SEMILEPTONIC DECAYS

Johan Bijnens

Lund University

bijnens@thep.lu.se
http://thep.lu.se/~bijnens
http://thep.lu.se/~bijnens/chpt/
http://thep.lu.se/~bijnens/chiron/

NA62 Physics Handbook MITP Workshop - Mainz 21 January 2016

Semileptonic Decays

Johan Bijnens

Overview

ChP'

Vetenskapsrådet

Semileptonic decays

Finite volume

Overview

Decay	Branching Ratio
$K^+ ightarrow e^+ u$	$1.582(7) 10^{-5}$
$K^+ ightarrow \mu^+ u$	63.56(11)%
$K^+ ightarrow \pi^0 e^+ u$	5.07(4)%
$K^+ o \pi^0 \mu^+ u$	3.352(33)%
$K^+ ightarrow \pi^0 \pi^0 e^+ u$	$2.55(4) 10^{-5}$
$K^+ ightarrow \pi^+ \pi^- e^+ \nu$	4.247(24) 10 ⁻⁵
$K^+ ightarrow \pi^+ \pi^- \mu^+ u$	$1.4(9) 10^{-5}$
$K^+ ightarrow \mu^+ u \gamma$	6.2(8) 10 ⁻³
${\cal K}^+ ightarrow {e^+ u \gamma}$	9.4(4) 10 ⁻⁶
$K^+ ightarrow \pi^0 e^+ u \gamma$	$2.56(16) 10^{-4}$
$K^+ ightarrow \pi^0 \mu^+ u \gamma$	$1.25(25) 10^{-5}$
$K^+ ightarrow e^+ u e^+ e^-$	$2.48(20) 10^{-8}$
${\cal K}^+ ightarrow {e^+ u \mu^+ \mu^-}$	$1.7(5) 10^{-8}$

Semileptonic					
Decays					
Johan Bijnens					

Overview

ChP⁻

Semileptonic decays

Overview

Semileptonic Decays

Johan Bijnens

Overview

ChP⁻

Semileptonic decays

Finite volume

Decay

$K_S ightarrow \pi^{\pm} e^{\mp} \nu$	•
$K_L ightarrow \pi^{\pm} e^{\mp} \nu$	4
$K_L ightarrow \pi^{\pm} \mu^{\mp} \nu$	
$K_L ightarrow (\pi \mu)_{ m atom} u$	
$K_L ightarrow \pi^0 \pi^\pm e^\mp u$	ļ
$K_L \rightarrow \pi^{\pm} e^{\mp} \nu e^+ e^-$	
$K_L ightarrow \pi^{\pm} e^{\mp} \nu \gamma$	
$K_L o \pi^{\pm} \mu^{\mp} \nu \gamma$	Į

Branching Ratio
7.04(8) 10 ⁻⁴
40.55(11)%
27.04(7)%
$1.05(11) \ 10^{-7}$
$5.20(11) 10^{-5}$
$1.26(4) 10^{-5}$
$3.79(6) 10^{-3}$
$5.65(23) 10^{-3}$

Other talks

You already heard a lot about semileptonic decays:

- Lattice: Sachrajda and Martinelli
- Radiative corrections: Knecht
- $\pi\pi$: Colangelo
- Dispersive work on $K_{\ell 4}$: Stoffer
- Dispersive work on rare decays: Stucki
- Estimate of parameters in rare decays: Greynat
- CKM fits: Descotes-Genon
- Mentioned in a few more talks as well

My talk:

- Chiral Perturbation Theory
- What can we learn/test in the various decays
- Some recent work (to show I do have some)

Semileptonic Decays Johan Biinens

Overview

СЬРТ

Semileptonic decays Finite volume

Earlier reviews of mine

- Daφne physics handbook, Semileptonic Kaon Decays in ChPT, JB, Ecker, Gasser, hep-ph/920820
- 2nd Daφne physics handbook, Semileptonic Kaon Decays, JB, Colangelo, Ecker, Gasser, hep-ph/9411311

• . . .

• KAON07, Radiative and semileptonic decays in ChPT, arXiv:0707.0419

But remember also:

Cirigliano, Ecker, Neufeld, Pich, Portoles, arXiv:1107.6001

Semileptonic Decays

Johan Bijnens

Overview

ChP

Semileptonic decays Finite volume Conclusions

Overview

5 Conclusions

1 Overview	Semileptonic Decays
 Chiral Perturbation Theory Chiral Perturbation Theory A mesonic ChPT program framework 	Johan Bijnens Overview ChPT
• Determination of LECs in the continuum	Semileptonic decays
Semileptonic decays • $K_{\ell 2}$ • $K_{\ell 2\gamma}$ • $K \rightarrow \ell' \nu \ell^+ \ell^-$	Finite volume Conclusions
• $K\pi$ form-factors for $K_{\ell 3}$ and $K \to \pi \nu \bar{\nu}$ • $K_{\ell 3\gamma}$ • $K_{\ell 4}$	
4 Finite volume	

Exploring the consequences of the chiral symmetry of QCD and its spontaneous breaking using effective field theory techniques

Derivation from QCD: H. Leutwyler, On The Foundations Of Chiral Perturbation Theory, Ann. Phys. 235 (1994) 165 [hep-ph/9311274]

For references to lectures see: http://www.thep.lu.se/~bijnens/chpt/

Semileptonic Decays

Johan Bijnens

Overview

ChP

ChPT

A mesonic ChPT program framework Determination of

LECs in the continuum

Semileptonic decays

Finite volume

A general Effective Field Theory:

- Relevant degrees of freedom
- A powercounting principle (predictivity)
- Has a certain range of validity

Chiral Perturbation Theory:

- Degrees of freedom: Goldstone Bosons from spontaneous breaking of chiral symmetry
- Powercounting: Dimensional counting in momenta/masses
- Breakdown scale: Resonances, so about M_{ρ} .

Semileptonic Decays

Johan Bijnens

Overview

ChP'

ChPT

A mesonic ChPT program framework Determination of LECs in the continuum

Semileptonic decays

Finite volume

A general Effective Field Theory:

- Relevant degrees of freedom
- A powercounting principle (predictivity)
- Has a certain range of validity

Chiral Perturbation Theory:

- Degrees of freedom: Goldstone Bosons from spontaneous breaking of chiral symmetry
- Powercounting: Dimensional counting in momenta/masses
- Breakdown scale: Resonances, so about M_{ρ} .

