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Note

muons are among the most  reliable
objects within LHCb



the electron channel would be an
obvious culprit (brems + low stats).

But there is no disagreement



➊ + ➋ + ➌ ⇒ There seems to be BSM LFNU

and the effect is in µµ, not ee
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➍ B→K *μμP'
5
  deficit  in angular                        data

 Each of the above points, taken singly, is at best a 3 effect

⇒ Early to get excited

Yet: Q1:   Can we (easily) make sense of  ➊ to ➎ ?

Q2:   What are the most immediate signatures to expect ?



it occurs also in the low-q2   range

theoretical error still debated

if it's BSM, it will show up in
other (of the many) angular
observables

☑

☑

☒
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(This basis doesn't yet even exist. We are above the EWSB scale.)



 Rotating q and ℓ to the mass eigenbasis generates LFV interactions.
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SM(mb) ≈ −4.4

C9
SM(mb) ≈ −C10

SM(mb)
i.e. in the SM

also the lepton current
has nearly V – A structure

C9
(ℓ) ≈ −C10

(ℓ)

We assume the above V – A structure to hold also beyond the SM, namely

C9,10
(ℓ) = C9,10

SM + C9,10
(ℓ) ,NPwith

[Bobeth, Misiak, Urban, 99]

Such an hypothesis provides a successful fit to the discussed data.
See Altmannshofer-Straub, EPJC 2015.

cf. also Hiller, Schmaltz;Ghosh, Nardecchia,
Renner; Hurth, Mahmoudi,Neshatpour

[Khodjamirian et al., 10]
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τ ' L ≡ (ℓ ' L)3 = (U L
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Explaining b → s data
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 Wilson coeffs. imply
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Note as well
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BR (Bs→μμ)exp
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=
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=
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implying (within our model) the correlations

BR (Bs→μμ)exp
BR (Bs→μμ)SM

≃ RK ≃
BR(B+→K+μμ)exp
BR(B+→K+μμ)SM

Another good reason 
to pursue accuracy in

the B
s  → µµ measurement



  

D. Guadagnoli, B- and K-physics LFV

  
More signatures
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PRL 14

must actually be made invariant under  SU(3)
c
 x SU(2)

L
 x U(1)

Y
 



  

D. Guadagnoli, B- and K-physics LFV

  
More signatures

 Being defined above the EWSB scale, our assumed operator G b̄ ' L γ
λb ' L τ̄ 'L γλ τ ' L
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More signatures

 Being defined above the EWSB scale, our assumed operator G b̄ ' L γ
λb ' L τ̄ 'L γλ τ ' L

For a recent discussion:
Alonso, Grinstein, Martin-Camalich,

PRL 14

b̄ 'L γ
λb ' L τ̄ ' Lγλ τ ' L

SU(2)
L

inv.

Q̄ ' L γ
λQ ' L L̄ ' Lγλ L 'L

Q̄ ' L
i γλQ ' L

j L̄ ' j L γλ L' L
i





[neutral-current int's only]

[also charged-current int's]

 Thus, the generated structures are all of:

t ' t ' ν ' τ ν ' τ , t ' t ' τ ' τ ' , b ' b ' ν ' τ ν ' τ , b ' b ' τ ' τ ' , t ' b ' τ ' ν ' τ

 After rotation to the mass basis (unprimed), the last structure contributes to Γ(b→c τ ν̄i)

Can explain BaBar deviations on R(D(*)) =
BR (B̄→D(*)+ τ- ν̄τ)
BR (B̄→D(*)+ℓ- ν̄ℓ)

must actually be made invariant under  SU(3)
c
 x SU(2)

L
 x U(1)

Y
 

See: 

Bhattacharya, Datta, London, 

Shivashankara, PLB 15

(D* channel confirmed by LHCb)
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LFV model signatures

BR (B+→K+μ e)
BR (B+→K+μμ)

=
βNP
2

(βSM+βNP)
2 ⋅

|(U L
ℓ)31|

2

|(U L
ℓ)32|

2
⋅ 2☑
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BR (B+→K +μe)
BR (B+→K +μμ)

=
βNP
2

(βSM+βNP)
2 ⋅

|(U L
ℓ)31|

2

|(U L
ℓ)32|

2 ⋅ 2
µ+e– & µ– e+ 

modes

BR(B+→K +μe) < 2.2×10−8 ⋅
|(U L

ℓ)31|
2

|(U L
ℓ)32|

2

The current BR(B+ → K+ µe)
limit yields the weak bound

|(U L
ℓ)31 /(U L

ℓ)32| < 3.7

☑

= 0.1592 
according to R

K
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LFV model signatures

BR (B+→K +μe)
BR (B+→K +μμ)

