Kaon physics effectively

Uli Haisch, Oxford University

NA62 Kaon Physics Handbook Workshop, University of Mainz, 22 January 2016

Who ordered that?

Ways to study new physics (NP)

Top-down approach:

- concrete model of new physics
- predict observables & correlations directly
- are smoking gun signals possible?

Bottom-up approach:

- what data can be obtained?
- how is it parametrized efficiently?
- what can be learned about model classes?

talks by Andrzej, Monika & Sebastian discussed below, see also Jorge's talk

2500 - 1 = too many

• Considering all possible flavour structures, complete set of dimension-6 SM effective field theory (SMEFT) operators consists of 1350 CP-even & 1149 CP-odd composites

[Buchmüller & Wyler, NPB (1986) 268; Grzadkowski et al., 1008.4884]

• In this talk I will try to address questions of following type: Which are dimension-6 operators that are most constrained by kaon physics? To which extent are $\Delta S = 1$, 2 channels linked? Does this rule out order of magnitude effects in rare decays? ...

Four-quark operators

 $\psi^4: Q_{LL}^{(1)} = (\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t), \dots$

Bounds on four-quark operators[†]

[†]figure assumes Wilson coefficients $c_{pr} = 1$, i.e. a generic flavour structure

Anatomy of ε_K

• Most severe flavour constraint in many non-minimal flavour violating (MFV) models due to CP violation in kaon sector:

$$\epsilon_K \propto \operatorname{Im} \left(C_{LL}^{sd} + 115 C_{LR}^{sd} \right)$$

1

 s_L

 d_L

$$\psi^2 H^2 D: \quad Q_{Hq}^{(1)} = (H^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} H) (\bar{q}_p \gamma^{\mu} q_r) , \dots$$

• After electroweak symmetry breaking, one has

$$(H^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r}) \quad \Longrightarrow \quad \bar{d}_{L}\gamma_{\mu}s_{L}Z^{\mu} + \bar{u}_{L}\gamma_{\mu}c_{L}Z^{\mu} + \dots$$

which is left-handed (LH) Z penguin known from minimal supersymmetric SM (MSSM), Randall-Sundrum (RS) models, ...

• After electroweak symmetry breaking, one has

$$(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r}) \quad \Longrightarrow \quad \bar{d}_{L}\gamma_{\mu}s_{L}Z^{\mu} + \bar{u}_{L}\gamma_{\mu}c_{L}Z^{\mu} + \dots$$

which is left-handed (LH) Z penguin known from minimal supersymmetric SM (MSSM), Randall-Sundrum (RS) models, ...

• Similarly, there is right-handed (RH) Z penguin

$$(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r}) \implies \bar{d}_{R}\gamma_{\mu}s_{R}Z^{\mu} + \dots$$

which has no counterpart in SM

• Parametrize flavour-changing Z-boson vertices by

$$\left(V_{ts}^* V_{td} C_{\rm SM} + C_{\rm NP}\right) \bar{d}_L \gamma_\mu s_L Z^\mu + \widetilde{C}_{\rm NP} \bar{d}_R \gamma_\mu s_R Z^\mu$$

where V_{ij} are Cabibbo-Kobayashi-Maskawa (CKM) elements & $C_{SM} \approx 0.8$ is value of Inami-Lim function characterizing LH Z penguin in SM

Anatomy of neutrino modes

• After summation over neutrino flavours, branching ratios of $K \rightarrow \pi v \overline{v}$ channels can be written as

$$Br(K_L \to \pi^0 \nu \bar{\nu}) \propto (Im X)^2$$
$$Br(K^+ \to \pi^+ \nu \bar{\nu}(\gamma)) \propto |X|^2$$

$$X = \frac{\lambda_t}{\lambda^5} X_t + \frac{\operatorname{Re}\lambda_c}{\lambda} X_c + \frac{1}{\lambda^5} \left(C_{\rm NP} + \widetilde{C}_{\rm NP} \right)$$

 $\lambda_i = V_{is}^* V_{id}, \quad \lambda \approx 0.23, \quad X_t \approx 1.5, \quad X_c \approx 0.4$