Semileptonic Decays

Johan Bijnens

Overview

ChP'

ChPT

A mesonic ChPT program framework Determination of LECs in the

Semileptonic decays

Finite volume

Goldstone Bosons

Spontaneous breakdown

- $\langle \bar{q}q \rangle = \langle \bar{q}_L q_R + \bar{q}_R q_L \rangle \neq 0$
- $SU(3)_L \times SU(3)_R$ broken spontaneously to $SU(3)_V$
- 8 generators broken ⇒ 8 massless degrees of freedom and interaction vanishes at zero momentum

Semileptonic Decays

Johan Bijnens

Overview

ChP'

ChPT

A mesonic ChPT program framework Determination of LECs in the

Semileptonic decays

Finite volume

Goldstone Bosons

powercounting

rules

∫ d⁴p

 p^2

 $1/p^{2}$

 p^4

- Which chiral symmetry: $SU(N_f)_L \times SU(N_f)_R$, for $N_f = 2, 3, ...$ and extensions to (partially) quenched
- Or beyond QCD
- Space-time symmetry: Continuum or broken on the lattice: Wilson, staggered, mixed action
- Volume: Infinite, finite in space, finite T
- Which interactions to include beyond the strong one
- Which particles included as non Goldstone Bosons
- My general belief: if it involves soft pions (or soft K, η) some version of ChPT exists

Semileptonic Decays

Johan Bijnens

Overview

ChP'

ChPT

A mesonic ChPT program framework Determination of LECs in the continuum

Semileptonic decays

Finite volume

Lagrangians: Lagrangian structure (mesons, strong)

	2 flavour		3 flavour		$PQChPT/N_f$ flavour		
<i>p</i> ²	<i>F</i> , <i>B</i>	2	F_0, B_0	2	F_0, B_0	2	
p^4	I_i^r, h_i^r	7+3	L_i^r, H_i^r	10 + 2	$\hat{L}_{i}^{r}, \hat{H}_{i}^{r}$	11+2	
p^6	c_i^r	52+4	C_i^r	90+4	K_i^r	112+3	

- p^2 : Weinberg 1966
- p⁴: Gasser, Leutwyler 84,85
- p⁶: JB, Colangelo, Ecker 99,00

Li LEC = Low Energy Constants = ChPT parameters
 Hi: contact terms: value depends on definition of currents/densities

- Finite volume: no new LECs
- Other effects: (many) new LECs

Semileptonic Decays

Johan Bijnens

Overview

ChP

ChPT

A mesonic ChPT program framework Determination of LECs in the continuum

Semileptonic decays

Finite volume

Mesons: which Lagrangians are known $(n_f = 3)$

Loops	$\mathcal{L}_{\mathrm{order}}$	LECs	effects included	Semileptonic
	\mathcal{L}_{p^2}	2	strong (+ external W, γ)	Decays
	$\mathcal{L}_{e^2p^0}$	1	internal γ	Johan Bijnens
<i>L</i> = 0	$\mathcal{L}_{G_{F}p^2}^{\Delta S=1}$	2	nonleptonic weak	Overview
	$\mathcal{L}_{G_0e^2p^0}^{\Delta S=1}$	1	nonleptonic weak+internal γ	ChPT ChPT
	$\mathcal{L}^{\mathrm{odd}}_{p^4}$	0	WZW, anomaly	A mesonic ChP ⁻ program framework
	\mathcal{L}_{p^4}	10	strong (+ external W, γ)	LECs in the continuum
	$\mathcal{L}_{e^2p^2}$	13	internal γ	Semileptonic
	$\mathcal{L}_{G_8 Fp^4}^{\Delta S=1}$	22	nonleptonic weak	Finite volume
$L \leq 1$	$\mathcal{L}_{G_{27}p^4}^{\Delta S=1}$	28	nonleptonic weak	Conclusions
	$\mathcal{L}_{G_8 e^2 p^2}^{\Delta S=1}$	14	nonleptonic weak+internal γ	
	$\mathcal{L}^{\mathrm{odd}}_{p^6}$	23	WZW, anomaly	
	$\mathcal{L}_{e^2p^2}^{\mathrm{leptons}}$	5	leptons, internal γ	
<i>L</i> ≤ 2	\mathcal{L}_{p^6}	90	strong (+ external W, γ)	13/60

Chiral Logarithms

The main predictions of ChPT:

- Relates processes with different numbers of pseudoscalars/axial currents
- Chiral logarithms
- includes Isospin and the eightfold way $(SU(3)_V)$
- Unitarity included perturbatively

$$m_{\pi}^2 = 2B\hat{m} + \left(\frac{2B\hat{m}}{F}\right)^2 \left[\frac{1}{32\pi^2}\log\frac{(2B\hat{m})}{\mu^2} + 2l_3^r(\mu)\right] + \cdots$$

 $M^2 = 2B\hat{m}$

Semileptonic Decays

Johan Bijnens

Overview

ChP

ChPT

A mesonic ChPT program framework Determination of LECs in the

Semileptonic decays

Finite volume

LECs and μ

 $l_3^r(\mu)$

$$ar{l}_i = rac{32\pi^2}{\gamma_i} \, l_i^r(\mu) - \log rac{M_\pi^2}{\mu^2} \, .$$

is independent of the scale μ .

For 3 and more flavours, some of the $\gamma_i = 0$: $L_i^r(\mu)$

Choice of μ :

- m_{π} , m_K : chiral logs vanish
- pick larger scale
- 1 GeV then L^r₅(µ) ≈ 0 what about large N_c arguments????
- compromise: $\mu = m_{
 ho} = 0.77$ GeV

Semileptonic Decays

Johan Bijnens

Overview

ChP'

ChPT

A mesonic ChPT program framework Determination of LECs in the continuum

Semileptonic decays

Finite volume

Expand in what quantities?

- Expansion is in momenta and masses
- But is not unique: relations between masses (Gell-Mann–Okubo) exist
- Express orders in terms of physical masses and quantities (F_{π}, F_{K}) ?
- Express orders in terms of lowest order masses?
- E.g. $s + t + u = 2m_{\pi}^2 + 2m_K^2$ in πK scattering
- Note: remaining μ dependence can occur at a given order
- Can make quite some difference in the expansion
- I prefer physical masses
 - Thresholds correct
 - Chiral logs are from physical particles propagating
 - but sometimes too many masses so very ambiguous

Semileptonic Decays

Johan Bijnens

Overview

ChP

ChPT

A mesonic ChPT program framework Determination of LECs in the continuum

Semileptonic decays

Finite volume

Program availability

Making the programs more accessible for others to use:

- Two-loop results have very long expressions
- Many not published but available from http://www.thep.lu.se/~bijnens/chpt/
- Many programs available on request from the authors
- Idea: make a more general framework
- CHIRON:

JB,

"CHIRON: a package for ChPT numerical results at two loops,"

Eur. Phys. J. C **75** (2015) 27 [arXiv:1412.0887] http://www.thep.lu.se/~bijnens/chiron/

Semileptonic Decays

Johan Bijnens

Overview

ChP

ChP

A mesonic ChPT program framework

Determination of LECs in the continuum

Semileptonic decays

Finite volume

Program availability: CHIRON

- Present version: 0.54
- Classes to deal with L_i, C_i, L_i⁽ⁿ⁾, K_i, standardized in/output, changing the scale,...
- Loop integrals: one-loop and sunsetintegrals
- Included so far (at two-loop order):
 - ullet Masses, decay constants and $\langle \bar q q \rangle$ for the three flavour case
 - Masses and decay constants at finite volume in the three flavour case
 - Masses and decay constants in the partially quenched case for three sea quarks
 - Masses and decay constants in the partially quenched case for three sea quarks at finite volume
- A large number of example programs is included
- Manual has already reached 94 pages
- I am continually adding results from my earlier work