=
βNP
2

(βSM+βNP)
2 ⋅

|(U L
ℓ)31|

2

|(U L
ℓ)32|

2 ⋅ 2
µ+e– & µ– e+ 

modes

BR(B+→K +μe) < 2.2×10−8 ⋅
|(U L

ℓ)31|
2

|(U L
ℓ)32|

2

The current BR(B+ → K+ µe)
limit yields the weak bound

|(U L
ℓ)31 /(U L

ℓ)32| < 3.7

☑

☑ would be even more promising, as it scales with BR(B+→K +μ τ) |(U L
ℓ)33 /(U L

ℓ)32|
2

Phase-space corrections are more important than in the µµ and ee cases, 
but easy to account for

= 0.1592 
according to R

K

(a potential enhancement factor, actually)
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BR (Bs→μe)
BR(Bs→μμ)

=
βNP
2

(βSM+βNP)
2 ⋅

|(U L
ℓ)31|

2

|(U L
ℓ)32|

2☑

☑ Again, B
s
 → µ  would be even more promising

Analogous considerations hold for purely leptonic LFV decays

  
LFV model signatures
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More quantitative LFV predictions

 More quantitative LFV predictions require knowledge of the U
L
ℓ

(U L
ℓ )† Y ℓ U R

ℓ = Ŷ ℓ

Reminder: 
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Reminder: 



  

D. Guadagnoli, B- and K-physics LFV

  
More quantitative LFV predictions

 More quantitative LFV predictions require knowledge of the U
L
ℓ

One approach: DG, Lane, PLB 2015

Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent.   Choosing 3 to be the independent ones 
allows to predict one SM Yukawa in terms of the other two.

One can thereby determine Yℓ in terms of Y
u
 and Y

d

But we don't know Y
u
 and Y

d
 entirely, so we take an (independently motivated) model for them,

reproducing quark masses and the CKM matrix [Martin-Lane, PRD 2005].

(U L
ℓ )† Y ℓ U R

ℓ = Ŷ ℓ

Reminder: 
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More quantitative LFV predictions

 More quantitative LFV predictions require knowledge of the U
L
ℓ

One approach: DG, Lane, PLB 2015

Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent.   Choosing 3 to be the independent ones 
allows to predict one SM Yukawa in terms of the other two.

One can thereby determine Yℓ in terms of Y
u
 and Y

d

But we don't know Y
u
 and Y

d
 entirely, so we take an (independently motivated) model for them,

reproducing quark masses and the CKM matrix [Martin-Lane, PRD 2005].

Another approach: Boucenna, Valle, Vicente, PLB 2015

One has (U
L
ℓ)† U

L
ν = PMNS matrix

(U L
ℓ )† Y ℓ U R

ℓ = Ŷ ℓ

Reminder: 
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More quantitative LFV predictions

 More quantitative LFV predictions require knowledge of the U
L
ℓ

One approach: DG, Lane, PLB 2015

Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent.   Choosing 3 to be the independent ones 
allows to predict one SM Yukawa in terms of the other two.

One can thereby determine Yℓ in terms of Y
u
 and Y

d

But we don't know Y
u
 and Y

d
 entirely, so we take an (independently motivated) model for them,

reproducing quark masses and the CKM matrix [Martin-Lane, PRD 2005].

Another approach: Boucenna, Valle, Vicente, PLB 2015

One has (U
L
ℓ)† U

L
ν = PMNS matrix

Taking U
L
ν = 1,  U

L
ℓ can be univocally predicted

(U L
ℓ )† Y ℓ U R

ℓ = Ŷ ℓ

Reminder: 
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☑ An interesting signature outside B physics would be  K → (π) ℓ ℓ'

  
LFV model signatures

Note that, while at LHCb lots of K mesons are produced, they decay 
too late for the detector size (except the K

S
)
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☑ An interesting signature outside B physics would be  K → (π) ℓ ℓ'

The “K-physics analogue” of R
K
:

BR(K→πμμ)
BR(K→π e e)

is long-distance dominated  [see D'Ambrosio et al., 1998]
hence potentially less promising

  
LFV model signatures

Note that, while at LHCb lots of K mesons are produced, they decay 
too late for the detector size (except the K

S
)

See however Crivellin et al., 1601.00970 for a recent reappraisal

Tunstall's  talk
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The interaction advocated in GGL

can also manifest itself in K → (π) ℓ ℓ' , for example

  
LFV in K decays

HNP = G b̄ ' Lγ
λb ' L τ̄ ' Lγλ τ ' L



K L
0 → e±μ∓

K + → π+ e±μ∓
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The interaction advocated in GGL

can also manifest itself in K → (π) ℓ ℓ' , for example

  
LFV in K decays

HNP = G b̄ ' L γ
λb ' L τ̄ 'L γλ τ ' L

BNL E871 Collab., PRL 1998

Exp limits





K L
0 → e±μ∓

K + → π+ e±μ∓

BR(K L
0 → e±μ∓) < 4.7×10−12

BNL E865 Collab., PRD 2005BR (K + → π+μ +e−) < 1.3×10−11

BR (K + → π+μ− e+) < 5.2×10−10 BNL E865 Collab., PRL 2000
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Defining the basic quantity

