‰̄“µ“5‰q̄“
µ

q ≠æ
3

≠2h

N
3 ⁄4

m

2
G

4
(O8 + O9)

‰̄“µ“5‰q̄“
µ

“5q ≠æ
3

4h

N
4 ⁄4

m

2
G

4
O4

29

E.g., For a spin ½ particle  

These operators can be obtained as the non-relativistic limit of 
relativistic operators (e.g.,  starting from UV complete models) 

Dent, Krauss, Newstead, Sabbharwal 2015  
MW2016	-	Mainz	 35	



These are extremely sensitive to the choice of target material, being crucial in the 
design phase of new experiments.    

Some targets have 
enhanced 
sensitivities for a 
given set of 
operators 
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Limits on EFT operators (SuperCDMS) 

•  The spectrum differs from the 
expected for standard 
interactions 

-  A DM signal could be 
misidentified as background 

 

6

FIG. 3. Co-added energy spectrum from 100 simulated experiments (blue histogram) assuming the dark matter interaction
proceeds according to the isoscalar O3 operator for a 10GeV/c2 (left) and a 300GeV/c2 WIMP (right). The detection e�ciency
is assumed to be independent of energy. The smooth cyan, magenta, and black curves show the expected spectrum for the
standard spin-independent rate for several WIMP masses, while the dashed dark blue curve shows the O3 spectrum from which
the simulated experiments were sampled.

FIG. 4. Distribution of 90% confidence level upper limits calculated using the optimum interval method for the simulated
experiments discussed in Sec. 3 and shown in Fig. 3, sampled from the event rate for isoscalar O3. Shaded blue bands show
the 68% and 95% confidence level uncertainty on the distribution. The zero-background Poisson limit is shown in magenta.

tends to be weaker at larger WIMP masses where the
tail of the spin-independent event rate extends to higher
recoil energies. For the 300GeV/c2 case, the distribu-
tion of limits agrees with the Poisson zero-background
limit at low masses; the observed events occur at recoil
energies that cannot be produced by a low-mass WIMP.
At higher masses, the distribution of limits is still close
to the zero-background limit because the shape of the
observed spectrum is very di↵erent from the expected
spin-independent WIMP rate.

The di↵erence in the limits between the spin-
independent and EFT cases demonstrates the impor-
tance of correctly modeling the expected WIMP signal.

Algorithms that assume the standard spin-independent
rate when calculating limits will interpret events from
EFT interactions with di↵erent spectral shapes as back-
ground, and thus, this assumption could lead to a bias in
the exclusion limits reported by experiments, especially
in the case where events are observed.

K. Schneck et al. PRD 2015 
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Limits on EFT operators (SuperCDMS) 

•  The spectrum differs from the 
expected for standard 
interactions 

-  A DM signal could be 
misidentified as background 

-  The reconstruction of a signal 
would point towards the wrong 
mass and couplings 

K. Schneck et al. PRD 2015 
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6

FIG. 3. Co-added energy spectrum from 100 simulated experiments (blue histogram) assuming the dark matter interaction
proceeds according to the isoscalar O3 operator for a 10GeV/c2 (left) and a 300GeV/c2 WIMP (right). The detection e�ciency
is assumed to be independent of energy. The smooth cyan, magenta, and black curves show the expected spectrum for the
standard spin-independent rate for several WIMP masses, while the dashed dark blue curve shows the O3 spectrum from which
the simulated experiments were sampled.

FIG. 4. Distribution of 90% confidence level upper limits calculated using the optimum interval method for the simulated
experiments discussed in Sec. 3 and shown in Fig. 3, sampled from the event rate for isoscalar O3. Shaded blue bands show
the 68% and 95% confidence level uncertainty on the distribution. The zero-background Poisson limit is shown in magenta.

tends to be weaker at larger WIMP masses where the
tail of the spin-independent event rate extends to higher
recoil energies. For the 300GeV/c2 case, the distribu-
tion of limits agrees with the Poisson zero-background
limit at low masses; the observed events occur at recoil
energies that cannot be produced by a low-mass WIMP.
At higher masses, the distribution of limits is still close
to the zero-background limit because the shape of the
observed spectrum is very di↵erent from the expected
spin-independent WIMP rate.