Semileptonic Decays

Johan Bijnens

Overview

ChP

ChP

A mesonic ChPT program framework

Determination of LECs in the continuum

Semileptonic decays

Finite volume

LEC determination: (Partial) History/References

- Original determination at p⁴: Gasser, Leutwyler, Annals Phys.158 (1984) 142, Nucl. Phys. B250 (1985) 465
- *p*⁶ 3 flavour: Amorós, JB, Talavera, Nucl. Phys. B602 (2001) 87 [hep-ph/0101127]
- Review article two-loops:

JB, Prog. Part. Nucl. Phys. 58 (2007) 521 [hep-ph/0604043]

- Update of fits + new input: JB, Jemos, Nucl. Phys. B 854 (2012) 631 [arXiv:1103.5945]
- Recent review with more p⁶ input: JB, Ecker, Ann. Rev. Nucl. Part. Sci. 64 (2014) 149 [arXiv:1405.6488]
- Review Kaon physics: Cirigliano, Ecker, Neufeld, Pich, Portoles, Rev.Mod.Phys. 84 (2012) 399 [arXiv:1107.6001]
- Lattice: FLAG reports:

Colangelo et al., Eur.Phys.J. C71 (2011) 1695 [arXiv:1011.4408] Aoki et al., Eur. Phys. J. C **74** (2014) 9, 2890 [arXiv:1310.8555]

Semileptonic Decays

Johan Bijnens

Overview

ChP

A mesonic ChPT program framework

Determination of LECs in the continuum

Semileptonic decays

Finite volume

Three flavour LECs: uncertainties

- $m_K^2, m_\eta^2 \gg m_\pi^2$
- Contributions from p^6 Lagrangian are larger
- Reliance on estimates of the C_i much larger
- Typically: C^r_i: (terms with) kinematical dependence ≡ measurable quark mass dependence ≡ impossible (without lattice) 100% correlated with L^r_i
- How suppressed are the $1/N_c$ -suppressed terms?
- Are we really testing ChPT or just doing a phenomenological fit?

Semileptonic Decays

Johan Bijnens

Overview

ChP

A mesonic ChPT program framework

Determination of LECs in the continuum

Semileptonic decays

Finite volume

Three flavour LECs: uncertainties

- $m_K^2, m_\eta^2 \gg m_\pi^2$
- Contributions from p^6 Lagrangian are larger
- Reliance on estimates of the C_i much larger
- Typically: C^r_i: (terms with) kinematical dependence ≡ measurable quark mass dependence ≡ impossible (without lattice) 100% correlated with L^r_i
- How suppressed are the $1/N_c$ -suppressed terms?
- Are we really testing ChPT or just doing a phenomenological fit?

Semileptonic Decays

Johan Bijnens

Overview

ChP

A mesonic ChPT program framework

Determination of LECs in the continuum

Semileptonic decays

Finite volume

Testing if ChPT works: relations

Yes: JB, Jemos, Eur.Phys.J. C64 (2009) 273-282 [arXiv:0906.3118] Systematic search for relations between observables that do not depend on the C_i^r Included:

- m_M^2 and F_M for π, K, η .
- 11 $\pi\pi$ threshold parameters
- 14 πK threshold parameters
- 6 $\eta
 ightarrow 3\pi$ decay parameters,
- 10 observables in $K_{\ell 4}$
- 18 in the scalar formfactors
- 11 in the vectorformfactors
- Total: 76

We found 35 relations

Semileptonic Decays

Johan Bijnens

Overview

ChP

ChP I A mesonic ChP1 program

Determination of LECs in the continuum

Semileptonic decays

Finite volume

Relations at NNLO: summary

- We did numerics for $\pi\pi$ (7), πK (5) and $K_{\ell 4}$ (1) 13 relations
- ππ: similar quality in two and three flavour ChPT The two involving a₃⁻ significantly did not work well
- πK: relation involving a₃⁻ not OK one more has very large NNLO corrections
- The relation with K_{ℓ4} also did not work: related to that ChPT has trouble with curvature in K_{ℓ4}
- Conclusion: Three flavour ChPT "sort of" works

Semileptonic Decays

Johan Bijnens

Overview

ChP

ChPT A mesonic ChPT program framework

Determination of LECs in the continuum

Semileptonic decays

Finite volume

Fits: inputs

Semileptonic Decays

Johan Bijnens

Overview

ChP⁻

ChPT

framework

Determination of LECs in the continuum

Semileptonic decays

Finite volume

Conclusions

Amorós, JB, Talavera, Nucl. Phys. B602 (2001) 87 [hep-ph/0101127] (ABT01) JB, Jemos, Nucl. Phys. B 854 (2012) 631 [arXiv:1103.5945] (BJ12)

JB, Ecker, arXiv:1405.6488, Ann. Rev. Nucl. Part. Sci .64 (2014) 149-174 (BE14)

•
$$M_{\pi}, M_K, M_{\eta}, F_{\pi}, F_K/F_{\pi}$$

- $\langle r^2 \rangle^\pi_S$, c^π_S slope and curvature of F_S
- $\pi\pi$ and πK scattering lengths a_0^0 , a_0^2 , $a_0^{1/2}$ and $a_0^{3/2}$.
- Value and slope of F and G in $K_{\ell 4}$

•
$$\frac{m_s}{\hat{m}} = 27.5$$
 (lattice)

•
$$\overline{l}_1, \ldots, \overline{l}_4$$

- more variation with C^r_i, a penalty for a large p⁶ contribution to the masses
- 17+3 inputs and 8 L_i^r +34 C_i^r to fit

Main fit

	1				Semileptonic
	ABT01	BJ12	L_4^r free	BE14	Decays
	old data				Johan Bijnens
$10^{3}L_{1}^{r}$	0.39(12)	0.88(09)	0.64(06)	0.53(06)	Overview
$10^{3}L_{2}^{r}$	0.73(12)	0.61(20)	0.59(04)	0.81(04)	ChPT
$10^{3}L_{3}^{r}$	-2.34(37)	-3.04(43)	-2.80(20)	-3.07(20)	ChPT A mesonic ChPT
$10^{3}L_{4}^{r}$	$\equiv 0$	0.75(75)	0.76(18)	\equiv 0.3	program framework
$10^{3}L_{5}^{r}$	0.97(11)	0.58(13)	0.50(07)	1.01(06)	LECs in the continuum
$10^{3}L_{6}^{r}$	$\equiv 0$	0.29(8)	0.49(25)	0.14(05)	Semileptonic
$10^{3}L_{7}^{r}$	-0.30(15	-0.11(15)	-0.19(08)	-0.34(09)	decays Einite volume
$10^{3}L_{8}^{r}$	0.60(20)	0.18(18)	0.17(11)	0.47(10)	Conclusions
χ^2	0.26	1.28	0.48	1.04	Conclusions
dof	1	4	?	?	
F_0 [MeV]	87	65	64	71	

$$?=(17+3)-(8+34)$$

- All values of the C_i^r we settled on are "reasonable"
- Leaving L_4^r free ends up with $L_4^r \approx 0.76$
- keeping L_4^r small: also L_6^r and $2L_1^r L_2^r$ small (large N_c relations)
- Compatible with lattice determinations
- Not too bad with resonance saturation both for L_i^r and C_i^r , including from the scalars
- decent convergence (but enforced for masses)
- Many prejudices went in: large N_c, resonance model, quark model estimates,...

