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Introduction

The rare decays KL,S → `+`− are a very usefull source of
information on the structure of ∆S = 1
�avor-changing-neutral-current (FCNC) transition.

Both decays contain long and short distance compoments

The KL decays have been measured, the KS decays not yet

B(KL → µ+µ−) = 6.84 ∗ 10−9
B(KL → e+e−) = 9 ∗ 10−12
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KL → µ+µ−

Leading long-distance a) and short-distance contributions b)
[Isidori, Unterdorfer 03]
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KS → `−`+

ℓ+

ℓ−

γ

γ

π+

π−

KS

Not yet observed

LHCb: Br(KS → µ+µ−) < 9 · 10−9
[Aaij et. al . 13]

Standart model prediction Br(KS → µ+µ−) = 5 · 10−12
[Ecker ,Pich, 91]
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The KS decay contains the CP-violating part of the FCNC
s → d`+`−

This transition is given in the Standart Model (SM) by box
and penguin diagrams

B(KS → µ+µ−)SMshort = 10−5 | Im(V ∗tsVtd) |2 ' O(10−13)

Measurement of KS → µ+µ−

→ New Physics
→ Bounds on CP-violating phase of s → d`+`−
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ℓ+

ℓ−

γ

γ

π+

π−

KS

Lowest order in χPT is the 2 loop diagram. [Ecker ,Pich, 91]

Next order in χPT involves a lot of unknown LEC's

Includes the sub amplitude KS → γ∗γ∗ with both photons
o�-shell

The momenta �owing through the diagram is s = M2
K , which

is large enough to produce two on-shell pions. Therefore we
expect large corrections due to �nal state interactions.

We use dispersive techniques to improve the calculation
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KS → γ∗γ∗

KS

γ∗

γ∗

KS

Hw

γ∗

γ∗

In a decay kinematics are �xed

How to formulate a dispersion relation? Integrate over the
kaon mass?

Dispersion relations relate di�erent observable quantities

Solution is to give the weak Hamiltonian momentum
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〈γ∗(q1)γ∗(q2, )|Hw (H)|KS(k)〉 = i(2π)4e2δ4(k+H−q1−q2)ε∗µ1 ε
∗ν
2 Aµν

A+− W ∗
µν

k

H

q1, µ

q2, ν

s = (k + H)2 = (q1 + q2)2

Work done in collaboration with
G.Colangelo and L.Tunstall
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A+− W ∗
µν

k

H

q1, µ

q2, ν

Hw (H) is the weak Hamiltonian with ∆s = 1

The Hamiltonian has to carry momentum H, such that we can
formulate a dispersion relation

Sending H → 0 yields the physical amplitude
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Aµν = Σ5
i=1 T

i
µν Ai

To get these Lorentz structures, one writes down all possible
terms with indices µ, ν which are built of (q1, q2, k)→10 terms

Impose the ward-identities qµ1Aµν = qν2Aµν = 0

Then one has to make sure that there are no kinematic zeros
and poles in the Lorentz structures T i

µν

Finally one has �ve scalar functions Ai which are suitable for
dispersion relations

The limit H → 0 reduces the set to two structures
T 1
µν = q1 · q2gµν − q2,µq1,ν

T 2
µν = q21q

2
2gµν + q1 · q2q1,µq2,ν − q21q2,µq2,ν − q22q1,µq1,ν

11 / 27



Introduction
KS → γ∗γ∗

Applications
Outlook and conclusion

Dispersion relation

Cauchy's theorem:

f (z) =
1

2πi

∮
f (z ′)

z ′ − z
dz ′
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f (s) =
1

π

∫ ∞
4M2

π

Imf (s ′)

s ′ − s − iε
ds

In cases when f (s) does not fall down fast enough for s →∞
one uses subtractions

f (s) = f (s0) +
s − s0
π

∫ Λ2

4M2
π

Imf (s ′)

(s ′ − s0)(s ′ − s − iε)
ds
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The dispersion relation yields the full amplitude, provided one
knows the imaginnary part. The latter is related by unitarity to
subamplitudes.

ImAµν =
1

2

∫
dφ2 A+−(s)W ∗

µν(s, q21 , q
2
2)

A+− = 〈π+π−|Hw |KS〉
εµενWµν = 〈γ∗γ∗|π+π−〉

A+− W ∗
µν

k

H

q1, µ

q2, ν
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The amplitude K → ππ was calculated as a scattering process
with dispersion relations

[Büchler et. al.,01],[Mercolli, 12]

Since it is a scattering proces it makes sense to do a partial
wave expansion
〈π+π−|Hw |KS〉 = A+−(s, t, u) = Σ`a

0
` (s)P`(z)

They found that only the s-wave is important and all the
higher order waves can be neglected
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A+−(s) = c0 Ω0
0(s)

(
1 + F [X ] s

M2
K

)
With the Omnes function

Ω0
0(s) = exp

(
s

π

∫ Λ2

4Mπ2

δ00(s ′)

s ′(s ′ − s)
ds ′

)
δ00(s ′) are the phase shifts of of ππ scattering.

