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Introduction

Introduction

o The rare decays Ky s — (T{~ are a very usefull source of
information on the structure of AS =1
flavor-changing-neutral-current (FCNC) transition.

@ Both decays contain long and short distance compoments
@ The K| decays have been measured, the Ks decays not yet
o B(KL— ptpu~) =6.84%107°

B(KL — ete™) =9x%10712
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Leading long-distance a) and short-distance contributions b)
[Isidori, Unterdorfer 03]



Introduction

° K3<—>€7€+

@ Not yet observed
o LHCb: Br(Ks — utpu~)<9-107°
[Aaij et. al. 13]

e Standart model prediction Br(Ks — utp~)=5-10"12
[Ecker, Pich,91]
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Introduction

@ The Ks decay contains the CP-violating part of the FCNC
s — dite

@ This transition is given in the Standart Model (SM) by box
and penguin diagrams

0 B(Ks — ptp )M =1075 | Im(ViVi) 2 ~ O(10713)

@ Measurement of Ks — putpu~
— New Physics

— Bounds on CP-violating phase of s — d/™ ¢~
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@ Lowest order in xPT is the 2 loop diagram. [Ecker, Pich,91]
@ Next order in xPT involves a lot of unknown LEC's

@ Includes the sub amplitude Ks — v*~* with both photons
off-shell

o The momenta flowing through the diagram is s = M%, which
is large enough to produce two on-shell pions. Therefore we
expect large corrections due to final state interactions.

o We use dispersive techniques to improve the calculation
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In a decay kinematics are fixed

How to formulate a dispersion relation? Integrate over the
kaon mass?

Dispersion relations relate different observable quantities

Solution is to give the weak Hamiltonian momentum



(7 (@) (g2,)Hu (H)|Ks(k)) = i(27)*e*6* (k+H—q1—qe) ey’ e5” A

s=(k+H)?= (0 + @)

Work done in collaboration with
G.Colangelo and L.Tunstall
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e H,(H) is the weak Hamiltonian with As =1

@ The Hamiltonian has to carry momentum H, such that we can
formulate a dispersion relation

@ Sending H — 0 yields the physical amplitude
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A =E2_ T, A
To get these Lorentz structures, one writes down all possible
terms with indices p, v which are built of (g1, g2, k) —10 terms

Impose the ward-identities g{'A,, = g5A,, =0

Then one has to make sure that there are no kinematic zeros
and poles in the Lorentz structures T/,

Finally one has five scalar functions A; which are suitable for
dispersion relations

The limit H — 0 reduces the set to two structures
Tﬁll - ql Q2g;w —q2uq1v
7., = 1938w + 91 - ©291,.G2,0 — 95 92,0920 — G5 G1,u91,0
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Dispersion relation

Cauchy’s theorem:

Tm(z)




fs) = = / T _Imfls) g

T Jamz S — S — i€

o In cases when f(s) does not fall down fast enough for s — oo
one uses subtractions

- s—s [N Imf(s") <
f(s) = f(so) + - /4/\4727 (s —s0)(s' — s — ie)d
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The dispersion relation yields the full amplitude, provided one
knows the imaginnary part. The latter is related by unitarity to
subamplitudes.

1 X
ImA;U/ = 2 / do; A+*(S) W,Lw(sa q%’ q%)
A = (n777|Hu|Ks)
te’'W,, = (Y |mta)
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@ The amplitude K — 7 was calculated as a scattering process
with dispersion relations
[Biichler et. al.,01],[Mercolli, 12]

@ Since it is a scattering proces it makes sense to do a partial
wave expansion
<7T+7T_|HW|KS> = A+*(57 t, u) = 2632(5) PK(Z)

@ They found that only the s-wave is important and all the
higher order waves can be neglected



Av-(s) = 0 08(s) (1 + FIXI5 )
With the Omnes function

N2 0(/
s dp(s
98(5) = exp (7‘( AMK2 5/(2/(_)5)0'5/>

69(s’) are the phase shifts of of 7 scattering.
o AXFT — GaFx (02 4 35 — 4M2)
F[X] estimates the errors of higher chiral orders and the value
of X is typically veried between +0.3
WL+ X)
M2 — M2(4 + 3X)

FIX] =
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@ The amplitude mm — ~ can be decomposed into five lorentz
structures times scalar functions W, = 2>, T/ W;

@ The integration over the two body phase space contains
angular integrations, which projects the Amplitude onto
helicity partial waves

1 1
h (s, qi,q3) = 5 /1 dcost € e, W, (s, 41, 43) -

o We need the s-waves

Wy = [ BZa3he(s) — (s — ai — 3)h.(s)]| ,
NG, ) 195 hoo(s 1—q)hiy

W, = S— G — &
Als: ai, a3) a7 a3hQo(s) +2h5  (s)

W; = =0.
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1 4M2
ImA,,(s) = 1— —ZA (s)(TL Wy + T2, W5)

167 s
= T,ImA; + T}, ImA;

@ A once subtracted dispersion relation yields the full amplitude

N2 /
- ImA;
A—as® 50/ PR LG
ez (

7r s’ —sp)(s" —s)
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Applications

Applications Ks — v

° qf = q% =0, = 327T\47704A1\2
@ How do we fix the subtraction constant a;7

@ Use xPT below threshold, where the rescattering effects are
small

P
° A'>§'YT( )_ 2f
e F(s, M?)is a loop function

(M2 +35—4M2)F (s, M2) — [M2 — M2]

o Solve numerically for A7 () =0
— 59 = —0.098 [Gev?]

o Match leading order xPT and dispersive representation at sg
— a1 =0
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Applications

— 2 *
Ay (s) = 15 y/1 — 2EQ(s)eo (1 -+ FIX]557 ) 1M (5)

5—50 ImA1 (S/)

/\2
AL(s) = 222 [ane 95 o) 525
The missing ingridiant is the helicity partial wave h9r+(s)

This function can be obtained by an Mushkhelishvili-Omnes
analysis of the experimental data of (eTe™ — v*v* — 77 ™).
[Garcia, Moussallam, 10]



Applications

Cut-off dependence of A,,(Ks — v7) and variation of X = £0.3
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Applications

x[107° GeV™1] CST (A=+v2 GeV) xPTs PDG

Re A, ~2.93101 ~1.68 -
ImA., 2.46 2.97 -
Ay 3.831903 341 3.97+0.13
Br [107°] 2.45131¢ 2.0 2.6340.17

24 /27



Applications

o Ks — 7€+€_
o Need as input h%_ (s, q3,0)
[Garcia, Moussallam, 10]

@ Work in progress
o Not measured yet. xPT predicts

B(Ks — vete™)
B(Ks = v7)

B(Ks = yup™)

=3.75-107%
B(Ks — vv)

=1.61072,
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Applications

° KS<—>€+E_
o Need to know h%_ (s, 43, 43).

@ This helicity partial wave also enters in the calculation of the
light by light contribution in g — 2. People are working on it.

s
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Outlook and conclusion

Outlook and conclusion

e Formula for Ks — v*~v*

@ On-shell prediction consistent with experimental value and
improves the xyPT value

@ Uncertainties (X = £0.3) can be reduced by better knowledge
of some LEC’s. Lattice?

@ Calculation based on dispersion relations and xPT.

o Apply the formalism to Ks — (7=, need h} | for arbitrary
photon momenta qy, g»

o Br(Ks — i )exp =9-107°
Br(Ks — ptp~)ypr =5-10712
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