Johan Bijnens

Overview

ChP'

ChP I A mesonic ChPT program framework

Determination of LECs in the continuum

Semileptonic decays

Finite volume

Some results of this fit

Decay constants:

$$\begin{array}{rcl} F_{\pi}/F_{0} &=& 1.000(p^{2})+0.208(p^{4})+0.088(p^{6})\,, \\ F_{K}/F_{\pi} &=& 1.000(p^{2})+0.176(p^{4})+0.023(p^{6})\,. \end{array}$$

Scattering:

$$\begin{array}{rcl} a_0^0 & = & 0.160(p^2) + 0.044(p^4) + 0.012(p^6) \, , \\ a_0^{1/2} & = & 0.142(p^2) + 0.031(p^4) + 0.051(p^6) \, . \end{array}$$

Semileptonic Decays

Johan Bijnens

Overview

ChP⁻

ChPT

A mesonic ChPT program framework

Determination of LECs in the continuum

Semileptonic decays

Finite volume

Johan Bijnens

Overview

ChP⁻

Semileptonic decays

$\kappa_{\ell 2}$

 $\begin{array}{l} \kappa_{\ell 2 \gamma} \\ \kappa \to \\ \ell' \nu \ell^+ \ell^- \\ \kappa \pi \text{ form-factors} \\ \text{for } \kappa_{\ell 3} \text{ and} \\ \kappa \to \pi \nu \bar{\nu} \\ \kappa_{\ell 3 \gamma} \\ \kappa_{\ell 4} \end{array}$

- $K^+ \rightarrow \mu^+ \nu$: determining $F_K |V_{us}|$
- $K^+ \rightarrow e^+ \nu$: Lepton universality, NA62/1 or NA48/3
- ChPT known to two loops: JB, Amoros, Talavera, hep-ph/9907264, with $m_u m_d$ hep-ph/0101127
- Radiative corrections: talk by Knecht

- $K^+ \to e^+ \nu \gamma$ and $K^+ \to e^+ \nu \gamma$: Bremssstrahlung and structure dependent parts
- Structure dependent parts: Vector and axial vector form factor and the former is related to $\pi^0 \gamma^* \gamma$
- ChPT one-loop: JB, Gasser, Ecker, 1993
- ChPT two-loop: Geng, Ho, Wu 2004

Johan Bijnens

Overview

ChP

Semileptonic decays

 $\begin{array}{c} \kappa_{\ell 2} \\ \kappa_{\ell 2 \gamma} \\ \kappa_{\ell' \nu \ell} +_{\ell'} \\ \kappa_{\ell' \nu \ell} +_{\ell'} \\ \kappa_{\ell' \nu \ell} +_{\ell'} \\ \kappa_{\ell 3 \gamma} \\ \kappa_{\ell 3 \gamma} \\ \kappa_{\ell 4} \end{array}$ Finite volume

$$K^+(p) \rightarrow I^+(p_l)\nu_l(p_\nu)\gamma(q)$$
 $[K_{l2\gamma}]$

$$T = -iG_{F}eV_{us}^{*}\epsilon_{\mu}^{*} \{F_{K}L^{\mu} - H^{\mu\nu}I_{\nu}\}$$

$$L^{\mu} = m_{I}\bar{u}(p_{\nu})(1 + \gamma_{5})\left(\frac{2p^{\mu}}{2pq} - \frac{2p_{I}^{\mu} + \not{q}\gamma^{\mu}}{2p_{I}q}\right)v(p_{I})$$

$$I^{\mu} = \bar{u}(p_{\nu})\gamma^{\mu}(1 - \gamma_{5})v(p_{I})$$

$$H^{\mu\nu} = iV(W^{2})\epsilon^{\mu\nu\alpha\beta}q_{\alpha}p_{\beta} - A(W^{2})(qWg^{\mu\nu} - W^{\mu}q^{\nu})$$

$$W^{\mu} = (p - q)^{\mu} = (p_{I} + p_{\nu})^{\mu}.$$

 L_{μ} : IB or inner Bremsstrahlung part

V and *A*: SD or structure dependent part, starts at p^4 *V*: anomaly at p^4 , known to p^6 : Ametller, JB, Bramon, Cornet 1993 *A*: p^4 JB, Ecker, Gasser 1993, p^6 Geng, Ho, Wu 2004

Semileptonic Decays

Johan Bijnens

Overview

ChP'

Semileptonic decays $\kappa_{\ell 2}$ $\kappa_{\ell 2 \gamma}$ $\kappa_{\ell' \nu \ell} + \ell^{-}$

for $K_{\ell 3}$ and $K \rightarrow \pi \nu \bar{\nu}$ $K_{\ell 3 \gamma}$

K_{ℓ4}

Finite volume

Kezz

From Geng, Ho, Wu 2004

 $K_{\ell 2\gamma}$

Johan Bijnens

From Geng, Ho, Wu 2004

dotted: p^4

solid $p^6 C_i^W$ from VMD, dashed $p^6 C_i^W$ from CQM

ChPT Semileptonic decays $\kappa_{\ell 2}$ $\kappa_{\ell 2}$ $\kappa_{\ell \nu \ell} + \ell - \ell$ $\kappa \pi$ form-factors for $\kappa_{\ell 3}$ and $\kappa \to \pi \nu \bar{\nu}$ $\kappa_{\ell 3} \gamma$ $\kappa_{\ell 4}$ Finite volume

 $K \rightarrow \ell' \nu \ell^+ \ell^-$

- $V(m_{\ell'\nu}^2, m_{l+l-}^2)$: anomalous part: related by ChPT to the $\pi^0 \to \gamma^* \gamma^*$ physics and thus the same questions
- A(m²_{l'ν}, m²_{l+1}): allows to study mixed axial and vector terms. But need precision away from constant form-factors

Johan Bijnens

Overview

ChP

Semileptonic decays

 $\begin{array}{l} \kappa_{\ell 2} \\ \kappa_{\ell 2 \gamma} \\ \textbf{K} \rightarrow \boldsymbol{\ell}' \nu \boldsymbol{\ell} + \boldsymbol{\ell} - \\ \boldsymbol{k} \boldsymbol{\pi} \text{ form-factors} \\ \boldsymbol{f} \boldsymbol{\sigma} \boldsymbol{K}_{\ell 3} \text{ and} \\ \boldsymbol{K} \rightarrow \boldsymbol{\pi} \nu \bar{\nu} \\ \kappa_{\ell 3 \gamma} \\ \kappa_{\ell 4} \end{array}$