[see for instance Jäger, talk at first NA62 Physics Handbook Workshop]

 $|C_{\rm NP}| \le 0.5 |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le 2 |\lambda_t C_{\rm SM}|$

$$-C_{\rm NP} \propto \lambda_t C_{\rm SM}$$

in MFV models deviations very constrained

One to rule them all

• In MFV both flavour-diagonal & -changing Z vertices involving down-type quarks are governed by same Inami-Lim function

[see for example UH & Weiler, 0706.2054]

One to rule them all

$$\mu_{B_s \to \mu^+ \mu^-} = \frac{\text{Br}(B_s \to \mu^+ \mu^-)}{\text{Br}(B_s \to \mu^+ \mu^-)_{\text{SM}}} \simeq (1 + \frac{C_{\text{NP}}}{2})^2$$

 $|C_{\rm NP}| \le 0.5 |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le 2 |\lambda_t C_{\rm SM}|$

-
$$C_{\rm NP} \propto \lambda_t C_{\rm SM}$$

if $B_s \rightarrow \mu^+ \mu^-$ constraint is imposed, MFV effects in $K \rightarrow \pi v \overline{v}$ reduced a lot

• SM extensions fall into two classes, those with pure LH structure & those with both LH & RH currents:

lost, if RH interactions present

[Blanke, 0904.2528]

 $|C_{\rm NP}| \le 0.5 |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le 2 |\lambda_t C_{\rm SM}|$

- LH currents only

if new physics in ε_K is LH, only two branches of solution allowed for $K \rightarrow \pi v \overline{v}$

[Blanke, 0904.2528]

 $|C_{\rm NP}| \le 0.5 |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le 2 |\lambda_t C_{\rm SM}|$

– LH currents only

pattern of deviations is found in certain Z'boson scenarios, little Higgs models, ...

[see for instance Promberger et al., 0702169; Blanke et al., 0605214; ...]

 $|C_{\rm NP}| \le 0.5 |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le 2 |\lambda_t C_{\rm SM}|$

– LH currents only

but pattern not generic & absent in MSSM, RS, ..., as Q_{LR}^{sd} renders dominant contribution to ϵ_{K}

[see for example Buras et al., 0408142; Bauer et al., 0912.1625; ...]

Anatomy of semileptonic modes

• $K_L \rightarrow \pi^0 l^+ l^-$ modes receive contributions from (axial-)vector (A, V), (pseudo-)scalar (P, S), ... operators:

Anatomy of semileptonic modes

 In many explicit SM extensions such as RS scenarios, little Higgs models, scenarios with extra matter, ..., contribution from Q_A dominates over those of Q_V, Q_S & Q_P:

$$C_V \propto \left(\frac{1}{s_w^2} - 4\right) \left(C_{\rm NP} + \tilde{C}_{\rm NP}\right) \approx 0.4 \left(C_{\rm NP} + \tilde{C}_{\rm NP}\right)$$
$$C_A \propto -\frac{1}{s_w^2} \left(C_{\rm NP} - \tilde{C}_{\rm NP}\right) \approx -4.4 \left(C_{\rm NP} - \tilde{C}_{\rm NP}\right)$$
$$C_{S,P} \propto m_s m_l$$

Correlations of semileptonic modes

[Mescia, Smith & Trine, 0606081]

Correlations of semileptonic modes

[Mescia, Smith & Trine, 0606081]

Correlations of semileptonic modes

----- SM rescaled

V, Aonly

rare semileptonic kaon channels also allow to disentangle S, P from V, A contributions

[Mescia, Smith & Trine, 0606081]

Anatomy of $K_L \rightarrow \mu^+\mu^-$

• Short-distance (SD) part of purely leptonic decay takes form

$$Br(K_L \to \mu^+ \mu^-)_{SD} \propto (\text{Re } Y)^2$$
$$Y = \frac{\lambda_t}{\lambda^5} Y_t + \frac{\lambda_c}{\lambda} Y_c + \frac{1}{\lambda^5} \left(C_{\text{NP}} - \tilde{C}_{\text{NP}} \right)$$
$$Y_t \approx 0.95 , \quad Y_c \approx 0.12$$