The di↵erence in the limits between the spin-
independent and EFT cases demonstrates the impor-
tance of correctly modeling the expected WIMP signal.

Algorithms that assume the standard spin-independent
rate when calculating limits will interpret events from
EFT interactions with di↵erent spectral shapes as back-
ground, and thus, this assumption could lead to a bias in
the exclusion limits reported by experiments, especially
in the case where events are observed.
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Hints for a diphoton resonance at the LHC@13TeV 

Both ATLAS and CMS have observed a potential feature at 750 GeV  

•  Large Width preferred by ATLAS (not 
necessarily CMS) 

•  Not observed in any other channel 

•  Could correspond to the resonance 
of a spin-0 or spin-2 particle 

•  Large production cross section O(10 
fb), presumably produced through its 
coupling to gluons 

γ

γ

�/M ⇠ 0.06
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Extra Q = Dark Matter?

1) The connection with ⌦DM is interesting on its own;
2) if �/M ⇠ 0.06 allows to hide many particles that enhance S ! ��;
3) if �/M ⇠ 0.06 allows to get tree level S ! DMDM decays.
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Direct detection bounds are (weak) irrelevant if S is a scalar (pseudo-scalar).

Can this have something to do with dark matter? 

The large decay width of the resonance might imply new decay products. 

Mambrini, Arcadi, Djouadi 1512.04913  

Current direct/indirect detection constraints not too restrictive (model dependent) 
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Can this have something to do with dark matter? 

The large decay width of the resonance might imply new decay products. 

Mambrini, Arcadi, Djouadi 1512.04913  

Current direct/indirect detection constraints not too restrictive (model dependent) 
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FIG. 6. Parameter points projected in the mχ-⟨σannv⟩had plane for Models M2 (a), S (b), and V

(c). The notations for parameter points are the same as Fig. 4. Blue lines are the limit on ⟨σannv⟩bb̄

from the Fermi-LAT dwarf spheroidal galaxy continuous spectrum observations. Red and black

lines are limits on ⟨σannv⟩bb̄ derived from the AMS-02 antiproton measurement results in the DC

and DR-2 cosmic-ray prorogation models, respectively.

while that for Models S and V is [64]

σSI
χN =

µ2
χN

πm2
χ

G2
S,N . (29)

Here for these three models,

GS,N ≡ −
4πk3gχmN

9αsΛm2
φ

(

1−
∑

q=u,d,s

fN
q

)

, (30)

where fN
q are the nucleon form factors, whose values are adopted from Ref. [65].
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FIG. 7. Parameter points plotted in the mχ-σSI
χN plane for Models M1 (a), S (b), and V (c). The

notations for parameter points are the same as Fig. 4. Blue lines are the limit from the LUX

experiment. Black lines are the projected sensitivity of XENON1T.

We show the SI scattering cross section in Fig. 7. Also shown are the current limit from

LUX and the projected sensitivity of XENON1T. We can see that the majority of points

satisfying the broad resonance condition for light DM in Model S have been excluded by the

LUX result. This is because these points always correspond to large k3 values. For Models

M1 and V, the constraints would be much weaker. We can see that the parameter points

with a correct relic density and a broad decay width can be further tested by XENON1T.

The points in the resonant annihilation region with narrow resonance width may remain

undetectable in future direct detection experiments.

Bi et al. 1512.06787 

If this observation is confirmed, the correlation with direct and indirect detection is 
crucial to determine the DM properties 



-  Is the WIMP paradigm in good health? 
 
Certainly not dead yet, although it is becoming more constrained. 

 
-  Will we ever detect WIMPs? 

 
Exciting times ahead: G2 experiments à good coverage for WIMP models 
… if DM is not a WIMP? (sensitivity to axion-like particles and other exotics) 

-  If so, can we reconstruct their properties? 
 
Only through the combination of different experimental searches 
E.g., Direct detection and the Galactic Centre Excess 
Need to consider more general DM interactions and/or simplified models  

-  How natural is the resulting Dark Matter model? 