Finite volume

Needed for
$$K^+_{\ell 3}$$
, $K^0_{\ell 3}$, $K^{+,0} \to \pi^{+,0} \nu \bar{\nu}$
We have four transitions:

$$\begin{split} &\langle \pi^{0}(p')|\bar{s}\gamma_{\mu}u|K^{+}(p)\rangle = \frac{1}{\sqrt{2}}\left[(p+p')f_{+}^{K^{+}\pi^{0}} + (p-p')f_{+}^{K^{+}\pi^{0}}\right] \\ &\langle \pi^{-}(p')|\bar{s}\gamma_{\mu}u|K^{0}(p)\rangle = \left[(p+p')f_{+}^{K^{+}\pi^{0}} + (p-p')f_{+}^{K^{+}\pi^{0}}\right] \\ &\langle \pi^{+}(p')|\bar{s}\gamma_{\mu}d|K^{+}(p)\rangle = \left[(p+p')f_{+}^{K^{+}\pi^{0}} + (p-p')f_{+}^{K^{+}\pi^{0}}\right] \\ &\langle \pi^{0}(p')|\bar{s}\gamma_{\mu}d|K^{0}(p)\rangle = \frac{-1}{\sqrt{2}}\left[(p+p')f_{+}^{K^{+}\pi^{0}} + (p-p')f_{+}^{K^{+}\pi^{0}}\right] \end{split}$$

- Scalar formfactor: $f_0^{K^i \pi^i} = f_+^{K^i \pi^i} + \frac{(p-p')^2}{m_{\kappa^i}^2 m_{\pi^i}^2} f_-^{K^i \pi^i}$
- In the isospin limit: all cases have the same form-factors

• Behrends-Sirlin-Ademollo-Gatto:
$$f_{+,0} = 1 + a(m_s - \hat{m})^2 + \cdots$$

Johan Bijnens

Overview

ChPT

Finite volume

Measurements

- Both neutral and charged decay
- f_+ and f_0
- $f_+(t) = f_+(0) (1 + \lambda_+ t + \lambda'_+ t^2 + \cdots)$
- $f_0(t) = f_+(0)(1 + \lambda_0 t + \cdots)$
- Alternatively use dispersive parametrizations
- KLOE,NA48,ISTRA,KTeV: large number of recent measurements
- Correlations in the form-factor measurements very important
- f_+ : VMD and SU(3) breaking
- f₀: Scalar meson dominance? (or dispersive better?)

Semileptonic Decays

Johan Bijnens

Overview

ChP

Semileptonic decays $\begin{array}{l} K_{\ell 2} \\ K \not \in \\ \ell' \nu \ell + \ell^{-} \\ K \pi \text{ form-factors} \\ for K_{\ell 3} \text{ and} \\ K \rightarrow \pi \nu \bar{\nu} \\ K_{\ell 3 \gamma} \\ K_{\ell 4} \end{array}$

Finite volume

Isospin breaking: general results

To first order: insert $\frac{1}{2}(m_u - m_d)(\bar{u}u - \bar{d}d)$ once (JB, Ghorbani, 0711.0148)

$$f_k^{K^+\pi^0} = f_k^A(t) + \delta f_k^B(t) + \cdots$$

$$f_k^{K^0\pi^-} = f_k^A(t) - \delta f_k^D(t) + \cdots$$

$$f_k^{K^+\pi^+} = f_k^A(t) + \delta f_k^D(t) + \cdots$$

$$f_k^{K^0\pi^0} = f_k^A(t) - \delta f_k^B(t) + \cdots$$

 $\delta=m_u-m_d, \ t=(p-p')^2$ Valid for k=+,-,0 and for scalar current matrix elements

•
$$f_k^{K^+\pi^0}(t) - f_k^{K^0\pi^-}(t) - f_k^{K^+\pi^+}(t) + f_k^{K^0\pi^0}(t) = \mathcal{O}(\delta^2)$$

• $r(t) = \frac{f_k^{K^+\pi^0}(t)f_k^{K^0\pi^0}(t)}{f_k^{K^0\pi^-}(t)f_k^{K^+\pi^+}(t)} = 1 + \mathcal{O}(\delta^2)$

Semileptonic Decays

Johan Bijnens

Jverview

Semileptonic decays $K_{\ell 2}$ $K_{\ell 2\gamma}$ $K_{\ell \to \ell} + \ell - K\pi$ form-factors for $K_{\ell 3}$ and $K \to \pi \nu \bar{\nu}$ $K_{\ell 3\gamma}$ $K_{\ell 4}$

Finite volume

•
$$p^2$$
: $f_+=1$, $f_-=0$ (current algebra)

- p^4 : $f_+(0)$ Leutwyler-Roos 1984
- p⁴: Gasser-Leutwyler 1985 and isospin corrections for the weak decays
- Radiative corrections: talk by Knecht
- *p*⁴ and radiative corrections for rare decays: Mescia-Smith, arXiv:0705.2025
- p⁶ isospin limit: JB, Talavera, hep-ph/0303103 (see also Post, Schilcher, hep-ph/0112352)
- p⁶ isospin breaking: JB, Ghorbani, arXiv:0711.0148
- Numbers for $K_{\ell 3}$: see Kastner, Neufeld, arXiv:0805.2222

Semileptonic Decays

Johan Bijnens

Overview

ChP⁻

```
Semileptonic
decays
K_{\ell 2}
K_{\ell 2\gamma}
K \rightarrow \ell' \nu \ell + \ell - K\pi form-factors
for K_{\ell 3} and
K \rightarrow \pi \nu \bar{\nu}
```

K_{ℓ4}

$f_0(t)$ and $f_+(0)$

JB, Talavera, hep-ph/0303103 Main Result:

$$\begin{split} f_{0}(t) &= 1 - \frac{8}{F_{\pi}^{4}} (C_{12}^{r} + C_{34}^{r}) \left(m_{K}^{2} - m_{\pi}^{2}\right)^{2} \\ &+ 8 \frac{t}{F_{\pi}^{4}} (2C_{12}^{r} + C_{34}^{r}) \left(m_{K}^{2} + m_{\pi}^{2}\right) + \frac{t}{m_{K}^{2} - m_{\pi}^{2}} \left(F_{K}/F_{\pi} - 1\right) \\ &- \frac{8}{F_{\pi}^{4}} t^{2} C_{12}^{r} + \overline{\Delta}(t) + \Delta(0) \,. \end{split}$$

 $\overline{\Delta}(t)$ and $\Delta(0)$ contain NO C_i^r and only depend on the L_i^r at order p^6 \implies All needed parameters can be determined experimentally

Now update input with the new results:

 $\Delta(0) = -0.02276 (p^4) + 0.01140 (p^6 \text{ pure loop}) + 0.0504 (p^6 L_i^r)$

