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Preliminary Shopping list
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NA62

•π0 Dalitz decays 
•π0 Double Dalitz decay
•Rare decay 
•K Dalitz decay
•K double Dalitz decay
•Rare decay

At first, I would suggest 

During the talk, I’ll try to convince you why

⇡0 ! e+e�

⇡0 ! e+e��

⇡0 ! e+e� e+e�

KL ! `+`�

KL ! `+`��

KL ! `+`� `+`�

(BR)

(BR)

(Inv. mass distr.)

(Inv. mass distr.)

(BR)

(BR)



Introduction and Motivation

Pere Masjuan

The Transition Form Factor
Results for the ⌘ & ⌘0 TFF with Space-like data

Update with MAMI Time-like data (PRELIMINARY)
Applications

Pseudoscalar contribution to (g � 2)HLbyLµ
P ! `` (PRELIMINARY)

P

`

`

BR(P ! ``)

BR(P ! ��)
= 2

✓
↵m`

⇡mP

◆2

�`(m
2
P)|A(m2

P)|2

The only unknown A(m2
P) from loop calculation where the TFF enters.

A(q2) =
2i

⇡2

Z
d

4
k

q

2
k

2 � (k · q)2
k

2(k � q)2((p � k)�m

2
`)

FP�⇤�⇤(k2, (q � k)2)

FP��(0, 0)

At this point: input your favorite model and integrate.
This gives no insight!

Pablo Sánchez Puertas Mesons transition FFs using Padé approximants
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x ⌘ (p+ q)2

M
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BR(⇡0 ! e

+
e

�(�), x > 0.95) = (6.44± 0.25± 0.22)⇥ 10�8

Eur. Phys. J. C (2014) 74:3010 Page 5 of 11 3010

(a) (b)

χ

(c)

χ

(d)

(e)

Fig. 3 Bremsstrahlung Feynman diagrams for π0 → e+e− process
including counterterms

The reason is that the Ward identity (20) would be violated.5

Thus it is necessary to add the third (box) diagram (Fig. 3e,
photon emitted from the inner fermion line) to fulfill this
relation.

In the graphs Fig. 3a and b the πγ γ vertex stems from
the Wess–Zumino–Witten action [15,16] and the remaining
vertices correspond to standard QED Feynman rules. These
graphs are UV divergent by power counting and have to be
regularized. In what follows, we use the dimensional reg-
ularization. In order to bypass the problems with intrinsi-
cally four-dimensional objects like γ5 and the Levi-Civita
pseudo-tensor εµναβ , we use its variant known as Dimen-
sional Reduction6 (cf. [17]), which keeps the algebra of γ -
matrices four-dimensional, while the loop tensor integrals
are regularized dimensionally and expressed in terms of
the scalar one-loop integrals using the Passarino–Veltman

5 Note that in the framework of the soft-photon approximation the sum
of these four graphs satisfies the Ward identity by itself.
6 Note, however, that in the general case the regularization by dimen-
sional reduction might spoil gauge invariance. In the case of our ampli-
tude, we have checked that the gauge invariance is preserved and the
regularized amplitude has the general form (21).

reduction [18]. Within this framework we first get rid of the
Levi-Civita tensor using the four-dimensional identities, e.g.

εαβµνγµγν = iγ5[γ α, γ β ]
εαβµνγµγργν = 2iγ5(gα

ργ β − gβ
ρ γ α),

(25)

and then contract the reduced tensor integrals with the γ -
matrix structures.7 The contributions of the box diagram
Fig. 3e turn out to be finite, while the triangle diagrams Fig. 3a
and b contain subdivergences which have to be renormalized
by means of the tree graphs with counterterms corresponding
to the coupling χ (see Fig. 3c, d). Summing all the relevant
contributions and using the four-dimensional Dirac algebra,
we get finally the form factors P , A, and T , the explicit form
of which is summarized in Appendix A.

The differential decay rate d)BS(x, y) (cf. 24) give rise
to IR divergences when integrated over the phase space. The
divergences originate from the soft-photon region

|k| <
1
2

M(1 − xcut), (26)

which is defined in terms of the variables (x, y) by means of
the cut on the Dalitz variable x > xcut. These divergences
are exactly the same as those stemming from an analogous
integral of the differential decay rate d)BS

soft(x, y) calculated
within the soft-photon approximation. The latter is already
included in the two-loop result [3], we therefore present our
result for the exact BS as the difference

d)BS
diff(x, y) = d)BS(x, y) − d)BS

soft(x, y), (27)

the integral of which is IR finite. The result for d)BS
diff(x, y)

is shown in Fig. 4 and (integrated over the allowed region of
y given by 22) in Fig. 5. For *BS(xcut) we get finally

*BS(xcut) = 2
∫ 1

xcut

∫ √
1−ν2/x

0

d)BS
diff(x, y)

)LO(π0 → e+e−)
. (28)

The dependence of *BS(xcut) on xcut is shown in Fig. 6. For
xcut = 0.95 and for χ (r) given by (11) we get numerically

*BS(0.95) = (0.30 ± 0.01) %, (29)

where the error stems from the uncertainty in χ (r)(Mρ). In
other words, using this cut of the Dalitz variable in the KTeV
experiment, the soft-photon approximation is a very good
approach to the exact result. The dependence of *BS(0.95)

on χ (r) is shown in Fig. 7.

7 According to the prescription [17], we take the metric tensors
stemming from the Passarino–Veltman reduction effectively as four-
dimensional.

123

momentum of e+e-, and so to extract BR we want x large, i.e.,no photon

x<0.95 but still is 

5

KTeV ’07:
⇠ 1.5 · 10�10

⇡0 ! e+e�

Experiment
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6

KTeV ’07:
⇠ 1.5 · 10�10

BRw/o rad

KTeV (⇡0 ! e+e�) = (7.48± 0.29± 0.25)⇥ 10�8

Extrapolation to x=1   +    radiative correction   +  Dalitz decay background

(dominates de PDG)

Experiment
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[Dorokhov et al. ‘09]

[Pablo Sanchez-Puertas]

predictions, which, as may be observed, are rather stable. On the other hand,
in Fig. 2, appear the di↵erent theoretical predictions and the actual average from
the collaborations mentioned in PDG [1] (see here) which we obtain BR(⇡ !
e+e�) = 7.50(38)10�8.
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1.¥10-7

1.2¥10-7
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Figure 1: The historical evolution for the experiment and theory. Experimental data
appear as light purple bands. In blue appear the models using VMD dominance (references),
in orange those using �PT , in red, those using large-Nc. The last bar belongs to our result.
The thick green line belongs to the unitary bound. Theoretical data, chronologically, is that
of Babu et al [7], Bergstrom et al [8], Savage et al [9], Ametller et al [10], Gomez Dumm et
al [11], Knecht et al [2] Dorokhov et al [12],[13] and ours. On the other hand, the experimental
data is taken from [15], [16], the average of [17] and [18], [19], and [20].
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Figure 2: The experimental average appears as a purple band. In blue appear the models
using VMD dominance (references), in orange those using �PT , in red, those using large-Nc.
The last result belongs to our result. The thick green line belongs to the unitary bound.

5

BRSM(⇡0 ! e+e�) = (6.2± 0.1)⇥ 10�8
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• Try the most model-independent approach we can.

Cutcosky rules provides the imaginary part of this integral

P
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Use dispersion relation to get the real part

Substraction term gets all the e↵ects from the TFF behavior.
⇤From now on I will quote results in the chiral limit m⇡ ! 0

Pablo Sánchez Puertas Mesons transition FFs using Padé approximants

As model independent as possible:

Cutcosky rules provides the imaginary part
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As model independent as possible:

Cutcosky rules provides the imaginary part

Dissection of π0→e+e-

q2 = m2
P

10

Assuming |A|2 � (ImA)2

 A !q2" # 2i
q2

Z d4k
!2

q2k2 $ !qk"2
!k2 % i""!!k$ q"2 % i""!!k$ p"2 $m2

e % i""
F!"&"& !$k2;$!k$ q"2"; (4)

where q2 # m2
!, p2 # m2

e. We put the sign minus in the
arguments of the form factor explicitly to emphasize that
Eq. (4) is written in the Minkowski space. The form factor
is normalized as F!"&"& !0; 0" # 1 and falls down quite
rapidly in the Euclidean region of momenta to provide
the ultraviolet convergence of the integral. A number of
model calculations of the amplitude A!q2"was performed
[4,8–13] by employing different shapes of the form factor
F!"&"& . We discuss some of them below.

The aim of the present paper is to calculate the branch-
ing ratio B!!0 ! e%e$" and estimate the uncertainties by
using the available experimental and theoretical informa-
tion on the pion transition form factor. In particular, the
important constraints follow from the results obtained by
the CELLO and CLEO collaborations and restrictions set
by QCD.

First, we derive a suitable representation for the ampli-
tude in Eq. (4) which would help us to perform a straight-
forward analysis by using the available information on the
pion transition form factor. To do this, we employ the
dispersive approach to the calculation of the amplitude
developed in many papers (see, e.g. [12] and references
therein). The imaginary part of the amplitude in Eq. (4)

 

ImA!q2" # !
2#e!q2" ln!ye!q2"";

ye!q2" # 1$ #e!q2"
1% #e!q2" ;

(5)

comes from the contribution of real photons in the inter-
mediate state and is model independent since
F!"&"& !0; 0" # 1. Using jAj2 ' !ImA"2 and neglecting
radiative corrections one can get the well-known unitary
bound for the branching ratio in Eq. (3) [8]

 B!!0 ! e%e$" ' Bunitary!!0 ! e%e$" # 4:69 ( 10$8:
(6)

A once-subtracted dispersion relation for the amplitude
in Eq. (4) is written as [12]

 A !q2" #A!q2 # 0" % q
2

!

Z 1
0
ds

ImA!s"
s!s$ q2" : (7)

The second term in Eq. (7) takes into account strong q2

dependence of the amplitude around the point q2 # 0
occurring due to the branch cut coming from the two-
photon intermediate state. Integrating Eq. (7) one arrives
for q2 ' 4m2

e at [14–16]

 

ReA!q2" #A!q2 # 0" % 1

#e!q2"

!
1
4

ln2!ye!q2"" % !
2

12

% Li2!$ye!q2""
"
; (8)

where Li2!z" # $
Rz

0!dt=t" ln!1$ t" is the dilogarithm
function.1 For the pion in the leading order in !me=m!"2,
one gets

 ReA!m2
!" #A!q2 # 0" % ln2

#
me

m!

$
% !

2

12
: (9)

Thus, the nontrivial dynamics is only contained in the
subtraction constant A!q2 # 0". We evaluate this quantity
in the following way [10]. We use the double Mellin
representation for the pion transition form factor reducing
the integral in Eq. (4) to the convolution of propagatorlike
expressions. Then we perform the loop integration by using
the standard Feynman $ representation. Finally, we are
able to expand the integral over the ratios of the electron
and pion masses to the characteristic scale of the pion form
factor ! / m% by closing the Mellin contours in the ap-
propriate manner and take the leading term of expansion.
We arrive at the following representation:

 A !q2 # 0" # 3 ln
#
me

&

$
% 'P!&"; (10)

where the constant 'P!&" is defined by

 'P!&" # $
5
4
% 3

2

Z 1
0
dt ln

#
t
&2

$@F!"&"& !t; t"
@t

# $ 5
4
$ 3

2

!Z &2

0
dt
F!"&"& !t; t" $ 1

t

%
Z 1
&2
dt
F!"&"& !t; t"

t

"
; (11)

with F!"&"& !t; t" being the physical pion transition form
factor given in symmetric kinematics for spacelike photon
momenta t # Q2 # $q2 > 0. One has to note that the
logarithmic dependence on the scale & appearing in
Eq. (10) as a result of the decomposition of the integral
over the dimensional variable t into two parts is compen-
sated by the scale dependence of the low-energy constant

1For completeness we give explicit expressions for the ampli-
tude ~A!q2" #A!q2" $A!0" for different regions of q2:
Re ~A!q2"# 1

#!q2")Li2!$y!q2""%!2

3 % 1
4ln2!$y!q2""*, Im ~A!q2"#

0, for q2 + 0; and Re ~A!q2" # $ 1
~#!q2"Cl2!$2(", Im ~A!q2" #

$ !
~#!q2" arctg) ~#!q2"*, for 0 + q2 + 4m2. Here #!q2" #
%%%%%%%%%%%%%%%%%%%%%%%%%
1$ 4m2=q2

p
, ~#!q2" #

%%%%%%%%%%%%%%%%%%%%%%%%%
4m2=q2 $ 1

p
, ( # arctg)1= ~#!q2"*,

and Cl2!z" # $
Rz

0 dt lnj2 sin!t=2"j is the Clausen’s integral.