& is bounded

$$Br(K_L \to \mu^+ \mu^-)_{SD} < 2.5 \cdot 10^{-9} \approx 3 Br(K_L \to \mu^+ \mu^-)_{SD}^{SM}$$

[Isidori & Unterdorfer, 0311084]

 $|C_{\rm NP}| \le 0.5 |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le 2 |\lambda_t C_{\rm SM}|$

 $C_{\rm NP} = |C_{\rm NP}| \, e^{i\phi_C}$

disfavoured by $K_L \to \mu^+ \mu^-$

Anatomy of ϵ'/ϵ

Prediction for ε'/ε very sensitive to interplay between QCD (Q₆)
 & electroweak (Q₈) penguin operators:

$$\frac{\epsilon'}{\epsilon} \propto -\operatorname{Im} \left[\lambda_t \left(-1.7 + 15.3B_6 - 7.5B_8 \right) + \left(1.5 + 0.1B_6 - 13.6B_8 \right) \left(C_{\mathrm{NP}} - \widetilde{C}_{\mathrm{NP}} \right) \right]$$

$$\frac{d}{s} = \left[\begin{array}{c} g \\ q \end{array} \right] \xrightarrow{q} B_6 \propto \langle (\pi\pi)_{I=0} |Q_6|K \rangle \approx 0.6 \\ \frac{d}{s} = \left[\begin{array}{c} Z \\ q \end{array} \right] \xrightarrow{q} B_8 \propto \langle (\pi\pi)_{I=2} |Q_8|K \rangle \approx 0.8 \end{array}$$

[Bai et al., 1505.07863; Buras et al., 1507.06345]

Anatomy of ϵ'/ϵ

 Let us now assume that B_{6,(8)} parameters from lattice are correct. In such a case one finds, that SM value deviates by almost 30 from experimental world average by NA48 & KTeV

$$\left(\frac{\epsilon'}{\epsilon}\right)_{\rm SM} = (1.9 \pm 5.4) \cdot 10^{-4}$$

$$\left(\frac{\epsilon'}{\epsilon}\right)_{\rm exp} = (16.6 \pm 2.3) \cdot 10^{-4}$$

This disfavours destructive new-physics effects in ϵ'/ϵ

[Buras et al., 1507.06345]

Decoupling $K_L \rightarrow \pi^0 v \overline{v} \& \epsilon' / \epsilon$

• In order to have huge effects in $K_L \rightarrow \pi^0 vv$, one needs to have strong cancellations in ε'/ε , e.g. between Z & gluon penguin. Don't know of a ultraviolet complete model where this happens

Chromomagnetic penguins in ϵ'/ϵ

Chromomagnetic penguins (Q^(')_{8g}) can also give large correction to ε'/ε of form:

$$\left(\frac{\epsilon'}{\epsilon}\right)_{8g^{-}} \simeq 3B_{8g^{-}} \frac{\operatorname{Im}(C_{8g} - C'_{8g})}{G_F m_K} \simeq 520 B_{8g^{-}} \operatorname{Im}(C_{8g} - C'_{8g}) \operatorname{TeV}$$

$$B_{8g^-} \in [1,4]$$
 \longrightarrow $B_{8g^-} = 0.29 \pm 0.11$

[Buras et al., 9908371]

[Constantinou et al., 1412.1351]
Chromomagnetic penguins in ϵ'/ϵ

• In explicit models such as MSSM, RS, ... there is no strict correlation with Z penguin. Often possible to decouple effects

Chromomagnetic penguins in ϵ'/ϵ

$$C_{\rm NP} \propto \frac{A^2 \lambda^5}{Y_*^2 F_{t_R}^2}, \quad \tilde{C}_{\rm NP} \propto \frac{m_d m_s F_{t_R}^2}{A^2 \lambda^5 m_t^2}, \quad C_{8g,\rm NP}^{(\prime)} \propto \left\{\lambda m_s, \frac{m_s}{\lambda}\right\} \frac{Y_*^2}{m_t}$$

[see for example Bauer et al., 0912.1625]