Semileptonic Decays

Johan Bijnens

Overview ChPT Semileptonic decays $K_{\ell 2}$ $K_{\ell 2}$ K_{ℓ

 Take Bijnens-Talavera 2003 result but update for BE14 parameters

•
$$f_{+}^{K^0\pi^-}(0) = 1 - 0.02276 - 0.00754 = 0.970 \pm 0.008$$

- in good agreement with the latest lattice numbers (Juettner, lattice 2015, preliminary FLAG 2+1: 0.96 2+1+1: 0.97
- Note original JB-Talavera:
- FLAG1:
- Jamin, Oller, Pich, hep-ph/0401080:

0.9677(37) 0.9704(32) 0.976(10) 0.956(08) 0.978(09)

Semileptonic Decays Johan Bijnens

Overview

ChP

```
Semileptonic
decays

K_{\ell 2}

K_{\ell 2\gamma}

K_{\ell 2\gamma}

K \rightarrow \ell' \nu \ell + \ell^{-}

K \pi form-factors

for K_{\ell 3} and

K \rightarrow \pi \nu \bar{\nu}

K_{\ell 3\gamma}

K_{\ell 4}
```

Finite volume

$K_{\ell 3}$: Callan-Treiman

• Callan-Treiman: $f_0(m_K^2 - m_\pi^2) = \frac{F_K}{F_\pi} + O(m_\pi^2)$ SU(2) current algebra must hold to all orders in SU(3) ChPT

• Define
$$\Delta_{CT} = f_0(m_K^2 - m_\pi^2) = rac{F_K}{F_\pi}$$

- p^4 Gasser, Leutwyler 1985:
- p⁶ Using JB, Talavera, 2003
- p⁶ isospinbreaking JB, Ghorbani, 2007

$$\begin{split} \Delta_{CT} &= -3.5 \, 10^{-3} \\ \Delta_{CT} &= -6.2 \, 10^{-3} \\ \Delta_{CT}^{K^+ \pi^0} &= 15.1 \, 10^{-3} \\ \Delta_{CT}^{K^0 \pi^-} &= -5.6 \, 10^{-3} \\ \Delta_{CT}^{K^+ \pi^+} &= -9.4 \, 10^{-3} \\ \Delta_{CT}^{K^0 \pi^0} &= -26.4 \, 10^{-3} \end{split}$$

• Add
$$p^6$$
 contribution from C_i :
 $\Delta_{CT}^{C_i^r} = \frac{16}{F_{\pi}^4} \left(2C_{12}^r + C_{34}^r \right) m_{\pi}^2 \left(m_K^2 - m_{\pi}^2 \right)$
 $\Delta_{CT}^{C_i^r} = 1.3 \, 10^{-3}$

Semileptonic Decays

Johan Bijnens

Overview

ChP⁻

Semileptonic decays $K_{\ell 2}$ $K_{\ell 2\gamma}$ $K_{\ell 2\gamma}$ $K_{\ell 2\gamma}$

 $\begin{array}{l} K\pi \text{ form-factors} \\ \text{for } K_{\ell 3} \text{ and} \\ K \to \pi \nu \bar{\nu} \\ K_{\ell 3 \gamma} \\ K_{\ell 4} \end{array}$

`ll4

 r_{0-}

Semileptonic

 $\begin{array}{c} K \to \pi \nu \bar{\nu} \\ K_{\ell 3 \gamma} \\ K_{\ell 4} \end{array}$

Finite volume

r_K

Semileptonic

 $K_{\ell 3\gamma}$ or $K \to \pi \ell \nu \gamma$

 p^2 : Fearing, Fischbach, Smith 1970 IB only

*p*⁴: JB, Ecker, Gasser, 1993

 p^6 : Axial form-factors fully known

 p^6 : Vector form-factors: approximately known

Gasser, Kubis, Paver, Verbeni hep-ph/0412130: $K_{Le\nu\gamma}$ Müller, Kubis, Meißner hep-ph/0607151: T-odd correlations Kubis, Müller, Gasser, Schmid hep-ph/0611366: $K^+_{e\nu\gamma}$

Approximately known: structure functions smooth cuts: *p*-wave or far away: approximate by polynomials

Semileptonic Decays Johan Biinens Kp2 Keza $K \rightarrow +$ for $K_{\ell 3}$ and $K \rightarrow \pi \nu \bar{\nu}$ $K_{\ell 3\gamma}$ KPA

 $K_{\ell 3\gamma}$

Remainder is from Kubis et al. 2006

$$\begin{aligned} T(K_{e3\gamma}^{+}) &= \\ \frac{G_{F}}{\sqrt{2}} e \, V_{us}^{*} \, \epsilon^{\mu}(q)^{*} \Big[\left(V_{\mu\nu} - A_{\mu\nu} \right) \bar{u}(p_{\nu}) \, \gamma^{\nu} \left(1 - \gamma_{5} \right) v(p_{e}) \\ &+ \frac{F_{\nu}}{2p_{e}q} \, \bar{u}(p_{\nu}) \, \gamma^{\nu} \left(1 - \gamma_{5} \right) \left(m_{e} - \not p_{e} - \not q \right) \gamma_{\mu} \, v(p_{e}) \Big] \end{aligned}$$

Semileptonic Decays

Johan Bijnens

Overview

ChP

 $\begin{array}{l} \text{Semileptonic} \\ \text{decays} \\ \kappa_{\ell 2} \\ \kappa_{\ell 2 \gamma} \\ \kappa_{\tau} \rightarrow \ell' \nu \rho + \ell - \\ \kappa_{\pi} \text{ form-factors} \\ \text{for } \kappa_{\ell 3} \text{ and} \\ \kappa \rightarrow \pi \nu \bar{\nu} \\ \kappa_{\ell 3} \\ \kappa_{\ell 4} \\ \kappa_{\ell 4} \end{array}$

Finite volume

$$V_{\mu
u}=V^{IB}_{\mu
u}+V^{SD}_{\mu
u}$$

 $V_{\mu\nu}^{SD}$ has again 4 structure function V_i

 $V^{IB}_{\mu
u}$: IB part, mainly determined by Low's theorem and from the $K_{\ell3}$ form-factors

$$R\left(E_{\gamma}^{\mathrm{cut}},\,\theta_{e\gamma}^{\mathrm{cut}}\right) = \frac{\Gamma\left(K_{e3\gamma}^{\pm},\,E_{\gamma}^{*} > E_{\gamma}^{\mathrm{cut}},\,\theta_{e\gamma}^{*} > \theta_{e\gamma}^{\mathrm{cut}}\right)}{\Gamma\left(K_{e3}^{\pm}\right)} \,\,,$$

Many uncertainties drop out

Semileptonic Decays

Johan Bijnens

Overview

ChP

```
Semileptonic
decays
\kappa_{\ell 2}
\kappa_{\ell 2} \gamma
\kappa_{\nu \rightarrow \ell'} + \ell^{-}
\kappa_{\pi} form-factors
for \kappa_{\ell 3} and
\kappa \rightarrow \pi \nu \bar{\nu}
\kappa_{\ell 3} \gamma
\kappa_{\ell 4}
Finite volume
```