AχPT+− = G8Fπ
4

(M2
K + 3s − 4M2

π)

F [X ] estimates the errors of higher chiral orders and the value
of X is typically veried between ±0.3

F [X ] =
3M2

K (1 + X )

M2
K −M2

π(4 + 3X )
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A+− W ∗
µν

k

H

q1, µ

q2, ν

ImAµν =
1

2

∫
dφ2 A+−(s)W ∗

µν(s, q21 , q
2
2)

A+− = 〈π+π−|Hw |KS〉
εµενWµν = 〈γ∗γ∗|π+π−〉
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The amplitude ππ → γγ can be decomposed into �ve lorentz
structures times scalar functions Wµν = Σ5

i=1 T
i
µν Wi

The integration over the two body phase space contains
angular integrations, which projects the Amplitude onto
helicity partial waves

h0++(s, q21 , q
2
2) =

1

2

∫ 1

−1
dcosθ εµ+ε

ν
+Wµν(s, q21 , q

2
2) .

We need the s-waves

W1 =
2

λ(s, q21 , q
2
2)

[
2
√
q21q

2
2h

0
00(s)− (s − q21 − q22)h0++(s)

]
,

W2 =
2

λ(s, q21 , q
2
2)

− s − q21 − q22√
q21q

2
2h

0
00(s) + 2h0++(s)

 ,
W3 = W4 = W5 = 0 .
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ImAµν(s) =
1

16π

√
1− 4M2

π

s
A+−(s)

(
T 1
µνW

∗
1 + T 2

µνW
∗
2

)
= T 1

µνImA1 + T 2
µνImA2

A once subtracted dispersion relation yields the full amplitude

Ai = ai +
s − s0
π

∫ Λ2

4M2
π

ds ′
ImAi (s

′)

(s ′ − s0)(s ′ − s)
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Applications KS → γγ

q21 = q22 = 0 , Γ =
M3

K
32π |4παA1|2

How do we �x the subtraction constant a1?

Use χPT below threshold, where the rescattering e�ects are
small

AχPTγγ (s) = α
2
√
2π
G8Fπ(M2

K +3s−4M2
π)F (s,M2

π)−[M2
π → M2

K ]

F (s,M2) is a loop function

Solve numerically for AχPTγγ (s0) = 0
→ s0 = −0.098 [Gev2]

Match leading order χPT and dispersive representation at s0
→ a1 = 0
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ImA1(s) = −1
16πs

√
1− 4M2

π
s Ω(s)c0

(
1 + F [X ] s

M2
K

)
|h0++(s)|∗

A1(s) = s−s0
π

∫ Λ2

4M2
π
ds ′ ImA1(s′)

(s′−s0)(s′−s)

The missing ingridiant is the helicity partial wave h0++(s)

This function can be obtained by an Mushkhelishvili-Omnes
analysis of the experimental data of (e+e− → γ∗γ∗ → π+π−).
[Garcia, Moussallam, 10]
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Cut-o� dependence of Aγγ(KS → γγ) and variation of X = ±0.3

CST

PDG

χPT

KH

1.0 1.2 1.4 1.6 1.8 2.0
3.4

3.6

3.8

4.0

4.2

Λ2 [GeV2 ]

|A
γ
γ
(m
K
2
)|
[1
0
-
9
G
e
V
-
1
]
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×[10−9 GeV−1] CST (Λ =
√
2 GeV) χPT3 PDG

ReAγγ −2.93+0.11
−0.17 −1.68 �

ImAγγ 2.46 2.97 �

|Aγγ | 3.83+0.13
−0.08 3.41 3.97± 0.13

Br [10−6] 2.45+0.16
−0.11 2.0 2.63± 0.17
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KS → γ`+`−

Need as input h0++(s, q21 , 0)
[Garcia, Moussallam, 10]

Work in progress

Not measured yet. χPT predicts

B(KS → γe+e−)

B(KS → γγ)
= 1.6·10−2 , B(KS → γµ+µ−)

B(KS → γγ)
= 3.75·10−4
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KS → `+`−

Need to know h0++(s, q21 , q
2
2).

This helicity partial wave also enters in the calculation of the
light by light contribution in g − 2. People are working on it.

ℓ+

ℓ−

γ

γ

π+

π−

KS
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Outlook and conclusion

Formula for KS → γ∗γ∗

On-shell prediction consistent with experimental value and
improves the χPT value

Uncertainties (X = ±0.3) can be reduced by better knowledge
of some LEC's. Lattice?

Calculation based on dispersion relations and χPT .

Apply the formalism to KS → `+`−, need h0++ for arbitrary
photon momenta q1, q2

Br(KS → µ+µ−)exp = 9 · 10−9
Br(KS → µ+µ−)χPT = 5 · 10−12

27 / 27


	Introduction
	KS **
	Applications
	Outlook and conclusion