ALEXANDER E. DOROKHOV AND MIKHAIL A. IVANOV PHYSICAL REVIEW D 75, 114007 (2007)

114007-2

(doesn’t depend on TFF)
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Pablo Sánchez Puertas Mesons transition FFs using Padé approximants
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Dissection of π0→e+e-

Re(A(m2
P )) =

Z 1

0
dQ2Kernel(Q2) + 30.7
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The only unknown A(m2
P) from loop calculation where the TFF enters.
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2
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FP��(0, 0)

At this point: input your favorite model and integrate.
This gives no insight!

Pablo Sánchez Puertas Mesons transition FFs using Padé approximants

= 19 · 10�8

Im(A(m2
P )) ⇠ 17.5 Re(A(m2

P )) ⇠ 30.7

(Kernel=0)

⇠ 1.5 · 10�10
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= 19 · 10�8

Im(A(m2
P )) ⇠ 17.5 Re(A(m2

P )) ⇠ 30.7

(Kernel=0)

Z 1

0
dQ2Kernel(Q2) ⇠ �17 ! KTeV ⇠ 7.5 · 10�8
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Dissection of π0→e+e-
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• Its contribution is negative:
lowers the BR.
• Peaks at ⇠ 2me and
hQi = 0.09 GeV.
• Low energies relevant only: slope
is enough.

Pablo Sánchez Puertas Mesons transition FFs using Padé approximants
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Dissection of π0→e+e-

Re(A(m2
P )) =

Z 1

0
dQ2Kernel(Q2) + 30.7

all in all, old the models give the same value
Z 1

0
dQ2Kernel(Q2) ⇠ �20 ! BR ⇠ 6.3 · 10�8

23NA62 Handbook, Mainz, 20 Jan

[Babu and Ma, ’82]
[Bergstrom et al, ’83]
[Savage et al, ’92]
[Ametller et al, ’93]
[Gomez Dumm and Pich, ’98]
[Knecht et al, ’99]
[Dorokhov et al, ‘07’09]
[PM, Sanchez-Puertas ’15]

predictions, which, as may be observed, are rather stable. On the other hand,
in Fig. 2, appear the di↵erent theoretical predictions and the actual average from
the collaborations mentioned in PDG [1] (see here) which we obtain BR(⇡ !
e+e�) = 7.50(38)10�8.

1985 1990 1995 2000 2005 2010

6.¥10-8

8.¥10-8

1.¥10-7

1.2¥10-7
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e+
e-
L large-Nc

cPT

VMD

Figure 1: The historical evolution for the experiment and theory. Experimental data
appear as light purple bands. In blue appear the models using VMD dominance (references),
in orange those using �PT , in red, those using large-Nc. The last bar belongs to our result.
The thick green line belongs to the unitary bound. Theoretical data, chronologically, is that
of Babu et al [7], Bergstrom et al [8], Savage et al [9], Ametller et al [10], Gomez Dumm et
al [11], Knecht et al [2] Dorokhov et al [12],[13] and ours. On the other hand, the experimental
data is taken from [15], [16], the average of [17] and [18], [19], and [20].
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Figure 2: The experimental average appears as a purple band. In blue appear the models
using VMD dominance (references), in orange those using �PT , in red, those using large-Nc.
The last result belongs to our result. The thick green line belongs to the unitary bound.
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Current situation

24

• Ways to improve from theory side:

• Dubna (Dorokhov, Ivanov,...): Include all kind of 

corrections me/mπ, me/Λ (which also means not using DR)

• Prague (Novotny, Kampf, Husek...): Improve on 
radiative corrections

• Mainz (Masjuan, Sanchez-Puertas...): Improve on the 
implementation of the TFF

• Consider New Physics contributions

Dubna+Prague+Mainz(?)

NA62 Handbook, Mainz, 20 Jan
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Dubna contribution: corrections me/mπ, me/Λ

Dorokhov and Ivanov, ’07

Used VMD to confront KTeV measurement 
(also compare different models for TFF)

F⇡�⇤�⇤(Q2, Q2) = F⇡��(0, 0)
1

1 +Q2/Q2
0

with Q0 from a monopole fit to CLEO+CELLO data

O
✓
me

m⇡

◆2
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Dubna contribution: corrections me/mπ, me/Λ

O
✓
me

m⇡

◆2

Dorokhov and Ivanov, ’08

O
⇣me

⇤

⌘2
O
⇣me

⇤

log

me

⇤

⌘2

Dorokhov, Ivanov and Kovalenko ’09

O
⇣m⇡

⇤

⌘2

⇠ 3�

Resummation of power corrections using Mellin-Barnes techniques.
Conclusion: corrections negligible!

Λ 
the cut-off 

or
 VMD “mass”

27NA62 Handbook, Mainz, 20 Jan

BRSM(⇡0 ! e+e�) = (6.2± 0.1)⇥ 10�8
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• Ways to improve from theory side:
• Dubna (Dorokhov, Ivanov,...): Include all kind of 
corrections me/mπ, me/Λ (which also means not using 
DR)
• Prague (Novotny, Kampf, Husek...): Improve on 
radiative corrections
• Mainz (Masjuan, Sanchez-Puertas...): Improve on the 
implementation of the TFF
• Consider New Physics contributions

NA62 Handbook, Mainz, 20 Jan
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Prague contribution: Radiative corrections

Eur. Phys. J. C (2014) 74:3010 Page 3 of 11 3010

Table 1 Numerical values of χ (r) in different models according to [1,3].
The first two columns denoted as CLEO+OPE and QCDsr correspond
to various treatments of CLEO data. LMD+V is an improvement of the
LMD ansatz and NχQM stands for the nonlocal chiral quark model

Model CLEO+OPE QCDsr LMD+V NχQM

χ (r)(Mρ) 2.6 ± 0.3 2.8 ± 0.1 2.5 2.4 ± 0.5

lowest meson dominance (LMD) approximation to the large-
NC spectrum of vector-meson resonances, yielding [13]

χ (r)(Mρ) = 2.2 ± 0.9, (11)

where Mρ = 770 MeV is the mass of the ρ meson. For
other alternative estimates cf. Table 1 and for the complete
discussion see [1].

Using the value (11) we get for the π0 → e+e− branching
ratio numerically

BLO
SM(π0 → e+e−) = (6.1 ± 0.3) × 10−8. (12)

3 Two-loop virtual radiative corrections

The full two-loop virtual radiative (pure QED) corrections
of order O(α3 p2) were calculated in [3]. In this section we
will present a short review of the main results.

The relevant contributions to the amplitude are shown in
Fig. 2. There are six two-loop diagrams. Listed sequentially,
we have two vertex corrections (a, b), electron self-energy
insertion (c), box-type correction (d), and two vacuum polar-
ization insertions (e, f). Of course, for every such diagram
a one-loop graph with corresponding counterterm must be
added to renormalize the subdivergences. The relevant finite
parts of these counterterms can be fixed by the requirement
that the parameters m and α coincide with their physical val-
ues. After the subdivergences are canceled, the remaining
superficial divergences has to be renormalized by another
additional tree counterterm with coupling ξ . The finite part
ξ (r)(µ) of this coupling has been estimated in [3] using its
running with the renormalization scale as

ξ (r)(Mρ) = 0 ± 5.5. (13)

Besides the UV divergences, the graph d in the Fig. 2 is
also IR divergent. It is therefore necessary to consider IR-
safe decay width of the inclusive process π0 → e+e−(γ )

with additional real photon in the final state. In [3] the real
photon bremsstrahlung has been taken into account using the
soft-photon approximation. The final result depends on the
experimental upper bound on the soft photon energy which
can be expressed in terms of the lower bound xcut on the

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-loop virtual radiative corrections for π0 → e+e− process

Dalitz variable x (see 2). The result can be expressed in terms
of the correction factor δ(xcut) defined as

(NLO(π0 → e+e−(γ ), x > xcut)

≡ δ(xcut)(LO(π0 → e+e−), (14)

where (LO is the leading order width and (NLO is the next-
to leading O(α3 p2) correction. The xcut dependent overall
correction δ(xcut) has various sources and to emphasize the
origin of its constituents, we will use the same symbol dec-
orated with appropriate indices. For the complete QED two-
loop correction δ(2) including soft-photon bremsstrahlung
and KTeV cut xcut = 0.95, in [3] one obtained

δ(2)(0.95) ≡ δvirt. + δBS
soft(0.95) = (−5.8 ± 0.2) %, (15)

where only the uncertainties of χ (r) and ξ (r) were taken as
the source of the error. This result differs significantly from
the previous approximate calculations done by Bergström [7]
or Dorokhov et al. [10], where for δ(2)(0.95) we would get
−13.8 and −13.3 %, respectively.

There is a simple interrelation of this partial result of
the QED radiative corrections and the branching ratio (3)
obtained by KTeV experiment (for the details see [3]). We
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Fig. 5. Total radiative corrections as a function of 5 for two dif- 
ferent values of p, which is the lowest order branching ratio in 
units of the unitary lower bound 

function 6tad(x) is given in [12], and we have inte- 
grated (26) numerically using that expression. 

To be definite, we first assume that only the elec- 
tromagnetic part as calculated in [1] contributes to 
~~ e-.  Under this assumption, the situation is 
as summarized in Fig. 4. As can be seen, the total 

correction is rather large and negative (around 
- 20 %) for values of 6 in the range of 1-5 %, which 
should be typical values for most experiments. For 
larger values of 6 the background from single Dalitz 
pairs rapidly becomes dominant. In Fig. 5, the total 
correction is shown for both a small ("standard") 
and a rather large value of p, the lowest order 
branching ratio. It can be seen that for a resolution 
6 better than around four per cent the corrections 
are not very sensitive to the value of p. It is also in 
this region that the approximations made in this 
paper can be most trusted (since the emission of soft 
photons should not depend too much on the struc- 
ture of the vertex). However, if the precision is in- 
creased to much better than 1%, then the correc- 
tions become so big that a higher order calculation 
is needed. We finally note that the formulas in this 
paper can be trivially modified to other decays with 
a large mass ratio, r / ~ e + e  , t / c ~ # + #  -,  etc, For 
~/~p+/~- we expect the radiative corrections to be 
small since the mass ratio is small. 
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Table 1 Numerical values of χ (r) in different models according to [1,3].
The first two columns denoted as CLEO+OPE and QCDsr correspond
to various treatments of CLEO data. LMD+V is an improvement of the
LMD ansatz and NχQM stands for the nonlocal chiral quark model

Model CLEO+OPE QCDsr LMD+V NχQM

χ (r)(Mρ) 2.6 ± 0.3 2.8 ± 0.1 2.5 2.4 ± 0.5

lowest meson dominance (LMD) approximation to the large-
NC spectrum of vector-meson resonances, yielding [13]

χ (r)(Mρ) = 2.2 ± 0.9, (11)

where Mρ = 770 MeV is the mass of the ρ meson. For
other alternative estimates cf. Table 1 and for the complete
discussion see [1].