Conclusions 
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Background 

•  Bulk electron recoils 

•  Sidewall & surface events 

•  Neutrons  
(cosmogenic & radiogenic) 

Compton background 
1.3 keV activation line 

betas and x-rays from 210Pb, 210Bi, 
recoils from 206Pb, outer radial 
Comptons, ejected electrons from 
Compton scattering 

Use active and passive shielding.   
Cut on multiple hits. 
Simulation determines remaining 
irreducible rate 

Z-Partition and Radial partition 
define a fiducial volume 

Yield = Ionization/phonon helps 
discriminating NR from ER  
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Selection Criteria and Efficiencies

#11

Quality
+ Thresholds

+ Preselection

+ BDT

" Remove periods of poor detector performance!
" Remove misreconstructed and noisy pulses!
" Measure e%ciency with pulse Monte Carlo

Quality

Thresholds

Preselection

BDT

" Trigger and analysis thresholds 1.6-5 keVnr!
" Measure e%ciency using 133Ba calibration data

" Ionization consistent with nuclear recoils!
" Ionization-based fiducialization!
" Remove multiple-detector hits!
" Remove events coincident with muon veto

" Optimized cut on energy and phonon position 
estimators!

" Estimate BDT+preselection e%ciency using 
fraction of 252Cf passing 

Includes ~20% correction, from Geant4 simulation, 
for multiple scattering in single detectorEfficiencies: measured for neutrons 

from 252Cf. Corrected for multiple 
scattering with Geant4 

Data Quality: 
Reject periods with poor detector performance 
Remove misreconstructed and noisy pulses 
Measure efficiency with pulse MC 

Trigger and analysis threshold: 
Select periods with stable well-defined trigger 
threshold 
Measure efficiency from 133Ba calibration data 

Preselection: 
Single-detector scatter 
Remove events coincident with muon veto 
Ionization fiducial volume 
Ionization and phonon partitions consistent with NR  
 
Boosted Decision Tree: 
Optimised cut on the phonon fiducial volume and 
ionization yield at low energy 
Efficiency estimated from fraction of 252Cf passing 
 

Analysis: Selection criteria and efficiencies 

We carry out a blind analysis, with all singles in energy range  removed from study, except data 
following 252Cf calibration due to activation 
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Boosted Decision Tree (BDT) 
Boosted Decision Tree

#10

BDT score
-1 -0.5 0 0.5 1

N
um

be
r o

f e
ve

nt
s 

/ 0
.0

4

1

10

210

Vertical phonon partition
-0.4 -0.2 0 0.2 0.4

N
um

be
r o

f e
ve

nt
s

1

10

210

phonon z-partition
Radial phonon partition

0.1 0.2 0.3 0.4

N
um

be
r o

f e
ve

nt
s

1

10

210

phonon r-partition

Total phonon energy [keV]
5 10

N
um

be
r o

f e
ve

nt
s

1

10

210

total phonon energy [keV]Ionization energy [keV]
-2 -1 0 1 2 3

N
um

be
r o

f e
ve

nt
s

1

10

210

ionization energy [keV]

BDT inputs

Background model: pulse simulation!
Signal model: 252Cf NR events reweighted 
to match 5, 7, 10, and 15 GeV WIMP

BDT output

10 GeV WIMP!
$ = 6 x 10-42 cm2

summed over detectors

Construction: 1 BDT per 
detector!
Optimization: set cuts 
simultaneously to minimize 
expected 90% CL upper limit 
on WIMP-nucleon cross 
section

WIMP (10 GeV)!
Sidewall 206Pb!
Sidewall !!
Face !!
1.3 keV line!
Gammas

from!
210Pb

Boosted Decision Tree

#10

BDT score
-1 -0.5 0 0.5 1

N
um

be
r o

f e
ve

nt
s 

/ 0
.0

4

1

10

210

Vertical phonon partition
-0.4 -0.2 0 0.2 0.4

N
um

be
r o

f e
ve

nt
s

1

10

210

phonon z-partition
Radial phonon partition

0.1 0.2 0.3 0.4

N
um

be
r o

f e
ve

nt
s

1

10

210

phonon r-partition

Total phonon energy [keV]
5 10

N
um

be
r o

f e
ve

nt
s

1

10

210

total phonon energy [keV]Ionization energy [keV]
-2 -1 0 1 2 3

N
um

be
r o

f e
ve

nt
s

1

10

210

ionization energy [keV]