  
LFV in K decays

β(K ) =
G(U L

d)32
* (U L

d )31(U L
ℓ)31
* (U L

ℓ)32
4GF
√2

V us
*
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I obtain

Γ(K L
0 → e±μ∓)
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= |β(K )|2 Γ(K + → π+μ± e∓)
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= 4 |β(K )|2
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Γ(K L
0 → e±μ∓)

Γ(K + → μ+ νμ)
= |β(K )|2 Γ(K + → π+μ± e∓)

Γ(K + → π0μ+ νμ)
= 4 |β(K )|2

|β(K )|2 = 2.15×10−14

BR (K L
0 → e±μ∓) ≈ 6×10−14

BR (K + → μ+ νμ) ≈ 64%

with

Γ(K +)/Γ(K L
0 )≈ 4.2
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Defining the basic quantity

  
LFV in K decays

β(K ) =
G(U L

d)32
* (U L

d )31(U L
ℓ)31
* (U L

ℓ)32
4GF
√2

V us
*

within model A of DG, Lane, PLB 2015



I obtain

Γ(K L
0 → e±μ∓)

Γ(K + → μ+ νμ)
= |β(K )|2 Γ(K + → π+μ± e∓)

Γ(K + → π0μ+ νμ)
= 4 |β(K )|2

|β(K )|2 = 2.15×10−14

BR (K L
0 → e±μ∓) ≈ 6×10−14 BR(K + → π+μ± e∓) ≈ 3×10−15

BR (K + → μ+ νμ) ≈ 64%

with

Γ(K +)/Γ(K L
0 )≈ 4.2

BR (K + → π0μ+ νμ) ≈ 3%

with



  

Spares



  

  Frequently made objection: 
  what about the SM? It has LFNU, but no LFV

D. Guadagnoli, LFV in B decays

Take the SM with zero ν masses.

 Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis
(hence no LFV)

Bottom line: in the  SM+ν  there is LFNU, but LFV is nowhere to be seen (in decays)

But nobody ordered that the reason ( =tiny mν ) behind the above conclusion  

be at work also beyond the SM


So, BSM LFNU         BSM LFV (i.e. not suppressed by mν )⇒

Or more generally, take the SM plus a minimal mechanism for ν masses.

 Physical LFV will appear in W couplings, but it's suppressed by powers of  ( mν / mW )
2



  

  Some Exceptions

D. Guadagnoli, LFV in B decays

Alonso, Grinstein, Martin-Camalich,  1505.05164 

 Take Minimal Flavor Violation (MFV) in the lepton sector

By def, in MFV the only sources of flavor violation are the SM ones, i.e. the SM Yukawas

Tricky to define MFV in the lepton sector: 
we don't know whether LH ν are Dirac or Majorana and whether RH ν exist at all.

Must-read ref: Cirigliano-Grinstein-Isidori-Wise, NPB 2005

 Bottom line: In such scenarios, LFV couplings are related to LH ν masses.

(Neglecting CPV in the LH ν mass matrix, the above statement is generic within MLFV.)

Low-energy LFV processes are generally small, being suppressed by LH ν masses.

(This brings back to the previous slide)

 “Generally small” means:

Barring MFV models where sizable LFV and small LH ν masses can be engineered to be so
by tuning a dimensionful parameter to be small. (Back to fine tuning.)



  

  Some Exceptions

D. Guadagnoli, LFV in B decays

Celis et al., PRD 2015

 Take a Branco-Grimus-Lavoura (BGL) global symmetry.

BGL models are a proposal to solve the monstrous flavor problem of general 
2HDM (tree-level FCNCs)

They engineer an Abelian global symmetry that relates all Higgs-quark flavor-changing 
couplings to CKM entries

 Gauge this symmetry, and require anomaly cancellation.

 This requirement yields diagonal charged-lepton Yukawa couplings.

BSM LFNU but no BSM LFV 

Plausible mechanism?  Fine-tuning in model space?
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More quantitative LFV predictions

LFV predictions in one of the two scenarios of [DG, Lane]

B+ → K+ µ τ∓ B+ → K+ e τ∓ B+ → K+ e µ∓

1.14 × 10–8 3.84 × 10–10 0.52 × 10–9

< 4.8 × 10–5 < 3.0 × 10–5 < 9.1 × 10–8

B
s
 → µ τ∓ B

s
 → e τ∓ B

s
 → e µ∓

1.37 × 10–8 4.57 × 10–10 1.73 × 10–12

— — < 1.1 × 10–8Exp:

Exp:

All predictions are phase-space corrected.
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