Using the value (11) we get for the π0 → e+e− branching
ratio numerically

BLO
SM(π0 → e+e−) = (6.1 ± 0.3) × 10−8. (12)

3 Two-loop virtual radiative corrections

The full two-loop virtual radiative (pure QED) corrections
of order O(α3 p2) were calculated in [3]. In this section we
will present a short review of the main results.

The relevant contributions to the amplitude are shown in
Fig. 2. There are six two-loop diagrams. Listed sequentially,
we have two vertex corrections (a, b), electron self-energy
insertion (c), box-type correction (d), and two vacuum polar-
ization insertions (e, f). Of course, for every such diagram
a one-loop graph with corresponding counterterm must be
added to renormalize the subdivergences. The relevant finite
parts of these counterterms can be fixed by the requirement
that the parameters m and α coincide with their physical val-
ues. After the subdivergences are canceled, the remaining
superficial divergences has to be renormalized by another
additional tree counterterm with coupling ξ . The finite part
ξ (r)(µ) of this coupling has been estimated in [3] using its
running with the renormalization scale as

ξ (r)(Mρ) = 0 ± 5.5. (13)

Besides the UV divergences, the graph d in the Fig. 2 is
also IR divergent. It is therefore necessary to consider IR-
safe decay width of the inclusive process π0 → e+e−(γ )

with additional real photon in the final state. In [3] the real
photon bremsstrahlung has been taken into account using the
soft-photon approximation. The final result depends on the
experimental upper bound on the soft photon energy which
can be expressed in terms of the lower bound xcut on the

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-loop virtual radiative corrections for π0 → e+e− process

Dalitz variable x (see 2). The result can be expressed in terms
of the correction factor δ(xcut) defined as

(NLO(π0 → e+e−(γ ), x > xcut)

≡ δ(xcut)(LO(π0 → e+e−), (14)

where (LO is the leading order width and (NLO is the next-
to leading O(α3 p2) correction. The xcut dependent overall
correction δ(xcut) has various sources and to emphasize the
origin of its constituents, we will use the same symbol dec-
orated with appropriate indices. For the complete QED two-
loop correction δ(2) including soft-photon bremsstrahlung
and KTeV cut xcut = 0.95, in [3] one obtained

δ(2)(0.95) ≡ δvirt. + δBS
soft(0.95) = (−5.8 ± 0.2) %, (15)

where only the uncertainties of χ (r) and ξ (r) were taken as
the source of the error. This result differs significantly from
the previous approximate calculations done by Bergström [7]
or Dorokhov et al. [10], where for δ(2)(0.95) we would get
−13.8 and −13.3 %, respectively.

There is a simple interrelation of this partial result of
the QED radiative corrections and the branching ratio (3)
obtained by KTeV experiment (for the details see [3]). We
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Table 1 Numerical values of χ (r) in different models according to [1,3].
The first two columns denoted as CLEO+OPE and QCDsr correspond
to various treatments of CLEO data. LMD+V is an improvement of the
LMD ansatz and NχQM stands for the nonlocal chiral quark model

Model CLEO+OPE QCDsr LMD+V NχQM

χ (r)(Mρ) 2.6 ± 0.3 2.8 ± 0.1 2.5 2.4 ± 0.5

lowest meson dominance (LMD) approximation to the large-
NC spectrum of vector-meson resonances, yielding [13]

χ (r)(Mρ) = 2.2 ± 0.9, (11)

where Mρ = 770 MeV is the mass of the ρ meson. For
other alternative estimates cf. Table 1 and for the complete
discussion see [1].

Using the value (11) we get for the π0 → e+e− branching
ratio numerically

BLO
SM(π0 → e+e−) = (6.1 ± 0.3) × 10−8. (12)

3 Two-loop virtual radiative corrections

The full two-loop virtual radiative (pure QED) corrections
of order O(α3 p2) were calculated in [3]. In this section we
will present a short review of the main results.

The relevant contributions to the amplitude are shown in
Fig. 2. There are six two-loop diagrams. Listed sequentially,
we have two vertex corrections (a, b), electron self-energy
insertion (c), box-type correction (d), and two vacuum polar-
ization insertions (e, f). Of course, for every such diagram
a one-loop graph with corresponding counterterm must be
added to renormalize the subdivergences. The relevant finite
parts of these counterterms can be fixed by the requirement
that the parameters m and α coincide with their physical val-
ues. After the subdivergences are canceled, the remaining
superficial divergences has to be renormalized by another
additional tree counterterm with coupling ξ . The finite part
ξ (r)(µ) of this coupling has been estimated in [3] using its
running with the renormalization scale as

ξ (r)(Mρ) = 0 ± 5.5. (13)

Besides the UV divergences, the graph d in the Fig. 2 is
also IR divergent. It is therefore necessary to consider IR-
safe decay width of the inclusive process π0 → e+e−(γ )

with additional real photon in the final state. In [3] the real
photon bremsstrahlung has been taken into account using the
soft-photon approximation. The final result depends on the
experimental upper bound on the soft photon energy which
can be expressed in terms of the lower bound xcut on the

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-loop virtual radiative corrections for π0 → e+e− process

Dalitz variable x (see 2). The result can be expressed in terms
of the correction factor δ(xcut) defined as

(NLO(π0 → e+e−(γ ), x > xcut)

≡ δ(xcut)(LO(π0 → e+e−), (14)

where (LO is the leading order width and (NLO is the next-
to leading O(α3 p2) correction. The xcut dependent overall
correction δ(xcut) has various sources and to emphasize the
origin of its constituents, we will use the same symbol dec-
orated with appropriate indices. For the complete QED two-
loop correction δ(2) including soft-photon bremsstrahlung
and KTeV cut xcut = 0.95, in [3] one obtained

δ(2)(0.95) ≡ δvirt. + δBS
soft(0.95) = (−5.8 ± 0.2) %, (15)

where only the uncertainties of χ (r) and ξ (r) were taken as
the source of the error. This result differs significantly from
the previous approximate calculations done by Bergström [7]
or Dorokhov et al. [10], where for δ(2)(0.95) we would get
−13.8 and −13.3 %, respectively.

There is a simple interrelation of this partial result of
the QED radiative corrections and the branching ratio (3)
obtained by KTeV experiment (for the details see [3]). We
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χ
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(e)

Fig. 3 Bremsstrahlung Feynman diagrams for π0 → e+e− process
including counterterms

The reason is that the Ward identity (20) would be violated.5

Thus it is necessary to add the third (box) diagram (Fig. 3e,
photon emitted from the inner fermion line) to fulfill this
relation.

In the graphs Fig. 3a and b the πγ γ vertex stems from
the Wess–Zumino–Witten action [15,16] and the remaining
vertices correspond to standard QED Feynman rules. These
graphs are UV divergent by power counting and have to be
regularized. In what follows, we use the dimensional reg-
ularization. In order to bypass the problems with intrinsi-
cally four-dimensional objects like γ5 and the Levi-Civita
pseudo-tensor εµναβ , we use its variant known as Dimen-
sional Reduction6 (cf. [17]), which keeps the algebra of γ -
matrices four-dimensional, while the loop tensor integrals
are regularized dimensionally and expressed in terms of
the scalar one-loop integrals using the Passarino–Veltman

5 Note that in the framework of the soft-photon approximation the sum
of these four graphs satisfies the Ward identity by itself.
6 Note, however, that in the general case the regularization by dimen-
sional reduction might spoil gauge invariance. In the case of our ampli-
tude, we have checked that the gauge invariance is preserved and the
regularized amplitude has the general form (21).

reduction [18]. Within this framework we first get rid of the
Levi-Civita tensor using the four-dimensional identities, e.g.

εαβµνγµγν = iγ5[γ α, γ β ]
εαβµνγµγργν = 2iγ5(gα

ργ β − gβ
ρ γ α),

(25)

and then contract the reduced tensor integrals with the γ -
matrix structures.7 The contributions of the box diagram
Fig. 3e turn out to be finite, while the triangle diagrams Fig. 3a
and b contain subdivergences which have to be renormalized
by means of the tree graphs with counterterms corresponding
to the coupling χ (see Fig. 3c, d). Summing all the relevant
contributions and using the four-dimensional Dirac algebra,
we get finally the form factors P , A, and T , the explicit form
of which is summarized in Appendix A.

The differential decay rate d)BS(x, y) (cf. 24) give rise
to IR divergences when integrated over the phase space. The
divergences originate from the soft-photon region

|k| <
1
2

M(1 − xcut), (26)

which is defined in terms of the variables (x, y) by means of
the cut on the Dalitz variable x > xcut. These divergences
are exactly the same as those stemming from an analogous
integral of the differential decay rate d)BS

soft(x, y) calculated
within the soft-photon approximation. The latter is already
included in the two-loop result [3], we therefore present our
result for the exact BS as the difference

d)BS
diff(x, y) = d)BS(x, y) − d)BS

soft(x, y), (27)

the integral of which is IR finite. The result for d)BS
diff(x, y)

is shown in Fig. 4 and (integrated over the allowed region of
y given by 22) in Fig. 5. For *BS(xcut) we get finally

*BS(xcut) = 2
∫ 1

xcut

∫ √
1−ν2/x

0

d)BS
diff(x, y)

)LO(π0 → e+e−)
. (28)

The dependence of *BS(xcut) on xcut is shown in Fig. 6. For
xcut = 0.95 and for χ (r) given by (11) we get numerically

*BS(0.95) = (0.30 ± 0.01) %, (29)

where the error stems from the uncertainty in χ (r)(Mρ). In
other words, using this cut of the Dalitz variable in the KTeV
experiment, the soft-photon approximation is a very good
approach to the exact result. The dependence of *BS(0.95)

on χ (r) is shown in Fig. 7.

7 According to the prescription [17], we take the metric tensors
stemming from the Passarino–Veltman reduction effectively as four-
dimensional.
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Table 1 Numerical values of χ (r) in different models according to [1,3].
The first two columns denoted as CLEO+OPE and QCDsr correspond
to various treatments of CLEO data. LMD+V is an improvement of the
LMD ansatz and NχQM stands for the nonlocal chiral quark model

Model CLEO+OPE QCDsr LMD+V NχQM

χ (r)(Mρ) 2.6 ± 0.3 2.8 ± 0.1 2.5 2.4 ± 0.5

lowest meson dominance (LMD) approximation to the large-
NC spectrum of vector-meson resonances, yielding [13]

χ (r)(Mρ) = 2.2 ± 0.9, (11)

where Mρ = 770 MeV is the mass of the ρ meson. For
other alternative estimates cf. Table 1 and for the complete
discussion see [1].

Using the value (11) we get for the π0 → e+e− branching
ratio numerically

BLO
SM(π0 → e+e−) = (6.1 ± 0.3) × 10−8. (12)

3 Two-loop virtual radiative corrections

The full two-loop virtual radiative (pure QED) corrections
of order O(α3 p2) were calculated in [3]. In this section we
will present a short review of the main results.