BDT inputs

Background model: pulse simulation!
Signal model: 252Cf NR events reweighted 
to match 5, 7, 10, and 15 GeV WIMP

BDT output

10 GeV WIMP!
$ = 6 x 10-42 cm2

summed over detectors

Construction: 1 BDT per 
detector!
Optimization: set cuts 
simultaneously to minimize 
expected 90% CL upper limit 
on WIMP-nucleon cross 
section

WIMP (10 GeV)!
Sidewall 206Pb!
Sidewall !!
Face !!
1.3 keV line!
Gammas

from!
210Pb

Boosted Decision Tree

#10

BDT score
-1 -0.5 0 0.5 1

N
um

be
r o

f e
ve

nt
s 

/ 0
.0

4

1

10

210

Vertical phonon partition
-0.4 -0.2 0 0.2 0.4

N
um

be
r o

f e
ve

nt
s

1

10

210

phonon z-partition
Radial phonon partition

0.1 0.2 0.3 0.4

N
um

be
r o

f e
ve

nt
s

1

10

210

phonon r-partition

Total phonon energy [keV]
5 10

N
um

be
r o

f e
ve

nt
s

1

10

210

total phonon energy [keV]Ionization energy [keV]
-2 -1 0 1 2 3

N
um

be
r o

f e
ve

nt
s

1

10

210

ionization energy [keV]

BDT inputs

Background model: pulse simulation!
Signal model: 252Cf NR events reweighted 
to match 5, 7, 10, and 15 GeV WIMP

BDT output

10 GeV WIMP!
$ = 6 x 10-42 cm2

summed over detectors

Construction: 1 BDT per 
detector!
Optimization: set cuts 
simultaneously to minimize 
expected 90% CL upper limit 
on WIMP-nucleon cross 
section

WIMP (10 GeV)!
Sidewall 206Pb!
Sidewall !!
Face !!
1.3 keV line!
Gammas

from!
210Pb

Boosted Decision Tree

#10

BDT score
-1 -0.5 0 0.5 1

N
um

be
r o

f e
ve

nt
s 

/ 0
.0

4

1

10

210

Vertical phonon partition
-0.4 -0.2 0 0.2 0.4

N
um

be
r o

f e
ve

nt
s

1

10

210

phonon z-partition
Radial phonon partition

0.1 0.2 0.3 0.4

N
um

be
r o

f e
ve

nt
s

1

10

210

phonon r-partition

Total phonon energy [keV]
5 10

N
um

be
r o

f e
ve

nt
s

1

10

210

total phonon energy [keV]Ionization energy [keV]
-2 -1 0 1 2 3

N
um

be
r o

f e
ve

nt
s

1

10

210

ionization energy [keV]

BDT inputs

Background model: pulse simulation!
Signal model: 252Cf NR events reweighted 
to match 5, 7, 10, and 15 GeV WIMP

BDT output

10 GeV WIMP!
$ = 6 x 10-42 cm2

summed over detectors

Construction: 1 BDT per 
detector!
Optimization: set cuts 
simultaneously to minimize 
expected 90% CL upper limit 
on WIMP-nucleon cross 
section

WIMP (10 GeV)!
Sidewall 206Pb!
Sidewall !!
Face !!
1.3 keV line!
Gammas

from!
210Pb

Boosted Decision Tree

#10

BDT score
-1 -0.5 0 0.5 1

N
um

be
r o

f e
ve

nt
s 

/ 0
.0

4

1

10

210

Vertical phonon partition
-0.4 -0.2 0 0.2 0.4

N
um

be
r o

f e
ve

nt
s

1

10

210

phonon z-partition
Radial phonon partition

0.1 0.2 0.3 0.4

N
um

be
r o

f e
ve

nt
s

1

10

210

phonon r-partition

Total phonon energy [keV]
5 10

N
um

be
r o

f e
ve

nt
s

1

10

210

total phonon energy [keV]Ionization energy [keV]
-2 -1 0 1 2 3

N
um

be
r o

f e
ve

nt
s

1

10

210

ionization energy [keV]