Up-quark Z-penguin operators

$$\psi^2 H^2 D$$
: $Q_{Hu} = (H^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} H) (\bar{u}_p \gamma^{\mu} u_r), \ldots$

Anomalous Ztī couplings

• $\psi^2 H^2 D$ composites with third generation quarks can be constrained directly (single-top production, pp $\rightarrow Zt\bar{t}$, ...), but also contribute to B & K decays, $Z \rightarrow b\bar{b}$ & T via loops

Ztīt couplings: indirect tests

[Brod et al., 1408.0792]

Ztīt couplings: indirect tests

[Brod et al., 1408.0792]

Ztīt couplings: comparison

[Röntsch & Schulze, 1404.1005; Brod et al., 1408.0792]

• Indirect bounds stronger than direct limits for $Zt\bar{t}$ couplings. Still worth looking at pp $\rightarrow Zt\bar{t}$, as cancellation in former case possible

Non-fermion operators

$$H^2 D^2 X$$
: $Q_{HW} = (D_\mu H)^{\dagger} \tau^i (D_\nu H) W^{i,\mu\nu}, \dots$

Triple gauge couplings

• H²D²X operators contribute to triple gauge couplings (TGCs):

$$\mathcal{L}_{WWV} = -ig_{WWV} \left[g_1^V \left(W_{\mu\nu}^+ W^{-\mu} V^{\nu} - W_{\mu}^+ V_{\nu} W^{-\mu\nu} \right) \right]$$

[Hagiwara et al., NPB (1987) 282; PRD (1993) 48]

Direct probes of anomalous TGCs

• Searches for anomalous TGCs have been performed at LEP, Tevatron & LHC (WW, WZ, W γ , Z γ , ... production). They can also be probed in Higgs physics (pp \rightarrow h \rightarrow ZZ, ...)

Indirect tests of anomalous TGCs

 Anomalous TGCs contribute to observables such as B → X_sγ, B → K^{*}μ⁺μ⁻, B_s → μ⁺μ⁻, K → πνν & ε'/ε as well as Z → bb̄ from one-loop level & beyond

Anomalous TGCs from flavour

• $b \rightarrow s\mu^+\mu^-$ anomalies lead to 3 σ deviation of best fit from SM

Bounds on H²D²X operators

• Indirect bound on Δg_1^Z from $B_s \rightarrow \mu^+ \mu^-$ alone slightly better than direct LEP II constraint

[Falkowski et al., 1508.00581]

$$\Delta g_1^Z = \frac{M_Z^2}{2\Lambda^2} c_{HW} = \begin{cases} 0.017 \pm 0.023 & \text{(direct)} \\ -0.009 \pm 0.019 & \text{(indirect)} \end{cases}$$

[Bobeth & UH, 1503.04829]

Anomalous TGCs from ϵ'/ϵ

$$\left(\frac{\epsilon'}{\epsilon}\right)_{\rm SM} = (16.5 \pm 2.6) \cdot 10^{-4}$$

 ε'/ε can provide meaningful additional constraints on anomalous TGCs & resolve blind directions

Anomalous TGCs from ϵ'/ϵ

 ε'/ε can provide meaningful additional constraints on anomalous TGCs & resolve blind directions

Who ordered that?

A toy model for 750 GeV excess

 $\Lambda = 1 \,\mathrm{TeV}$

Let's add flavour violation

 $\Lambda = 1 \,\mathrm{TeV}$

We get contributions to $\varepsilon_K \& \varepsilon'/\varepsilon$

†numbers assume shifts of {0.25, 0.5, 1} \cdot 10⁻³ in ϵ'/ϵ & B_{8g}⁻ = 0.3

We get contributions to $\varepsilon_K \& \epsilon'/\epsilon$

 $\Lambda = 1 \,\mathrm{TeV}$

shift of $0.25 \cdot 10^{-3}$ in ϵ'/ϵ shift of $0.5 \cdot 10^{-3}$ in ϵ'/ϵ shift of $1 \cdot 10^{-3}$ in ϵ'/ϵ

> $\epsilon_{\rm K}$ constraint satisfied, $|c_{\rm g}|$ values to right disfavoured