The relevant contributions to the amplitude are shown in
Fig. 2. There are six two-loop diagrams. Listed sequentially,
we have two vertex corrections (a, b), electron self-energy
insertion (c), box-type correction (d), and two vacuum polar-
ization insertions (e, f). Of course, for every such diagram
a one-loop graph with corresponding counterterm must be
added to renormalize the subdivergences. The relevant finite
parts of these counterterms can be fixed by the requirement
that the parameters m and α coincide with their physical val-
ues. After the subdivergences are canceled, the remaining
superficial divergences has to be renormalized by another
additional tree counterterm with coupling ξ . The finite part
ξ (r)(µ) of this coupling has been estimated in [3] using its
running with the renormalization scale as

ξ (r)(Mρ) = 0 ± 5.5. (13)

Besides the UV divergences, the graph d in the Fig. 2 is
also IR divergent. It is therefore necessary to consider IR-
safe decay width of the inclusive process π0 → e+e−(γ )

with additional real photon in the final state. In [3] the real
photon bremsstrahlung has been taken into account using the
soft-photon approximation. The final result depends on the
experimental upper bound on the soft photon energy which
can be expressed in terms of the lower bound xcut on the

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-loop virtual radiative corrections for π0 → e+e− process

Dalitz variable x (see 2). The result can be expressed in terms
of the correction factor δ(xcut) defined as

(NLO(π0 → e+e−(γ ), x > xcut)

≡ δ(xcut)(LO(π0 → e+e−), (14)

where (LO is the leading order width and (NLO is the next-
to leading O(α3 p2) correction. The xcut dependent overall
correction δ(xcut) has various sources and to emphasize the
origin of its constituents, we will use the same symbol dec-
orated with appropriate indices. For the complete QED two-
loop correction δ(2) including soft-photon bremsstrahlung
and KTeV cut xcut = 0.95, in [3] one obtained

δ(2)(0.95) ≡ δvirt. + δBS
soft(0.95) = (−5.8 ± 0.2) %, (15)

where only the uncertainties of χ (r) and ξ (r) were taken as
the source of the error. This result differs significantly from
the previous approximate calculations done by Bergström [7]
or Dorokhov et al. [10], where for δ(2)(0.95) we would get
−13.8 and −13.3 %, respectively.

There is a simple interrelation of this partial result of
the QED radiative corrections and the branching ratio (3)
obtained by KTeV experiment (for the details see [3]). We
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Fig. 3 Bremsstrahlung Feynman diagrams for π0 → e+e− process
including counterterms

The reason is that the Ward identity (20) would be violated.5

Thus it is necessary to add the third (box) diagram (Fig. 3e,
photon emitted from the inner fermion line) to fulfill this
relation.

In the graphs Fig. 3a and b the πγ γ vertex stems from
the Wess–Zumino–Witten action [15,16] and the remaining
vertices correspond to standard QED Feynman rules. These
graphs are UV divergent by power counting and have to be
regularized. In what follows, we use the dimensional reg-
ularization. In order to bypass the problems with intrinsi-
cally four-dimensional objects like γ5 and the Levi-Civita
pseudo-tensor εµναβ , we use its variant known as Dimen-
sional Reduction6 (cf. [17]), which keeps the algebra of γ -
matrices four-dimensional, while the loop tensor integrals
are regularized dimensionally and expressed in terms of
the scalar one-loop integrals using the Passarino–Veltman

5 Note that in the framework of the soft-photon approximation the sum
of these four graphs satisfies the Ward identity by itself.
6 Note, however, that in the general case the regularization by dimen-
sional reduction might spoil gauge invariance. In the case of our ampli-
tude, we have checked that the gauge invariance is preserved and the
regularized amplitude has the general form (21).

reduction [18]. Within this framework we first get rid of the
Levi-Civita tensor using the four-dimensional identities, e.g.

εαβµνγµγν = iγ5[γ α, γ β ]
εαβµνγµγργν = 2iγ5(gα

ργ β − gβ
ρ γ α),

(25)

and then contract the reduced tensor integrals with the γ -
matrix structures.7 The contributions of the box diagram
Fig. 3e turn out to be finite, while the triangle diagrams Fig. 3a
and b contain subdivergences which have to be renormalized
by means of the tree graphs with counterterms corresponding
to the coupling χ (see Fig. 3c, d). Summing all the relevant
contributions and using the four-dimensional Dirac algebra,
we get finally the form factors P , A, and T , the explicit form
of which is summarized in Appendix A.

The differential decay rate d)BS(x, y) (cf. 24) give rise
to IR divergences when integrated over the phase space. The
divergences originate from the soft-photon region

|k| <
1
2

M(1 − xcut), (26)

which is defined in terms of the variables (x, y) by means of
the cut on the Dalitz variable x > xcut. These divergences
are exactly the same as those stemming from an analogous
integral of the differential decay rate d)BS

soft(x, y) calculated
within the soft-photon approximation. The latter is already
included in the two-loop result [3], we therefore present our
result for the exact BS as the difference

d)BS
diff(x, y) = d)BS(x, y) − d)BS

soft(x, y), (27)

the integral of which is IR finite. The result for d)BS
diff(x, y)

is shown in Fig. 4 and (integrated over the allowed region of
y given by 22) in Fig. 5. For *BS(xcut) we get finally

*BS(xcut) = 2
∫ 1

xcut

∫ √
1−ν2/x

0

d)BS
diff(x, y)

)LO(π0 → e+e−)
. (28)

The dependence of *BS(xcut) on xcut is shown in Fig. 6. For
xcut = 0.95 and for χ (r) given by (11) we get numerically

*BS(0.95) = (0.30 ± 0.01) %, (29)

where the error stems from the uncertainty in χ (r)(Mρ). In
other words, using this cut of the Dalitz variable in the KTeV
experiment, the soft-photon approximation is a very good
approach to the exact result. The dependence of *BS(0.95)

on χ (r) is shown in Fig. 7.

7 According to the prescription [17], we take the metric tensors
stemming from the Passarino–Veltman reduction effectively as four-
dimensional.
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Fig. 3 Bremsstrahlung Feynman diagrams for π0 → e+e− process
including counterterms

The reason is that the Ward identity (20) would be violated.5

Thus it is necessary to add the third (box) diagram (Fig. 3e,
photon emitted from the inner fermion line) to fulfill this
relation.

In the graphs Fig. 3a and b the πγ γ vertex stems from
the Wess–Zumino–Witten action [15,16] and the remaining
vertices correspond to standard QED Feynman rules. These
graphs are UV divergent by power counting and have to be
regularized. In what follows, we use the dimensional reg-
ularization. In order to bypass the problems with intrinsi-
cally four-dimensional objects like γ5 and the Levi-Civita
pseudo-tensor εµναβ , we use its variant known as Dimen-
sional Reduction6 (cf. [17]), which keeps the algebra of γ -
matrices four-dimensional, while the loop tensor integrals
are regularized dimensionally and expressed in terms of
the scalar one-loop integrals using the Passarino–Veltman

5 Note that in the framework of the soft-photon approximation the sum
of these four graphs satisfies the Ward identity by itself.
6 Note, however, that in the general case the regularization by dimen-
sional reduction might spoil gauge invariance. In the case of our ampli-
tude, we have checked that the gauge invariance is preserved and the
regularized amplitude has the general form (21).

reduction [18]. Within this framework we first get rid of the
Levi-Civita tensor using the four-dimensional identities, e.g.

εαβµνγµγν = iγ5[γ α, γ β ]
εαβµνγµγργν = 2iγ5(gα

ργ β − gβ
ρ γ α),

(25)

and then contract the reduced tensor integrals with the γ -
matrix structures.7 The contributions of the box diagram
Fig. 3e turn out to be finite, while the triangle diagrams Fig. 3a
and b contain subdivergences which have to be renormalized
by means of the tree graphs with counterterms corresponding
to the coupling χ (see Fig. 3c, d). Summing all the relevant
contributions and using the four-dimensional Dirac algebra,
we get finally the form factors P , A, and T , the explicit form
of which is summarized in Appendix A.

The differential decay rate d)BS(x, y) (cf. 24) give rise
to IR divergences when integrated over the phase space. The
divergences originate from the soft-photon region

|k| <
1
2

M(1 − xcut), (26)

which is defined in terms of the variables (x, y) by means of
the cut on the Dalitz variable x > xcut. These divergences
are exactly the same as those stemming from an analogous
integral of the differential decay rate d)BS

soft(x, y) calculated
within the soft-photon approximation. The latter is already
included in the two-loop result [3], we therefore present our
result for the exact BS as the difference

d)BS
diff(x, y) = d)BS(x, y) − d)BS

soft(x, y), (27)

the integral of which is IR finite. The result for d)BS
diff(x, y)

is shown in Fig. 4 and (integrated over the allowed region of
y given by 22) in Fig. 5. For *BS(xcut) we get finally

*BS(xcut) = 2
∫ 1

xcut

∫ √
1−ν2/x

0

d)BS
diff(x, y)

)LO(π0 → e+e−)
. (28)

The dependence of *BS(xcut) on xcut is shown in Fig. 6. For
xcut = 0.95 and for χ (r) given by (11) we get numerically

*BS(0.95) = (0.30 ± 0.01) %, (29)

where the error stems from the uncertainty in χ (r)(Mρ). In
other words, using this cut of the Dalitz variable in the KTeV
experiment, the soft-photon approximation is a very good
approach to the exact result. The dependence of *BS(0.95)

on χ (r) is shown in Fig. 7.

7 According to the prescription [17], we take the metric tensors
stemming from the Passarino–Veltman reduction effectively as four-
dimensional.
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can write the theoretical prediction for the branching ratio
measured by KTeV as

B(π0 → e+e−(γ ), x > 0.95) = #LO(π0 → e+e−)

#(π0 → γ γ )

× B(π0 → γ γ )[1 + δ(2)(0.95)+%BS(0.95)+δD(0.95)],
(16)

where the only experimental input is the precise branching
ratio B(π0 → γ γ ) = (98.823 ± 0.034) %. In the above
formula,

δD(xcut) = 1
#LO(π0 → e+e−)

∫ 1

xcut
dx
(

d#Dalitz

dx

)NLO

1γ I R

= 1.75 × 10−15

[#LO(π0 → e+e−)/MeV] (17)

corresponds to the unsubtracted fraction of the Dalitz decay
background4 omitted in the KTeV analysis and discussed
in [3,14]. In what follows we will concentrate on the last
missing ingredient of the formula (16), namely

%BS(xcut) ≡ δBS(xcut) − δBS
soft(xcut), (18)

which is the difference between the exact bremsstrahlung and
its soft photon approximation. This difference has been only
roughly estimated in [3] and this estimate has been taken as
a source of the error. Our aim is to calculate %BS exactly and
test the adequacy of the soft photon approximation for the
cut xcut = 0.95 used in the KTeV analysis.

4 Bremsstrahlung

In this section, we discuss the above mentioned exact
bremsstrahlung (BS), i.e. the real radiative correction cor-
responding to the process π0 → e+e−(γ ) beyond the soft-
photon approximation. As a consequence of the gauge invari-
ance, the invariant amplitude for the BS correction,

M(λ)(p, q, k) ≡ ε
∗ρ
(λ)(k)MBS

ρ (p, q, k) (19)

(where k and ε
∗ρ
(λ)(k) is the photon momentum and polariza-

tion vector, respectively), has to satisfy the Ward identity

kρMBS
ρ = 0 (20)

4 This fraction comes form the contribution of the interference term of
the NLO one-photon-irreducible (1γ I R) graph with the leading order
Dalitz amplitude. See [3] and [14] for more details.

for on-shell k and thus it can be generally expressed in the
form [14]

iMBS
ρ (p, q, k) = ie5

8π2 F
× {P(x, y)[(k · p)qρ − (k · q)pρ][ū(p, m)γ5v(q, m)]
+A(x, y)[ū(p, m)[γρ(k · p) − pρ(k · γ )]γ5v(q, m)]
−A(x,−y)[ū(p, m)[γρ(k · q) − qρ(k · γ )]γ5v(q, m)]
+T (x, y)[ū(p, m)γρ/kγ5v(q, m)]} (21)

in terms of the scalar form factors P , A, and T . These
are functions of two independent kinematic variables (x, y),
defined as

x = (p + q)2

M2 , y = − 2
M2

[
k · (p − q)

1 − x

]

x ∈ [ν2, 1] , y ∈



−
√

1 − ν2

x
,

√

1 − ν2

x



 . (22)