BDT inputs

Background model: pulse simulation!
Signal model: 252Cf NR events reweighted 
to match 5, 7, 10, and 15 GeV WIMP

BDT output

10 GeV WIMP!
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detector!
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on WIMP-nucleon cross 
section

WIMP (10 GeV)!
Sidewall 206Pb!
Sidewall !!
Face !!
1.3 keV line!
Gammas

from!
210PbBackground: Modelled with simulated data on sidebands 

and calibration. 
 
WIMP Signal: Modelled with NR data from 252Cf, then 
rescaled for WIMPs with mass 5, 7, 10, 15 GeV 

Inputs (per detector) 

Output 
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Unblinding: Before BDT cut Events passing all the cuts prior to 
applying BDT 

Outer radial 
events 

1.3 keV  
line Approx NR band 
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Unblinding: After BDT cut 11 candidates (6.2 +1.1 -0.8 expected)  
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Post-unblinding discussion 

•  For most of the detectors 
there is good agreement 
with predicted background 

Events are high in quality. Only the lowest energy candidate looks like spurious 
noise   

10 GeV BDT 

P-value 
= 0.14 
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Post-Unblinding Comparison

detector
T1Z1 T2Z1 T2Z2 T4Z2 T4Z3 T5Z2 T5Z3
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6
range of counts with p>0.05

 background expectation!1
observed

" Background consistent with 
expectations overall and on most 
individual detectors!

" Background model accurate in 
full preselection region 

" Shorted ionization guard on T5Z3 
may have a&ected background 
model performance—further 
study ongoing 

" Poisson p-value for T5Z3 is 
0.04%, and even lower 
considering only high event 
energies
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Post-unblinding discussion 

•  For most of the detectors 
there is good agreement 
with predicted background 

•  However, T5Z3 observes the 
3 highest-energy events  
 
(Poisson p-value is 0.04%) 

Events are high in quality. Only the lowest energy candidate looks like spurious 
noise   

T5Z3 has a shorted ionization guard. This may have affected the background 
model performance. Additional studies are ongoing. 
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Non-observation in other experiments set upper bounds on the cross section 

XENON10, XENON100, LUX (Xe), CDMSlite, SuperCDMS, Edelweiss (Ge), COUPP (CF3I)  
have not observed any DM signal, which constrains the scattering cross section 

DISCLAIMER:  
 
THIS PLOT ASSUMES 
•  Isothermal Spherical Halo 
•  WIMP with only spin-independent interaction 
•  coupling to protons = coupling to neutrons 
•  elastic scattering 
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LUX 
 

PRL 112 (2014) 241302 
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Bulk events:  
charges (e,h) drift to both sides of 
the crystal 

Surface events:  
charges (e,h) drift to only one side 
of the crystal 

RADIAL PARTITION: 
division of energy between inner and 
outer sensors 

Sidewalls 

Z-PARTITION:  
The resulting symmetry/asymmetry in 
charge collection in sides 1 and 2 

Surface events on the sides of the 
detector leave more energy in the outer 
sensors. 
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Ionization lines (±2V) interleaved with 
phonon sensors (0V) on a ~1mm pitch 

iZIP discrimination of surface events 
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FIG. 10. (Color online) A two-dimensional histogram of
AP

high

and expansion time after applying the optimum fidu-
cial cuts, divided into bins of equal exposure to dark matter
(i.e. a dark matter signal would appear uniform in the his-
togram). All the background events populate the left and top
of the histogram. The optimum cuts are represented by the
red rectangle.
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FIG. 11. (Color online) The 90% C.L. limit on the SI
WIMP-nucleon cross section from PICO-60 is plotted in blue,
along with limits from COUPP (light blue), LUX (black),
XENON100 (orange), DarkSide-50 (green), and the reanaly-
sis of CDMS-II (magenta) [10, 40–43].