 $K_{\ell 3\gamma}$

Johan Bijnens

Overview

ChP

 $\begin{array}{l} \label{eq:semileptonic} \\ \mbox{decays} \\ K_{\ell 2 \gamma} \\ K_{\ell 2 \gamma} \\ \ell' \nu \ell + \ell - \\ K \pi \ form-factors \\ for \ K_{\ell 3} \ and \\ K \rightarrow \pi \nu \bar{\nu} \\ \hline \\ K_{\ell 3 \gamma} \\ \end{array}$

K_{L4}

Finite volume

$$R\left(\bar{\lambda}_{+},\bar{\lambda}_{+}^{\prime\prime}\right) = R(1,0)\left\{1+c_{1}\left(\bar{\lambda}_{+}-1\right)+c_{2}\left(\bar{\lambda}_{+}-1\right)^{2}+c_{3}\bar{\lambda}_{+}^{\prime\prime}+\ldots\right\}$$

 $R^{\rm IB}$ accordingly (with expansion coefficients $c_i^{\rm IB}$)

E_{γ}^{cut}	$\theta_{e\gamma}^{\rm cut}$	$R^{\mathrm{IB}} \cdot 10^2$	$R \cdot 10^2$	$c_{1} \cdot 10^{3}$	$c_{2} \cdot 10^{4}$	$c_3 \cdot 10^4$
30 MeV	20°	0.640	0.633 ± 0.002	12.5 ± 0.4	-5.4 ± 0.3	16.9 ± 0.4
30 MeV	10°	0.925	0.918 ± 0.002	11.1 ± 0.3	-4.7 ± 0.2	15.0 ± 0.3
10 MeV	20°	1.211	1.204 ± 0.002	7.5 ± 0.2	-3.2 ± 0.2	10.1 ± 0.2
10 MeV	10°	1.792	1.785 ± 0.002	6.7 ± 0.2	-2.8 ± 0.1	9.0 ± 0.1
10 MeV	26° – 53°	0.554	0.553 ± 0.001	5.7 ± 0.1	-2.4 ± 0.1	7.5 ± 0.1

 $K_{\ell 3\gamma}$

Johan Bijnens

Overview ChPT Semileptonic decays $K_{\ell 2}$ $K_{\ell 2}$ $K_{\ell 2}$ $K_{\ell 2}$ $K_{\ell 2}$ $\ell' \nu \ell + \ell K \pi$ form-factors for $K_{\ell 3}$ and $K \to \pi \nu \bar{\nu}$ $K_{\ell 3} \gamma$ $K_{\ell 4}$ Finite volume

Conclusions

$$\begin{array}{lll} {\cal K}^+(\rho) & \to & \pi^+(\rho_+)\pi^-(\rho_-)\ell^+(\rho_\ell)\nu_\ell(\rho_\nu)\,, \\ {\cal K}^+(\rho) & \to & \pi^0(\rho_+)\pi^0(\rho_-)\ell^+(\rho_\ell)\nu_\ell(\rho_\nu)\,, \\ {\cal K}^0(\rho) & \to & \pi^-(\rho_+)\pi^0(\rho_-)\ell^+(\rho_\ell)\nu_\ell(\rho_\nu)\,. \end{array}$$

Kinematical variables for hadronic system: t, u, s_{π}, s_{ℓ}

$$T^{+-} = rac{G_F}{\sqrt{2}} V^*_{us} \overline{u}(p_
u) \gamma_\mu (1-\gamma_5) v(p_\ell) (V^\mu - A^\mu) \; ,$$

$$V_{\mu} = -\frac{H}{m_{K}^{3}} \epsilon_{\mu\nu\rho\sigma} (p_{\ell} + p_{\nu})^{\nu} (p_{+} + p_{-})^{\rho} (p_{+} - p_{-})^{\sigma} ,$$

$$A_{\mu} = -\frac{i}{m_{K}} [(p_{+} + p_{-})_{\mu} F + (p_{+} - p_{-})_{\mu} G + (p_{\ell} + p_{\nu})_{\mu} R] .$$

 $T^{+-} = \frac{T^{-0}}{\sqrt{2}} + T^{00}$ $T^{-0} \text{ is anti-symmetric under } t \leftrightarrow u$ $T^{00} \text{ is symmetric.}$

Lowest order: Weinberg: $F = G = \frac{m_K}{\sqrt{2}F_{\pi}}$,

Order p^4 : JB 1990, Riggenbach et al. 1991

Could fit data with reasonable corrections: Determine L_i^r i = 1, 2, 3

Dispersive estimate of p^6 corrections: JB, Colangelo, Gasser 1994

Semileptonic Decays

Johan Bijnens

Overview

ChP

```
Semileptonic
decays
\kappa_{\ell 2}
\kappa_{\ell 2\gamma}
\kappa_{\ell'} \nu_{\ell'} + \ell^{-}
\kappa_{\pi} form-factors
for \kappa_{\ell 3} and
\kappa \to \pi \nu \bar{\nu}
\kappa_{\ell 3\gamma}
\kappa_{\ell 4}
Finite volume
```


Parametrization for experiment: Amoros, JB, 1999 Full p^6 calculation: Amoros, JB, Talavera 2000 Ametller, JB, Bramon, Cornet 1993 (H only) Isospin breaking at p^4 : Nehme et al. Isospin breaking and radiative corrections: Colangelo, Gasser, Rusetsky Radiative corrections: Stoffer

Dispersive (most recent): Stoffer

Semileptonic Decays

Johan Bijnens

Overview

ChP

Semileptonic decays $\kappa_{\ell 2}$ $\kappa_{\ell 2}$ $\kappa_{\ell' \nu \ell} + \ell^{-}$ $\kappa \pi$ form-factors for $\kappa_{\ell 3}$ and $\kappa_{\ell 3 \gamma}$ $\kappa_{\ell 4}$ Finite volume

Kea

LUND UNIVERSITY

 $K_{\ell 4}$

Semileptonic Decays

Johan Bijnens

Finite volume

- Lattice QCD calculates at different quark masses, volumes boundary conditions,...
- A general result by Lüscher: relate finite volume effects to scattering (1986)
- Chiral Perturbation Theory is also useful for this
- Start: Gasser and Leutwyler, Phys. Lett. B184 (1987) 83, Nucl. Phys. B 307 (1988) 763 $M_{\pi}, F_{\pi}, \langle \bar{q}q \rangle$ one-loop equal mass case
- I will stay with ChPT and the p regime $(M_{\pi}L >> 1)$
- $1/m_{\pi} = 1.4$ fm may need to go beyond leading $e^{-m_{\pi}L}$ terms
- ullet Convergence of ChPT is given by $1/m_{
 ho} \approx 0.25~{\rm fm}$