Backup

Anomalous tTZ couplings

,

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{\substack{i=(3)\\\phi Q, \phi Q, \phi u}} \frac{C_i}{\Lambda^2} O_i + \dots$$

$$O_{\phi Q}^{(3)} = \left(\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \sigma^{a} \phi\right) \left(\bar{Q}_{L,3} \gamma^{\mu} \sigma^{a} Q_{L,3}\right)$$
$$O_{\phi Q} = \left(\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi\right) \left(\bar{Q}_{L,3} \gamma^{\mu} Q_{L,3}\right),$$
$$O_{\phi u} = \left(\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi\right) \left(\bar{t}_{R} \gamma^{\mu} t_{R}\right)$$

"Closed" tTZ couplings

$$\mathcal{L}_{t\bar{t}Z} = g_L \,\bar{t}_L Z t_L + g'_L V_{ti}^* V_{tj} \bar{d}_{L,i} Z d_{L,j} + g_R \bar{t}_R Z t_R$$
$$+ \left(k_L \,\bar{t}_L W^+ b_L + \text{h.c.} \right)$$

"Open" tīZ couplings

$$g_L \propto rac{v^2}{\Lambda^2} \left(C_{\phi Q}^{(3)} - C_{\phi Q}
ight) , \qquad g_R \propto rac{v^2}{\Lambda^2} C_{\phi u}$$

Flavor changing neutral currents

[see e.g. D'Ambrosio et al., hep-ph/0207036]

In fact, neutral meson mixing & other flavor changing processes test structure of Yukawa interactions beyond tree level

$$b_{L} \quad (Y_{u}^{\dagger})_{qb} \quad (Y_{u})_{q'd} \quad d_{L}$$

$$B \quad q_{R} \quad W_{L} \quad q'_{R} \quad \bar{B}$$

$$W_{L} \quad Q'_{R$$

$$\implies \frac{m_t^2}{16\pi^2 m_W^4 m_t^4} y_t^4 \left(V_{tb}^* V_{td} \right)^2 \propto \frac{g_2^2}{16\pi^2 m_W^4} m_t^2 \left(V_{tb}^* V_{td} \right)^2$$

[http://en.wikipedia.org/wiki/1987]

Events:

- • •
- February 23 SN 1987A, the first "naked-eye" supernova since 1604, is observed

[http://en.wikipedia.org/wiki/1987]

Events:

• ...

- February 23 SN 1987A, the first "naked-eye" supernova since 1604, is observed
- ...
- March 9 The Irish rock band U2 releases their studio album "The Joshua Tree"

THE JOSHUA TREE U 2

[http://en.wikipedia.org/wiki/1987]

Events:

• • • •

February 23 – SN 1987A, the first "naked-eye" supernova since 1604, is observed

• ...

 March 9 – The Irish rock band U2 releases their studio album "The Joshua Tree"

• ...

 May 28 – 18-year-old West German pilot Mathias Rust evades Soviet air defenses & lands a private plane on Red Square in Moscow

[http://en.wikipedia.org/wiki/1987]

Events:

• • • •

- February 23 SN 1987A, the first "naked-eye" supernova since 1604, is observed
- ...
- March 9 The Irish rock band U2 releases their studio album "The Joshua Tree"

• ...

 May 28 – 18-year-old West German pilot Mathias Rust evades Soviet air defenses & lands a private plane on Red Square in Moscow

• ...

• June 12 – During a visit to Berlin, Germany, U.S. President Ronald Reagan challenges Soviet Premier Mikhail Gorbachev to tear down the Berlin Wall

[http://en.wikipedia.org/wiki/1987]

Events:

• ...

- February 23 SN 1987A, the first "naked-eye" supernova since 1604, is observed
- ...
- March 9 The Irish rock band U2 releases their studio album "The Joshua Tree"

• ...

 May 28 – 18-year-old West German pilot Mathias Rust evades Soviet air defenses & lands a private plane on Red Square in Moscow

• ...

• June 12 – During a visit to Berlin, Germany, U.S. President Ronald Reagan challenges Soviet Premier Mikhail Gorbachev to tear down the Berlin Wall

• ...