form factors described in [35–38] to determine sensitiv-
ity to both spin-dependent and spin-independent dark
matter interactions. For the SI case, we use the M re-
sponse of Table 1 in [35], and for SD interactions, we
use the sum of the ⌃0 and ⌃00 terms from the same ta-
ble. To implement these interactions and form factors,
we use the publicly available dmdd code package [38, 39].
The resulting 90% C.L. limit plots for spin-independent
WIMP-nucleon and spin-dependent WIMP-proton cross-
sections are presented in Figs. 11 and 12.
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FIG. 12. (Color online) The 90% C.L. limit on the SD WIMP-
proton cross section from PICO-60 is plotted in blue, along
with limits from PICO-2L (red), COUPP (light blue region),
PICASSO (dark blue), SIMPLE (green), XENON100 (or-
ange), IceCube (dashed and solid pink), SuperK (dashed and
solid black) and CMS (dashed orange), [10, 12, 13, 44–48].
For the IceCube and SuperK results, the dashed lines assume
annihilation to W -pairs while the solid lines assume annihila-
tion to b-quarks. Comparable limits assuming these and other
annihilation channels are set by the ANTARES, Baikal and
Baksan neutrino telescopes [49–51]. The CMS limit is from
a mono-jet search and assumes an e↵ective field theory, valid
only for a heavy mediator [52, 53]. Comparable limits are set
by ATLAS [54, 55]. The purple region represents parameter
space of the CMSSM model of [56].

VII. DISCUSSION

Despite the presence of a population of unknown ori-
gin in the dataset, the combination of the discriminat-
ing variables results in a large total exposure with zero
dark matter candidates. The SD-proton reach of bubble
chambers remains unmatched in the field of direct detec-
tion, significantly constraining CMSSM model parameter
space.

The leading hypothesis for the source of the back-
ground events is particulate contamination. An alpha
decay from an atom embedded in a small dust particle
can result in a partial alpha track into the fluid with the
daughter nucleus remaining in the particle, and such a
track could provide the acoustic signature observed in the
background events [26]. The timing and spatial distribu-
tions suggest convection currents as a potential source of
particle movement, and particulate spike runs in a test
chamber have shown that particulates do collect on the
interfaces. Additionally, assays of the fluids taken after
the run discovered many particulates with composition
matching the wetted surfaces of the inner volume, as well
as elevated levels of thorium in the chamber. A future run
of PICO-60 with C

3

F
8

will include upgrades to allow for
improved cleaning of the glass and metal surfaces before

Upper bounds on the SD cross section 

XENON100, LUX (Xe) for SD with neutron, PICO 60L (CF3I) for SD proton 

Amole et al. 2015 Savage et al 2015 

IceCube, Baksan and Antares also sensitive to DM capture rate in the Sun (mainly SD cross 
section with protons) and its subsequent annihilation in neutrinos. 
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CTA Sensitivity for DM targets 

• Thermal relic cross section within the reach !! 
• W+ W- dominates at high energies ! impact on models 
• Strong dependence on DM profiles 
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DM GC profiles 
Galactic Center Halo 

CTA will further explore the heavy DM mass region 

These predictions (as well as current bounds) are extremely sensitive to the DM profile

The thermal cross section can be probed up to ~10-30 TeV
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CTA Sensitivity for DM targets 

• Thermal relic cross section within the reach !! 
• W+ W- dominates at high energies ! impact on models 
• Strong dependence on DM profiles 
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DM GC profiles 
Galactic Center Halo 

Juan Abel Barrio, UCM-GAE 35 IBS-MD Joint Meeting. Madrid, Nov. 2015 
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CTA Sensitivity for DM targets 
Comparison of targets 
• Galatic Center Halo with 
cuspy profiles reaches 
thermal cross section 

• Milky Way Satellites provide 
cross-check using data best 
known by time of obs. 

• Systematic uncertainties 
must be well under control 
for best sensitivity 

These predictions (as well as current bounds) are extremely sensitive to the DM profile

The thermal cross section can be probed up to ~10-30 TeV
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