As mentioned above, x is the Dalitz variable (i.e. a normal-
ized square of the total energy of e+e− pair in their CMS)
and y has the meaning of a rescaled cosine of the angle
included by the directions of outgoing photon and positron
in the e+e− CMS. The modulus squared of the amplitude has
the form [14]

∣∣MBS(x, y)
∣∣2 ≡

∑

polarizations

∣∣M(λ)(p, q, k)
∣∣2 =

= 16πα5

F2

M4(1 − x)2

8

{
M2[x(1 − y2) − ν2][x M2|P|2

+2νM Re{P∗[A(x, y) + A(x,−y)]} − 4 Re{P∗T }]
+2M2(x − ν2)(1 − y)2|A(x, y)|2 + (y → −y)

−8νMy(1 − y) Re{A(x, y)T ∗} + (y → −y)

−4ν2 M2 y2 Re{A(x, y)A(x,−y)∗} + 8(1 − y2)|T |2
}

(23)

and using the variables x , y the differential decay rate is

d#BS(x, y) = M
(8π)3

∣∣MBS(x, y)
∣∣2(1 − x) dx dy. (24)

To the amplitude M(λ)(p, q, k) five Feynman diagrams con-
tribute (cf. Fig. 3). Four of them correspond to the photon
emission from the outgoing fermion lines (see Fig. 3a–d).
Naively, one would expect that only these four diagrams are
necessary to consider since only they include IR divergences
which are needed to cancel the IR divergences stemming
from the virtual corrections (see graph d in Fig. 2 and the
corresponding one-loop diagram with counterterm). How-
ever, this result would not be complete.
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Table 1 Numerical values of χ (r) in different models according to [1,3].
The first two columns denoted as CLEO+OPE and QCDsr correspond
to various treatments of CLEO data. LMD+V is an improvement of the
LMD ansatz and NχQM stands for the nonlocal chiral quark model

Model CLEO+OPE QCDsr LMD+V NχQM

χ (r)(Mρ) 2.6 ± 0.3 2.8 ± 0.1 2.5 2.4 ± 0.5

lowest meson dominance (LMD) approximation to the large-
NC spectrum of vector-meson resonances, yielding [13]

χ (r)(Mρ) = 2.2 ± 0.9, (11)

where Mρ = 770 MeV is the mass of the ρ meson. For
other alternative estimates cf. Table 1 and for the complete
discussion see [1].

Using the value (11) we get for the π0 → e+e− branching
ratio numerically

BLO
SM(π0 → e+e−) = (6.1 ± 0.3) × 10−8. (12)

3 Two-loop virtual radiative corrections

The full two-loop virtual radiative (pure QED) corrections
of order O(α3 p2) were calculated in [3]. In this section we
will present a short review of the main results.

The relevant contributions to the amplitude are shown in
Fig. 2. There are six two-loop diagrams. Listed sequentially,
we have two vertex corrections (a, b), electron self-energy
insertion (c), box-type correction (d), and two vacuum polar-
ization insertions (e, f). Of course, for every such diagram
a one-loop graph with corresponding counterterm must be
added to renormalize the subdivergences. The relevant finite
parts of these counterterms can be fixed by the requirement
that the parameters m and α coincide with their physical val-
ues. After the subdivergences are canceled, the remaining
superficial divergences has to be renormalized by another
additional tree counterterm with coupling ξ . The finite part
ξ (r)(µ) of this coupling has been estimated in [3] using its
running with the renormalization scale as

ξ (r)(Mρ) = 0 ± 5.5. (13)

Besides the UV divergences, the graph d in the Fig. 2 is
also IR divergent. It is therefore necessary to consider IR-
safe decay width of the inclusive process π0 → e+e−(γ )

with additional real photon in the final state. In [3] the real
photon bremsstrahlung has been taken into account using the
soft-photon approximation. The final result depends on the
experimental upper bound on the soft photon energy which
can be expressed in terms of the lower bound xcut on the

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-loop virtual radiative corrections for π0 → e+e− process

Dalitz variable x (see 2). The result can be expressed in terms
of the correction factor δ(xcut) defined as

(NLO(π0 → e+e−(γ ), x > xcut)

≡ δ(xcut)(LO(π0 → e+e−), (14)

where (LO is the leading order width and (NLO is the next-
to leading O(α3 p2) correction. The xcut dependent overall
correction δ(xcut) has various sources and to emphasize the
origin of its constituents, we will use the same symbol dec-
orated with appropriate indices. For the complete QED two-
loop correction δ(2) including soft-photon bremsstrahlung
and KTeV cut xcut = 0.95, in [3] one obtained

δ(2)(0.95) ≡ δvirt. + δBS
soft(0.95) = (−5.8 ± 0.2) %, (15)

where only the uncertainties of χ (r) and ξ (r) were taken as
the source of the error. This result differs significantly from
the previous approximate calculations done by Bergström [7]
or Dorokhov et al. [10], where for δ(2)(0.95) we would get
−13.8 and −13.3 %, respectively.

There is a simple interrelation of this partial result of
the QED radiative corrections and the branching ratio (3)
obtained by KTeV experiment (for the details see [3]). We
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Table 1 Numerical values of χ (r) in different models according to [1,3].
The first two columns denoted as CLEO+OPE and QCDsr correspond
to various treatments of CLEO data. LMD+V is an improvement of the
LMD ansatz and NχQM stands for the nonlocal chiral quark model

Model CLEO+OPE QCDsr LMD+V NχQM

χ (r)(Mρ) 2.6 ± 0.3 2.8 ± 0.1 2.5 2.4 ± 0.5

lowest meson dominance (LMD) approximation to the large-
NC spectrum of vector-meson resonances, yielding [13]

χ (r)(Mρ) = 2.2 ± 0.9, (11)

where Mρ = 770 MeV is the mass of the ρ meson. For
other alternative estimates cf. Table 1 and for the complete
discussion see [1].

Using the value (11) we get for the π0 → e+e− branching
ratio numerically

BLO
SM(π0 → e+e−) = (6.1 ± 0.3) × 10−8. (12)

3 Two-loop virtual radiative corrections

The full two-loop virtual radiative (pure QED) corrections
of order O(α3 p2) were calculated in [3]. In this section we
will present a short review of the main results.

The relevant contributions to the amplitude are shown in
Fig. 2. There are six two-loop diagrams. Listed sequentially,
we have two vertex corrections (a, b), electron self-energy
insertion (c), box-type correction (d), and two vacuum polar-
ization insertions (e, f). Of course, for every such diagram
a one-loop graph with corresponding counterterm must be
added to renormalize the subdivergences. The relevant finite
parts of these counterterms can be fixed by the requirement
that the parameters m and α coincide with their physical val-
ues. After the subdivergences are canceled, the remaining
superficial divergences has to be renormalized by another
additional tree counterterm with coupling ξ . The finite part
ξ (r)(µ) of this coupling has been estimated in [3] using its
running with the renormalization scale as

ξ (r)(Mρ) = 0 ± 5.5. (13)

Besides the UV divergences, the graph d in the Fig. 2 is
also IR divergent. It is therefore necessary to consider IR-
safe decay width of the inclusive process π0 → e+e−(γ )

with additional real photon in the final state. In [3] the real
photon bremsstrahlung has been taken into account using the
soft-photon approximation. The final result depends on the
experimental upper bound on the soft photon energy which
can be expressed in terms of the lower bound xcut on the

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-loop virtual radiative corrections for π0 → e+e− process

Dalitz variable x (see 2). The result can be expressed in terms
of the correction factor δ(xcut) defined as

(NLO(π0 → e+e−(γ ), x > xcut)

≡ δ(xcut)(LO(π0 → e+e−), (14)

where (LO is the leading order width and (NLO is the next-
to leading O(α3 p2) correction. The xcut dependent overall
correction δ(xcut) has various sources and to emphasize the
origin of its constituents, we will use the same symbol dec-
orated with appropriate indices. For the complete QED two-
loop correction δ(2) including soft-photon bremsstrahlung
and KTeV cut xcut = 0.95, in [3] one obtained

δ(2)(0.95) ≡ δvirt. + δBS
soft(0.95) = (−5.8 ± 0.2) %, (15)

where only the uncertainties of χ (r) and ξ (r) were taken as
the source of the error. This result differs significantly from
the previous approximate calculations done by Bergström [7]
or Dorokhov et al. [10], where for δ(2)(0.95) we would get
−13.8 and −13.3 %, respectively.

There is a simple interrelation of this partial result of
the QED radiative corrections and the branching ratio (3)
obtained by KTeV experiment (for the details see [3]). We
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can write the theoretical prediction for the branching ratio
measured by KTeV as

B(π0 → e+e−(γ ), x > 0.95) = #LO(π0 → e+e−)

#(π0 → γ γ )

× B(π0 → γ γ )[1 + δ(2)(0.95)+%BS(0.95)+δD(0.95)],
(16)

where the only experimental input is the precise branching
ratio B(π0 → γ γ ) = (98.823 ± 0.034) %. In the above
formula,

δD(xcut) = 1
#LO(π0 → e+e−)

∫ 1

xcut
dx
(

d#Dalitz

dx

)NLO

1γ I R

= 1.75 × 10−15

[#LO(π0 → e+e−)/MeV] (17)

corresponds to the unsubtracted fraction of the Dalitz decay
background4 omitted in the KTeV analysis and discussed
in [3,14]. In what follows we will concentrate on the last
missing ingredient of the formula (16), namely

%BS(xcut) ≡ δBS(xcut) − δBS
soft(xcut), (18)

which is the difference between the exact bremsstrahlung and
its soft photon approximation. This difference has been only
roughly estimated in [3] and this estimate has been taken as
a source of the error. Our aim is to calculate %BS exactly and
test the adequacy of the soft photon approximation for the
cut xcut = 0.95 used in the KTeV analysis.

4 Bremsstrahlung

In this section, we discuss the above mentioned exact
bremsstrahlung (BS), i.e. the real radiative correction cor-
responding to the process π0 → e+e−(γ ) beyond the soft-
photon approximation. As a consequence of the gauge invari-
ance, the invariant amplitude for the BS correction,

M(λ)(p, q, k) ≡ ε
∗ρ
(λ)(k)MBS

ρ (p, q, k) (19)

(where k and ε
∗ρ
(λ)(k) is the photon momentum and polariza-

tion vector, respectively), has to satisfy the Ward identity

kρMBS
ρ = 0 (20)

4 This fraction comes form the contribution of the interference term of
the NLO one-photon-irreducible (1γ I R) graph with the leading order
Dalitz amplitude. See [3] and [14] for more details.

for on-shell k and thus it can be generally expressed in the
form [14]

iMBS
ρ (p, q, k) = ie5

8π2 F
× {P(x, y)[(k · p)qρ − (k · q)pρ][ū(p, m)γ5v(q, m)]
+A(x, y)[ū(p, m)[γρ(k · p) − pρ(k · γ )]γ5v(q, m)]
−A(x,−y)[ū(p, m)[γρ(k · q) − qρ(k · γ )]γ5v(q, m)]
+T (x, y)[ū(p, m)γρ/kγ5v(q, m)]} (21)

in terms of the scalar form factors P , A, and T . These
are functions of two independent kinematic variables (x, y),
defined as

x = (p + q)2

M2 , y = − 2
M2

[
k · (p − q)

1 − x

]

x ∈ [ν2, 1] , y ∈



−
√

1 − ν2

x
,

√

1 − ν2

x



 . (22)

As mentioned above, x is the Dalitz variable (i.e. a normal-
ized square of the total energy of e+e− pair in their CMS)
and y has the meaning of a rescaled cosine of the angle
included by the directions of outgoing photon and positron
in the e+e− CMS. The modulus squared of the amplitude has
the form [14]

∣∣MBS(x, y)
∣∣2 ≡

∑

polarizations

∣∣M(λ)(p, q, k)
∣∣2 =

= 16πα5

F2

M4(1 − x)2

8

{
M2[x(1 − y2) − ν2][x M2|P|2

+2νM Re{P∗[A(x, y) + A(x,−y)]} − 4 Re{P∗T }]
+2M2(x − ν2)(1 − y)2|A(x, y)|2 + (y → −y)

−8νMy(1 − y) Re{A(x, y)T ∗} + (y → −y)

−4ν2 M2 y2 Re{A(x, y)A(x,−y)∗} + 8(1 − y2)|T |2
}

(23)

and using the variables x , y the differential decay rate is

d#BS(x, y) = M
(8π)3

∣∣MBS(x, y)
∣∣2(1 − x) dx dy. (24)

To the amplitude M(λ)(p, q, k) five Feynman diagrams con-
tribute (cf. Fig. 3). Four of them correspond to the photon
emission from the outgoing fermion lines (see Fig. 3a–d).
Naively, one would expect that only these four diagrams are
necessary to consider since only they include IR divergences
which are needed to cancel the IR divergences stemming
from the virtual corrections (see graph d in Fig. 2 and the
corresponding one-loop diagram with counterterm). How-
ever, this result would not be complete.