December 9 – Microsoft releases Windows 2.0

Not on list: $\Upsilon(4S) \rightarrow B^0 \overline{B}^0 \rightarrow B^0 B^0$

[ARGUS, Phys. Lett. B192, 245 (1987)]

Implications for top mass

[ARGUS, Phys. Lett. B192, 245 (1987)]

r > 0.09(90% CL) x > 0.44 $B^{1/2} f_{\text{B}} \approx f_{\pi} < 160 \text{ MeV}$ $m_{\text{b}} < 5 \text{ GeV}/c^{2}$ $\tau < 1.4 \times 10^{-12} \text{s}$ $|V_{\text{td}}| < 0.018$ $\eta_{\text{OCD}} < 0.86$ $m_{\text{t}} > 50 \text{ GeV}/c^{2}$

this experiment this experiment B meson (≈pion) decay constant b-quark mass B meson lifetime Kobayashi-Maskawa matrix element QCD correction factor t quark mass

By 1987 it was general belief that top mass was much smaller than 50 GeV, but ARGUS found that it is (probably significantly) larger

Top mass from unitarity triangle

[CKMfitter, CKM14 results]

$$m_t^{\text{pole}} = (169 \pm 5) \text{ GeV}$$

Boxes & Z penguins

[see e.g. Buras, hep-ph/9806471]

Within SM, only two 1-loop topologies lead to a quadratic dependence on top mass

Top mass from $B_s \rightarrow \mu^+ \mu^-$: Present

[Bobeth et al., 1311.0903]

$$\operatorname{Br}(B_s \to \mu^+ \mu^-)_{\mathrm{SM}} = 3.65 \left(\frac{m_t^{\mathrm{pole}}}{173.1 \,\mathrm{GeV}}\right)^{3.06} (1 \pm 6.4\%) \cdot 10^{-9}$$

 $Br(B_s \to \mu^+ \mu^-)_{exp} = 2.8 \left(1^{+25\%}_{-21\%}\right) \cdot 10^{-9} \quad [CMS \& LHCb, |4||.44|3]$

$$\Rightarrow m_t^{\text{pole}} = (158 \pm 13) \text{ GeV}$$

$B_s \rightarrow \mu^+ \mu^-$ relative error budget

[Bobeth et al., 1311.0903]

Improvements in lattice QCD calculations may reduce errors due to decay constant $f_{Bs} \& V_{cb}$. Might result in future total uncertainty of 3%

Top mass from $B_s \rightarrow \mu^+ \mu^-$: Reach

[Bobeth et al., 1311.0903]

$$\operatorname{Br}(B_s \to \mu^+ \mu^-)_{\mathrm{SM}} = 3.65 \left(\frac{m_t^{\mathrm{pole}}}{173.1 \,\mathrm{GeV}}\right)^{3.06} (1 \pm 3\%) \cdot 10^{-9}$$

$$Br(B_s \to \mu^+ \mu^-)_{exp} = 3.65 (1 \pm 4\%) \cdot 10^{-9}$$
 [LHCb, 1208.3355]

$$m_t^{\text{pole}} = (173.0 \pm 2.8) \text{ GeV}$$

Top mass from $K_L \rightarrow \pi^0 \nu \overline{\nu}$

[Brod et al., 1009.0947]

I-loop corrections to ρ

[cf. Veltman, Nucl. Phys. B123, 89 (1977)]

Dominant I-loop corrections due to top exchange & proportional to y_t^2 . In contrast, Higgs contribution scales as $g_1^2 \ln(m_h^2/m_Z^2)$

History of m_t from electroweak fit

[Gfitter, November 2014]

Even before top discovery at Fermilab in 1995, global electroweak (EW) fits have always been able to predict mass correctly

Top mass from EW fit: Present

[Kogler, Moriond EW 2015]

$$m_t^{\text{pole}} = \left(177.0 \pm 2.3_{M_W, \sin^2 \theta_{\text{eff}}^f} \pm 0.6_{\alpha_s} \pm 0.5_{\Delta \alpha_{\text{had}}} + 0.4_{M_Z}\right) \text{ GeV}$$