LUNIVERSITY Semileptonic Decays

Johan Bijnens

Overview

ChP

Semileptonic decays

Finite volume

Finite volume: selection of ChPT results

- masses and decay constants for π , K, η one-loop Becirevic, Villadoro, Phys. Rev. D 69 (2004) 054010
- M_{π} at 2-loops (2-flavour)

Colangelo, Haefeli, Nucl.Phys. B744 (2006) 14 [hep-lat/0602017]

- $\langle \bar{q}q \rangle$ at 2 loops (3-flavour) JB, Ghorbani, Phys. Lett. B636 (2006) 51 [hep-lat/0602019]
- Twisted mass at one-loop Colangelo, Wenger, Wu, Phys.Rev. D82 (2010) 034502 [arXiv:1003.0847]
- Twisted boundary conditions Sachrajda, Villadoro, Phys. Lett. B 609 (2005) 73 [hep-lat/0411033]
- This talk:
 - Twisted boundary conditions and some funny effects
 - Some results on masses 3-flavours at two loop order

Semileptonic Decays

Johan Bijnens

Overview

ChP

Semileptonic decays

Finite volume

Twisted boundary conditions

- On a lattice at finite volume $p^i = 2\pi n^i/L$: very few momenta directly accessible
- Put a constraint on certain quark fields in some directions: $q(x^i + L) = e^{i\theta_q^i}q(x^i)$
- Then momenta are $p^i = \theta^i / L + 2\pi n^i / L$. Allows to map out momentum space on the lattice much better Bedaque,...

• But:

- $\bullet\,$ Box: Rotation invariance $\to\,$ cubic invariance
- Twisting: reduces symmetry further

Consequences:

- $m^2(\vec{p}^2) = E^2 \vec{p}^2$ is not constant
- There are typically more form-factors
- In general: quantities depend on more (all) components of the momenta
- Charge conjugation involves a change in momentum

Semileptonic Decays

Johan Bijnens

Overview

ChP⁻

Semileptonic decays

Finite volume

Twisted boundary conditions

- On a lattice at finite volume $p^i = 2\pi n^i/L$: very few momenta directly accessible
- Put a constraint on certain quark fields in some directions: $q(x^i + L) = e^{i\theta_q^i}q(x^i)$
- Then momenta are $p^i = \theta^i / L + 2\pi n^i / L$. Allows to map out momentum space on the lattice much better Bedaque,...
- But:
 - Box: Rotation invariance \rightarrow cubic invariance
 - Twisting: reduces symmetry further

Consequences:

- $m^2(ec p^2)=E^2-ec p^2$ is not constant
- There are typically more form-factors
- In general: quantities depend on more (all) components of the momenta
- Charge conjugation involves a change in momentum

Semileptonic Decays

Johan Bijnens

Overview

ChP

Semileptonic decays

Finite volume

Twisted boundary conditions: Two-point function

JB, Relefors, JHEP 05 (2014) 015 [arXiv:1402.1385]

•
$$\int_V \frac{d^d k}{(2\pi)^d} \frac{k_\mu}{k^2 - m^2} \neq 0$$

•
$$\langle \bar{u} \gamma^{\mu} u \rangle \neq 0$$

•
$$j^{\pi^+}_{\mu} = \bar{d}\gamma_{\mu}u$$

satisfies $\partial^{\mu} \langle T(j^{\pi^+}_{\mu}(x)j^{\pi^-}_{\nu}(0)) \rangle = \delta^{(4)}(x) \langle \bar{d}\gamma_{\nu}d - \bar{u}\gamma_{\nu}u \rangle$
• $\Pi^{a}_{\mu\nu}(q) \equiv i \int d^4x e^{iq\cdot x} \langle T(j^{a}_{\mu}(x)j^{a\dagger}_{\nu}(0)) \rangle$
Satisfies WT identity. $q^{\mu}\Pi^{\pi^+}_{\mu\nu} = \langle \bar{u}\gamma_{\mu}u - \bar{d}\gamma_{\mu}d \rangle$

 ChPT at one-loop satisfies this see also Aubin et al, Phys.Rev. D88 (2013) 7, 074505 [arXiv:1307.4701]

Semileptonic Decays

Johan Bijnens

Overview

ChP⁻

Semileptonic decays

Finite volume

Twisted boundary conditions: volume correction masses

Volume correction decay constants: F_{π^+}

• JB, Relefors, JHEP 05 (2014) 015 [arXiv:1402.1385]

•
$$\langle 0|A^M_{\mu}|M(p)\rangle = i\sqrt{2}F_Mp_{\mu} + i\sqrt{2}F^V_{M\mu}$$

• Extra terms are needed for Ward identities

Semileptonic Decays

Johan Bijnens

Overview

ChP

Semileptonic decays

Finite volume

Volume correction electromagnetic formfactor

- JB, Relefors, JHEP 05 (2014) 015 [arXiv:1402.1385]
 earlier two-flavour work: Bunton, Jiang, Tiburzi, Phys.Rev. D74 (2006) 034514 [hep-lat/0607001]
- $\langle M'(p')|j_{\mu}|M(p)\rangle = f_{\mu} = f_{+}(p_{\mu} + p'_{\mu}) + f_{-}q_{\mu} + h_{\mu}$
- Extra terms are again needed for Ward identities
- Note that masses have finite volume corrections
 - q^2 for fixed \vec{p} and \vec{p}' has corrections small effect
 - This also affects the ward identities, e.g. $q^{\mu}f_{\mu} = (p^2 - p'^2)f_+ + q^2f_- + q^{\mu}h_{\mu} = 0$ is satisfied but all effects should be considered

Semileptonic Decays

Johan Bijnens

Overview

ChP^{*}

Semileptonic decays

Finite volume

Volume correction electromagnetic formfactor

 JB, Relefors, JHEP 05 (2014) 015 [arXiv:1402.1385]
 earlier two-flavour work: Bunton, Jiang, Tiburzi, Phys.Rev. D74 (2006) 034514 [hep-lat/0607001]

•
$$\langle M'(p')|j_{\mu}|M(p)\rangle = f_{\mu} = f_{+}(p_{\mu} + p'_{\mu}) + f_{-}q_{\mu} + h_{\mu}$$

- Extra terms are again needed for Ward identities
- Note that masses have finite volume corrections
 - q^2 for fixed \vec{p} and \vec{p}' has corrections small effect
 - This also affects the ward identities, e.g. $q^{\mu}f_{\mu} = (p^2 - p'^2)f_+ + q^2f_- + q^{\mu}h_{\mu} = 0$ is satisfied but all effects should be considered

Semileptonic Decays

Johan Bijnens

Overview

ChP'

Semileptonic decays

Finite volume

Volume correction electromagnetic formfactor

Finite volume corrections large, different for different μ

Semileptonic

59/60

Conclusions

- Short introduction to ChPT
- A very fast overview of all semileptonic modes and what they are useful for
- Looking forward on possible improvements from NA62
- Lattice: finite volume now limiting factor for f₊(0) (MILC), relevant ChPT calculation in progress

Semileptonic Decays

Johan Bijnens

Overview

ChP

Semileptonic decays

Finite volume