123

�D(0.95) =

Eur. Phys. J. C (2014) 74:3010 Page 5 of 11 3010

(a) (b)

χ

(c)

χ

(d)

(e)

Fig. 3 Bremsstrahlung Feynman diagrams for π0 → e+e− process
including counterterms

The reason is that the Ward identity (20) would be violated.5

Thus it is necessary to add the third (box) diagram (Fig. 3e,
photon emitted from the inner fermion line) to fulfill this
relation.

In the graphs Fig. 3a and b the πγ γ vertex stems from
the Wess–Zumino–Witten action [15,16] and the remaining
vertices correspond to standard QED Feynman rules. These
graphs are UV divergent by power counting and have to be
regularized. In what follows, we use the dimensional reg-
ularization. In order to bypass the problems with intrinsi-
cally four-dimensional objects like γ5 and the Levi-Civita
pseudo-tensor εµναβ , we use its variant known as Dimen-
sional Reduction6 (cf. [17]), which keeps the algebra of γ -
matrices four-dimensional, while the loop tensor integrals
are regularized dimensionally and expressed in terms of
the scalar one-loop integrals using the Passarino–Veltman

5 Note that in the framework of the soft-photon approximation the sum
of these four graphs satisfies the Ward identity by itself.
6 Note, however, that in the general case the regularization by dimen-
sional reduction might spoil gauge invariance. In the case of our ampli-
tude, we have checked that the gauge invariance is preserved and the
regularized amplitude has the general form (21).

reduction [18]. Within this framework we first get rid of the
Levi-Civita tensor using the four-dimensional identities, e.g.

εαβµνγµγν = iγ5[γ α, γ β ]
εαβµνγµγργν = 2iγ5(gα

ργ β − gβ
ρ γ α),

(25)

and then contract the reduced tensor integrals with the γ -
matrix structures.7 The contributions of the box diagram
Fig. 3e turn out to be finite, while the triangle diagrams Fig. 3a
and b contain subdivergences which have to be renormalized
by means of the tree graphs with counterterms corresponding
to the coupling χ (see Fig. 3c, d). Summing all the relevant
contributions and using the four-dimensional Dirac algebra,
we get finally the form factors P , A, and T , the explicit form
of which is summarized in Appendix A.

The differential decay rate d)BS(x, y) (cf. 24) give rise
to IR divergences when integrated over the phase space. The
divergences originate from the soft-photon region

|k| <
1
2

M(1 − xcut), (26)

which is defined in terms of the variables (x, y) by means of
the cut on the Dalitz variable x > xcut. These divergences
are exactly the same as those stemming from an analogous
integral of the differential decay rate d)BS

soft(x, y) calculated
within the soft-photon approximation. The latter is already
included in the two-loop result [3], we therefore present our
result for the exact BS as the difference

d)BS
diff(x, y) = d)BS(x, y) − d)BS

soft(x, y), (27)

the integral of which is IR finite. The result for d)BS
diff(x, y)

is shown in Fig. 4 and (integrated over the allowed region of
y given by 22) in Fig. 5. For *BS(xcut) we get finally

*BS(xcut) = 2
∫ 1

xcut

∫ √
1−ν2/x

0

d)BS
diff(x, y)

)LO(π0 → e+e−)
. (28)

The dependence of *BS(xcut) on xcut is shown in Fig. 6. For
xcut = 0.95 and for χ (r) given by (11) we get numerically

*BS(0.95) = (0.30 ± 0.01) %, (29)

where the error stems from the uncertainty in χ (r)(Mρ). In
other words, using this cut of the Dalitz variable in the KTeV
experiment, the soft-photon approximation is a very good
approach to the exact result. The dependence of *BS(0.95)

on χ (r) is shown in Fig. 7.

7 According to the prescription [17], we take the metric tensors
stemming from the Passarino–Veltman reduction effectively as four-
dimensional.
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• Ways to improve from theory side:
• Dubna (Dorokhov, Ivanov,...): Include all kind of 
corrections me/mπ, me/Λ (which also means not using 
DR)
• Prague (Novotny, Kampf, Husek...): Improve on 
radiative corrections
• Mainz (Masjuan, Sanchez-Puertas...): Improve on the 
implementation of the TFF
• Consider New Physics contributions
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Current situation

Dubna+Prague+Mainz(?)
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Mainz contribution: TFF parameterization

Remember: only low-energy region is needed
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Nice synergy between experiment and theory
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F⇡0�⇤�⇤(Q2, Q2)BRSM (⇡0 ! e+e�) we need

Proposal: bivariate PA Chisholm ’73

PN
M (Q2

1, Q
2
2) =

TN (Q2
1, Q

2
2)

RM (Q2
1, Q

2
2)

= a0 + a1(Q
2
1 +Q2

2) + a1,1Q
2
1Q

2
2 + a2(Q

4
1 +Q4

2) + · · ·

Doubly virtual π0-TFF

P 0
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[convergence pattern]
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a1

a1,1

from accurate study of space-like data

from a systematic fit to doubly virtual SL data
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Doubly virtual π0-TFF

NA62 Handbook, Mainz, 20 Jan

[PM. ’12]
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OPE indicates: lim
Q2!1

P 0
1 (Q

2, Q2) ⇠ Q�2

P 0
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2
1, Q

2
2) =
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1 + a1(Q2

1 +Q2
2) + (2a21 � a1,1)Q2

1Q
2
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i.e., a1,1 = 2a21

Doubly virtual π0-TFF

a1

a1,1

from accurate study of space-like data

from a systematic fit to doubly virtual SL data
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ChPT indicates:
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from accurate study of space-like data

from a systematic fit to doubly virtual SL data
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2
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2) = P 0

1 (Q
2
1)⇥ P 0

1 (Q
2
2) i.e., a1,1 = a21

[Bijnens, Kampf, Lanz ‘12]

[PM. ’12]
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0  a1,1  2a21
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1Q
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Doubly virtual π0-TFF

a1 from accurate study of space-like data

statistics+theoretical error

NA62 Handbook, Mainz, 20 Jan

BRPA
SM (⇡0 ! e+e�) = (6.22� 6.43)(4)⇥ 10�8

BRZ
SM (⇡0 ! Z⇤ ! e+e�) = �0.02⇥ 10�8

[PM. ’12]
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Doubly virtual π0-TFF

from accurate study of space-like data

statistics+theoretical error
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a1, b1, b2 [PM. ’12]

b2,2 = 0 lim
Q2!1

P 0
1 (Q

2, Q2) ⇠ Q�2

[Novikov et al ’84]lim
Q2!1

P 1
2 (Q

2, Q2) ⇠ 2F⇡

3

✓
1

Q2
� 8�2

9Q4
+O(Q�6)

◆
b1,1, b2,1

a1,1 free (condition: no poles in space like)

BR
P 1

2
SM (⇡0 ! e+e�) = (6.23� 6.24)(4)⇥ 10�8

1.92a21  a1,1  2a21

(Z included)
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Doubly virtual π0-TFF

statistics+theoretical error

+ to shrink the window: data (data-driven approach)
method checked for different models

NA62 Handbook, Mainz, 20 Jan

BR
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2
SM (⇡0 ! e+e�) = 6.23(4)(2)⇥ 10�8
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2)Systematic error

(Z included)
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Doubly virtual π0-TFF

statistics+theoretical error
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BR
P 1

2
SM (⇡0 ! e+e�) = 6.23(4)(2)⇥ 10�8

New SM prediction:

(Z included)

BRSM(⇡0 ! e+e�) = (6.2± 0.1)⇥ 10�8
[Dorokhov et al. ‘09]

•More precise (50% error reduction)
•Data driven
•Systematic error
•Improved loop integral

�(µ) = 2.5(2)
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BRw/o rad

"KTeV"(⇡
0 ! e+e�) = (6.87± 0.36)⇥ 10�8

Doubly virtual π0-TFF

NA62 Handbook, Mainz, 20 Jan

BR
P 1

2
SM (⇡0 ! e+e�) = 6.23(4)(2)⇥ 10�8

⇠ 2�

(with published KTeV ~3.2σ)
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BR
P 1

2
SM (⇡0 ! e+e�) ⌘ 7.48(38)⇥ 10�8 ! �2 ⇠ 20

Can we still match the KTeV value?

from accurate study of space-like data
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lim
Q2!1

P 0
1 (Q

2, Q2) ⇠ Q�2

[Novikov et al ’84]

lim
Q2!1

P 1
2 (Q

2, Q2) ⇠ 2F⇡

3

✓
1

Q2
� 8�2

9Q4
+O(Q�6)

◆

free to fix KTeV (condition: no poles in space like)

a1, b1, b2

b2,2 = 0

b1,1, b2,1

a1,1

�2 = 0.2GeV2KTeV = very slowly converging OPE

�2 = 0.2GeV2
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⌘ ⇡+⇡�
⌘0

V

Figure 2: Intermediate hadronic states invalidating the unitary bound for the ⌘, (⌘0), left(right).

Fig. 2 becomes the dominant source of error. To quantitatively study this e↵ect, we
take a toy-model for the TFF that includes both a two-pion production threshold
and a vector resonance. The model is conceived in such a way that the time-like
region contains all the required features of the physical TFF up to the ⌘0 mass. The
first ingredient in our toy-model is factorization, which as explained before seems a
reasonable choice at low-energies. The second ingredient is the use of vector meson
dominance ideas [60] allowing to express the TFF as

FP�⇤�(s) = cP⇢G⇢(s) + cP!G!(s) + cP�G�(s), (8)

where GV (s) are the di↵erent resonance contributions weighted by the dimensionless
couplings cPV which are obtained from a quark-model, c⌘(⌘0)⇢ = 9/8(9/14), c⌘(⌘0)⇢ =
1/8(1/14), c⌘(⌘0)⇢ = �2/8(4/14) [61], and GV (0) = 1. In order to incorporate the
⇡⇡ intermediate branch cut in Fig. 2, fulfilling unitarity and analyticity, we take for
the ⇢ contribution G⇢(s) a model based on Refs. [62, 63]

G⇢(s) =
M2

⇢

M2

⇢ � s+
sM2

⇢

96⇡2F 2
⇡

⇣
ln

⇣
m2

⇡
µ2

⌘
+ 8m2

⇡
s � 5

3

� �(s)3 ln
⇣
�(s)�1

�(s)+1

⌘⌘ (9)

with �(s) =
p

1� 4m2

⇡/s, and the parameters M⇢ = 0.815GeV, F⇡ = 0.115GeV,
µ = 0.775GeV, and m⇡ = 0.139GeV, chosen to reproduce the pole position s⇢ =
(M�i�/2)2 with M = 0.764GeV and � = 0.144GeV from[64], while for the (narrow-
width) !,� resonances, we take9

G!,� =
M2

!,� +M!,��!,�(sth/M2

!,�)
3/2

M2

!,� � s+M!,��!,�((sth � s)/M2

!,�)
3/2

, (10)

which parameters are fixed from PDG masses and widths [6]. This choice makes our
model very similar to the dispersive approach formulated in [61].

To evaluate now the branching ratio of the decay, we have to calculate the
diagrams in Figs. 1 and 2. The vector contribution can be calculated with the
model in Eq. (8) after modifying the integral (2) making use of the Cauchy integral
representation for the (factorized) TFF,

FP�⇤�⇤(q2
1

, q2
2

) =

Z 1

sth

dM2

1

Z 1

sth

dM2

2

Im(FP�⇤�(M2

1

))

q2
1

�M2

1

� i✏

Im(FP�⇤�(M2

2

))

q2
2

�M2

2

� i✏
. (11)

9We explored further refined models with an improved threshold behavior for the ! and �

resonances. Given their narrow width they led to very similar results and we decided to take the
ones in Eq. (10) for not obscuring our study and deviating the attention from our main concern, an
estimation of a systematic error.
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Figure 3: Im(AV(q2)) from Eq. (12) for ⌘ and ⌘

0 in black and purple, respectively. The bluish
area is the contribution of the vector resonance to Im(A(q2)) and should be convoluted with the
�� channel.

which, changing the integration order, allows to express the contribution of the
vector resonance to (2) as
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(12)

This procedure results on an easy evaluation of the loop amplitude denoted as
K(M2

1

,M2

2

) through standard one-loop techniques [65] or a numerical evaluation
using LoopTools [66].

Now, the threshold e↵ects are clear and easier to handle. To illustrate them,
we plot the Im(AV(m2

P )) which contains both �� and vector contributions when
dispersing only one virtuality in (12) for simplicity (i.e., we neglect the q2 depen-
dence on the second virtuality). The resulting plot is shown in Fig. 3 as a black
(purple) solid line for the ⌘(⌘0) in terms of the dispersive variable MV once theR
d4k integration has been performed to give K(M2

V ) in the last line of Eq. (12).
These lines have to be convoluted with the contribution coming from the vector
resonance, Im(FP�⇤�(M2

V )) (bluish area in Fig. 3). For MV > mP , the �� contri-
bution dominates and will be slightly modified when mP > 2m⇡ due to the tail
of the resonance contribution, whereas it will largely diminish when MV < mP .
Then, whenever Im(FP�⇤�(M2

V )) 6= 0, Im(A(m2

P )) will be shifted with respect to the
�� contribution. This is, as unitarity implies, whenever an intermediate hadronic
channel appears below mP .

For completeness, we illustrate in Table 2 the numerical shift in the imaginary
part with respect to the �� contribution in our toy-model (8), which illustrates the
break of the unitary bound.

Given that our model is a Stieltjes function, it is well known that the CN
N+1

(Q2

1

, Q2

2

)
sequence is guaranteed to converge in the whole complex plane, except along the

9

Process A(m2
P ) AZ(m2

P ) Aapp(m2
P )

⌘ ! e

+
e

� (30.95÷ 31.51)(11) �21.92(0)i �0.03 (27.53÷ 28.00)� 21.92i
⌘ ! µ

+
µ

� �(1.52÷ 0.99)(5) �5.47(0)i �0.03 �(2.33÷ 1.87)� 5.47i

⌘

0 ! e

+
e

� (47.4÷ 48.2)(5) �(21.0)(5)i 0.03 (35.20÷ 35.66)� 23.68i
⌘

0 ! µ

+
µ

� (2.95÷ 3.65)(19) �(6.27)(17)i 0.03 �(0.66÷ 0.20)� 7.06i

⇡

0 ! e

+
e

� (10.00÷ 10.46)(12) �17.52i �0.05 (9.84÷ 10.30)� 17.52i

Table 4: Our results for the range aP ;11 2 (b2P ÷2b2P ), corresponding to (OPE÷Factorization). The
error refers to the statistical error alone. We quote the Z-boson contribution AZ(m2

P ) separately
and quote to the approximated Aapp(m2

P ) calculation after expanding Eq. (2) in terms of ml/mP

as well as ml/⇤ and mP /⇤. See details in the main text.

Process BR BR w/Z BR app

⌘ ! e

+
e

� (5.31÷ 5.44)(3)(2)(1)⇥ 10�9 (5.32÷ 5.45)⇥ 10�9 (4.58÷ 4.68)⇥ 10�9

⌘ ! µ

+
µ

� (4.72÷ 4.52)(2)(3)(4)⇥ 10�6 (4.70÷ 4.51)⇥ 10�6 (5.16÷ 4.88)⇥ 10�6

⌘

0 ! e

+
e

� (1.82÷ 1.87)(7)(2)(16)⇥ 10�10 (1.82÷ 1.87)⇥ 10�10 (1.22÷ 1.24)⇥ 10�10

⌘

0 ! µ

+
µ

� (1.36÷ 1.49)(5)(3)(25)⇥ 10�7 (1.35÷ 1.48)⇥ 10�7 (1.42÷ 1.41)⇥ 10�7

⇡

0 ! e

+
e

� (6.20÷ 6.35)(0)(4)(1)⇥ 10�8 (6.22÷ 6.36)⇥ 10�8 (6.17÷ 6.31)⇥ 10�8

Table 5: Our results for the range aP ;11 2 (b2P ÷ 2b2P ), corresponding to (OPE÷Factorization).
The errors refers to the statistical error for BR(P ! ��), the error from bP and the systematic,
respectively. We compare to the results either neglecting the Z-boson contribution (BR w/Z) or
after expanding Eq. (2) in terms of ml/mP as well as ml/⇤ and mP /⇤ (BR app) discussed in the
main text.

the toy model in Sec. 4, we would look at the di↵erence between the C0

1

(Q2

1

, Q2

2

) and
the C1

2

(Q2

1

, Q2

2

) elements in the factorization approach (where no knowledge of the
doubly virtuality is required). This is not surprising since, as emphasized previously,
our toy model is not realistic enough and fails to describe the space-like region.
This points towards an overestimation of our the systematic uncertainty. Still, it
would be desirable to have an alternative approach to systematically implement not
only the low- and high-energy behaviors, but the information about the time-like
region, such as physical resonances and threshold discontinuities in order to reach
a similar precision to what is achieved in the ⌘ case. Investigations in this respects
are undergoing.

Our results may be compared to the experimental values given in Table 1.
We find an interesting deviation in the ⌘ ! µ+µ� channel. Still, the experi-

mental accuracy prevents us from drawing any conclusion and a new experiment
would be very welcomed. It becomes even more interesting when comparing to the
analogous ⇡0 ! e+e� anomaly (cf. our results in Table 5 and the experimental
value in Table 1), as we find that, whereas for the ⇡0 case a very damped TFF
at large energies was required [12] to reproduce the experimental value, the ⌘ case
demands a smoothly falling TFF instead, which points to a puzzling situation. Very
interesting as well is the current bound on ⌘0 ! e+e�, which is getting closer to the
theoretical expectations. In this respect, it would be very estimulating to push for a
new measurement. Such an e↵ort is currently ongoing at VEPP-2000 e+e�collider
at Novosibirsk, where they plan to increase their statistics by a factor of ten.

The results above represent an important improvement with respect to previous

13

⌘ ! e+e� ⌘ ! µ+µ� ⌘0 ! e+e� ⌘0 ! µ+µ� ⇡0 ! e+e�

 2.3⇥ 10

�6
[16] 5.8(8)⇥ 10

�6
[17]  5.6⇥ 10

�9
[18, 19] � 7.48(38)⇥ 10

�8
[20]

Table 1: Experimental results for BR(⌘, ⌘0 ! ``) and BR(⇡0 ! e

+
e

�).

In addition, we discuss the novel features due to the appearance of intermediate
hadronic states absent in the ⇡0 ! e+e�, and show how our method is able to deal
with them. Our results, together with latest radiative corrections [13–15], would
pave the way for the precision low-energy frontier of the Standard Model and new
physics searches in these decays.

The article is organized as follows. In Sec. 2 we report on the state-of-the-
art experimental measurements and theoretical predictions together with a general
description of the main features of the process under discussion. In Sec. 3 we remind
the basics of our approach based on Canterbury approximants. In Sec. 4 we discuss
the role of intermediate hadronic states and the performance of our approach with
the help of a toy-model. We give our final results in Sec. 5. In Sec. 6 we discus, in
the light of our results, the role of chiral perturbation theory when calculating such
decays together with a parameterization to induce the ⇡0-exchange contribution to
the 2S hyperfine-splitting in the muonic hydrogen. Finally, with our results at hand,
we discuss the implications of experimental results on new physic searches in Sec. 7.

2 Pseudoscalar decays into lepton pairs: state of the art

Pseudoscalar decays into lepton pairs are considered to be rare since their branching
ratios (BR) range from 10�9 to 10�6. The state-of-the-art experimental measure-
ments on the BR(⌘, ⌘0 ! ``) with ` = e, µ are collected in Table 1 where we have
also included the ⇡0 ! e+e� for completeness.

The ⌘ ! e+e� was measured recently by the HADES collaboration in the context
of the dark photon searches. HADES is a fixed target experiment where a target of
hydrogen or niobium is bombarded with protons and the inclusive e+e� invariant-
mass distributions are measured. In 2012, the HADES collaboration obtained with
their p+ p data BR(⌘ ! e+e�)  5.6⇥ 10�6 [21], while in 2013 they obtained, with
their p + Nb data, BR(⌘ ! e+e�)  2.5 ⇥ 10�6 [16]. The combined result of the
two measurements results in the PDG lower limit BR(⌘ ! e+e�)  2.3⇥ 10�6 [16].

The BR(⌘ ! µ+µ�) = 5.8(8)⇥ 10�6 quoted in the PDG [6] is a combination of
the measurements performed at SATURNE II [17] and at Lepton-G [22]. The former
was based on the pd !3 He⌘ reaction, measured 114 ± 14 events, and resulted in
BR(⌘ ! µ+µ�) = 5.7(7)

stat.

(5)
sys.

⇥ 10�6 [17]. The later was based on the reaction
⇡�p ! ⌘n with the ⌘ reconstructed from the µµ invariant mass [22], and measured
BR(⌘ ! µ+µ�) = 6.5(2.1)⇥ 10�6.

The bound BR(⌘0 ! e+e�)  5.6 ⇥ 10�9 [18, 19] has been recently established
after combining the upper bounds �⌘0!e+e� < 0.0020 eV and �⌘0!e+e� < 0.0024
eV measured with the SND and the CMD-3 detectors [19] at the VEPP-2000 e+e�

collider in the e+e� ! µ0 process. The combination of these two bounds together
with the total ⌘0 with �⌘0 = 0.198(9)MeV [6] yielded the BR(⌘0 ! e+e�)  5.6 ⇥
10�9. Let us note that the PDG still provides the old upper limit BR(⌘0 ! e+e�) 
2.1⇥ 10�7 measured by the ND Collaboration, Novosibirsk, in 1988 [23].

2

⌘, ⌘0 ! `+`�

Our predictions

Experimental measurements or bounds

[PM, P. Sanchez-Puertas ’15]
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KL ! `+`�

• Probes axial-vector interactions

γ∗

γ∗

π0, η, η′
KL
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1

4�`
log

2

✓
1� �`

1 + �`

◆
+

1

�`
Li2

✓
�` � 1

�` + 1

◆

+

⇡2

12�`
+ 3 log

m`

µ
+ �(µ)

�(µ) = ���(µ) + �SD

• At lowest order, transition mediated via pseudo scalar poles

[Gomez Dumm, Pich (98);  
Knecht, Peris, Perrottet, de Rafael (99); 
Isidori, Unterdorfer (03)]

• Dispersive component of amplitude (normalised to                ): KL ! ��

LECs strike again!

KL ! `+`� (see talk by L. Tunstall)

[Gomez Dumm and Pich, ’98]
[Knecht et al, ’99]
[Isidori, Unterdorfer ’03]

KL ! ��

The Transition Form Factor
Results for the ⌘ & ⌘0 TFF with Space-like data

Update with MAMI Time-like data (PRELIMINARY)
Applications

Pseudoscalar contribution to (g � 2)HLbyLµ
P ! `` (PRELIMINARY)

Dissectioning the ⇡ ! e

+
e

�

• The ⇡ ! e

+
e

� decay provides the best scenario for such discussion.
• Try the most model-independent approach we can.

Cutcosky rules provides the imaginary part of this integral

ImA(q2) =
⇡

2�l(q2)
ln

✓
1� �l(q2)

1 + �l(q2)

◆
; �l(q

2) =

s

1� 4m2
l

q

2

Use dispersion relation to get the real part

Re(A(q2)) = A(0)+
1

�l(q2)

✓
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12
+

1

4
ln
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✓
1� �l(q2)

1 + �l(q2)

◆
+ Li2

✓
1� �l(q2)

1 + �l(q2)

◆◆

Substraction term gets all the e↵ects from the TFF behavior.
⇤From now on I will quote results in the chiral limit m⇡ ! 0

Pablo Sánchez Puertas Mesons transition FFs using Padé approximants

Normalized to 

Prediction for

all hadronic information (TFF, mp...)

A(0) = �P (µ)�
5

2
+

3

2
ln(m2

l /µ
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L =
g

4mW

X

f

mAc
A
f

�
f�µA

µ�5f
�
+ 2mfc

P
f

�
fi�5f

�
P

General Lagrangian (after Fierz)

`(p)

`(p0)

A(q)
P

`(p)

`(p0)

P
P(q)

Figure 5: Left(right): additional tree level contributions from an axial(pseudoscalar) field. The
P within the blob stand for the pseudoscalar meson; A(P) stands for the axial(pseudoscalar) field
with momentum q; `(`) for the (anti)lepton with momentum p(p0).

�ee
⇡0(µ) in Eq. (14) and �µµ

⇡0 (µ) in (15) and that extracted from the experimental
results is non-trivial as it is TFF dependent. In quoting our results, we implicitly
assume that there is no new-physics contribution. However, if the current discrep-
ancies among theory and experiment persist, indicating new physics contribution
—which we will discuss in Sec. 7— the connection between the experimental �(µ)
and that in Eqs. (14) and (15) will depend on the particular new-physics scenario
and will have to be reanalyzed.

The results above are illustrative as well regarding (g � 2)µ hadronic contribu-
tions, which in �PT involve �(µ) together with an additional counterterm, C(µ), as
an input [69]. If we were able to determine C(µ) somehow, from (g�2)e for example,
and �(µ) would be taken from the experimental ⇡0 ! e+e� result, extrapolating up
to the µ case may imply a non-negligible error as illustrated above; similar e↵ects
may arise for C(µ) as well [12, 70].

7 New physics contributions

At this point, we are finally on a firm foot to discuss about possible new physics (NP)
contributions given the current discrepancies in the two existing measured decays.
As discussed in [12], any additional contribution will always manifest, after Fierz-
rearrangement, only through e↵ective pseudoscalar (P) and axial (A), contributions,
which given the existing well-motivated models, are conveniently expressed in the
e↵ective lagrangian

L =
g

4mW

X

f

mAc
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f

�
f /A�

5

f
�
+ 2mfc

P
f

�
fi�

5

f
�P,

where g,mW are the standard electroweak parameters, and cA,P
f are dimensionless

couplings to the fermions f = {u, d, s, e, µ}. These interactions yield additional
tree-level contributions as shown in Fig. 5. Their corresponding amplitudes read

iM =
igcA` mA

4mW
[up,s�µ�5vp0,s0 ]

�i
⇣
gµ⌫ � qµq⌫

m2
A

⌘

m2

P �m2

A

igmA

4mW

h0|JNP
µ5 |P (q)i

z }| {X

q

h0| cAq q�µ�5q |P (q)i, (16)

iM =
igcP`
2mW

m`[up,si�5vp0,s0 ]
i

q2 �m2

P

ig

2mW

h0|PNP|P (q)i
z }| {X

q

h0| cPq mqqi�5q |P (q)i, (17)

for the axial and pseudoscalar contribution, respectively.

16
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Naive New Physics contributions
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Z contribution (Arnellos, Marciano, Parsa ‘82)

Our estimate based on existing exp. constrains:

negligible!
55NA62 Handbook, Mainz, 20 Jan

�����A(q2) +

p
2F⇡GF

4↵2F⇡��
⇥ fA(P )

�����

2

cZu = �cZd,e = 1

SM(1 + ✏Z,NP )

[Marciano et al. ’12,’14; Kahn et al ’08]
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Impact of π0→e+e- on HLBL
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Model Published model Modified model

⇡0 ! e+e� HLBL ⇡0 ! e+e� HLBL

(⇥108) (⇥1010) (⇥108) (⇥1010)

Jegerlehner and Ny↵eler ’09 LMD+V 6.33 6.29 6.47 5.22

Dorokhov et al ’09 VMD 6.34 5.64 6.87 2.44

Our proposal ’14 PA 6.36 5.53 6.87 2.85

�aSM
µ ⇠ 6⇥ 10�10

�aHLBL;⇡0!e+e�

µ ⇠ (2� 3)⇥ 10�10

�aHLBL
µ ⇠ 4⇥ 10�10

+ similar effect for the η decay!
NA62 Handbook, Mainz, 20 Jan



Preliminary Shopping list
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NA62

•π0 Dalitz decays 
•π0 Double Dalitz decay
•Rare decay 
•K Dalitz decay
•K double Dalitz decay
•Rare decay

At first, I would suggest 

During the talk, I’ll try to convince you why

⇡0 ! e+e�

⇡0 ! e+e��

⇡0 ! e+e� e+e�

KL ! `+`�

KL ! `+`��

KL ! `+`� `+`�

(BR)

(BR)

(Inv. mass distr.)

(Inv. mass distr.)

(BR)

(BR)



Conclusions
- π0→e+e- is an interesting process

- hadronic effects are important at all energies
- but the scale is at the electron mass

- Standard approaches fail to reproduce the KTeV 
experimental measurement

- something to be understood: corrections known, 
radiative known, TFF-data driven, no NP, ...?

- Its impact in the HLBL cannot be forgotten, it might be 
one of the largest uncertainties if the puzzle persists

Pere Masjuan 58NA62 Handbook, Mainz, 20 Jan
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Our proposal: use Padé Approximants

Pere Masjuan

[P.M.’12; R. Escribano, P.M., P. Sanchez-Puertas, ’13]
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We need low-energy region (data driven) + high-energy tail
we don’t want a model rather a method providing systematics
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Our proposal: use Padé Approximants

We have published space-like data for 
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slope curvature
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[P.M.’12; R. Escribano, P.M., P. Sanchez-Puertas, ’13]
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We need low-energy region (data driven) + high-energy tail
we don’t want a model rather a method providing systematics
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We have published space-like data for 

slope curvature
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sequence of approximations, i.e., theoretical error

Our proposal: use Padé Approximants

We need low-energy region (data driven) + high-energy tail
we don’t want a model rather a method providing systematics

[P.M.’12; R. Escribano, P.M., P. Sanchez-Puertas, ’13]
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Fit to Space-like data: CELLO’91, CLEO’98, BABAR’09 and Belle’12

PN
1 (Q2)

PN
N (Q2)

up to N=5

up to N=3

Pere Masjuan

P01 P11 P21 P31 P41 P51 PDG
0.020

0.025

0.030

0.035

0.040

a Π

[P.M, ’12]
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Accurate description of the low-energy region making full use of available experimental data
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Figure 1. ⇡0 (left upper panel), ⌘ (right upper panel), and ⌘0 (lower panel) TFFs. Green-dot-dashed lines show
our best PL

1 (Q2) fit, and black-solid lines show our best PN
N(Q2) fit. Black-dashed lines display the extrapolation of

the PN
N(Q2) at Q2 = 0 and Q2 ! 1. Experimental data are from CELLO (red circles), CLEO (purple triangles),

and BABAR (orange squares) Colls. [8]. The ⇡0 figure contains also data from BELLE (blue diamonds) [9]; and
the ⌘0 figure data from L3 (blue diamonds) [10].

Table 1. ⇡0, ⌘, and ⌘0 slope bP, curvature cP, asymptotic limit, and contribution to HLBL.

bP cP limQ2!1 Q2FP�⇤�(Q2) aHLBL;P
µ

⇡0 0.0324(22) 1.06(27) · 10�3 2 f⇡ 6.49(56) · 10�10

⌘ 0.60(7) 0.37(12) 0.160(24)GeV 1.25(15) · 10�10

⌘0 1.30(17) 1.72(58) 0.255(4)GeV 1.27(19) · 10�10

and obtain, in such a way, the derivatives of the FP�⇤�(Q2) at the origin of energies in a simple,
systematic and model-independent way [5, 6].

Since the analytic properties of TFFs are not known, the kind of PA sequence to be used is not
determine in advance. We consider two di↵erent sequences and the comparison among them should
reassess our results. The first one is a PL

1 (Q2) sequence inspired by the success of the simple vector
meson dominance ansatz [5], and the second one is a PN

N(Q2) sequence which satisfy the pQCD
constrains Q2FP��⇤ (Q2) ⇠ constant. After combining both sequence’s results, slope and curvature
results are shown in Table 1, where limQ2!1 Q2FP�⇤�(Q2) from the PN

N(Q2) is also shown.
The low-energy parameters obtain with this method can be used to constrain hadronic models with

resonances used to account for the hadronic light-by-light scattering contribution part (HLBL) of the

Our proposal: use Padé Approximants
[P.M.’12; R. Escribano, P.M., P. Sanchez-Puertas, ’13]

NA62 Handbook, Mainz, 20 Jan



Dissection of the HLBL contribution
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• Extraction of meson TFF and HLBL

- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy 
Constants, constrain hadronic model and estimation of π0-HLBL

Dissection of the HLBL contribution
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1 (Q
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2
2)

(main energy range from 0 to 1 GeV2)
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The role of doubly virtual TFF data

Pere Masjuan 66

a model independent determination which error is smaller than anyone quoted in the liter-
ature so far. We conclude that even a rough estimation of such parameter with low energy
data would determine this quantity unambiguously to the best precision ever in a model-
independent way.

4.5 Pursuing the Experimental value

Finally, we try to reproduce the experimental value with the simplest P

0
1 approximant.

Therefore, we set the a1,1 parameter free and constrain it from the experiment. For conve-
nience, we parametrize the TFF

F̃⇡0�⇤�⇤(Q2
1, Q

2
2) =

1

1 + a1(Q2
1 +Q

2
2) + �a

2
1Q

2
1Q

2
2

, (17)

where �a

2
1 = 2a21 � a1,1. To reproduce the experimental value quoted by KTeV we need

� = (407, 94, 16)@(0, 1, 2)�. (18)

Taking into account he latest radiative corrections yields

� = (34, 4)@(0, 1)�. (19)

Finally, we show the double virtual TFF at equal virtualities for di↵erent values of �(a1,1)
quoted before in Fig 2.
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Figure 2: Di↵erent estimations for the double virtual TFF. The black line indicates the
factorized result. The blue band indicates our estimation 0  a1,1  2a21. The orange
line reproduces the KTeV quoted value at (0, 1)� and the purple one the result from latest
radiative corrections at (0, 1)�.

factorization: F⇡0�⇤�⇤(Q2, Q2) = F⇡0�⇤�(Q
2, 0)⇥ F⇡0��⇤(0, Q2)

our approach

KTeV KTeV + rad corr
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