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1 Introduction and Motivation

Definition of the K`4 decay

Decay of a kaon into two pions and a lepton pair:

K+(p)→ π+(p1)π−(p2)`+(p`)ν`(pν)

` ∈ {e, µ} is either an electron or a muon.

(Other modes involving neutral pions can be related
by isospin symmetry.)
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1 Introduction and Motivation

Importance of the K`4 decay

• provides information on ππ-scattering lengths a0
0, a2

0

• Ke4 very precisely measured⇒ test of χPT
→ Geneva-Saclay, E865, NA48/2

• best source of information on the χPT low-energy
constants Lr1, Lr2 and Lr3

• happens at very low energy, where χPT is expected
to converge best
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1 Introduction and Motivation

Advantages of dispersion relations

• resummation of rescattering

• connect different energy regions

• based on analyticity and unitarity⇒ model
independence
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2 Decomposition of the Form Factors

Hadronic part of K`4 as 2→ 2 scattering

k

−L

p1

p2

K+

Aµ

π+

π−

Mandelstam variables:

s = (p1 + p2)2, t = (k − p1)2, u = (k − p2)2
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2 Decomposition of the Form Factors

Similar to K → 2π

k

q

p1

p2

K0

Heff
∆S=1

π+

π−

→ Büchler, Colangelo, Kambor, Orellana (2001)
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2 Decomposition of the Form Factors

Form factors
• Lorentz structure allows four form factors in the

hadronic matrix element (P = p1 + p2, Q = p1 − p2):

〈
π+(p1)π−(p2)

∣∣Aµ(0)
∣∣K+(k)

〉
= −i 1

MK
(PµF +QµG + LµR)〈

π+(p1)π−(p2)
∣∣Vµ(0)

∣∣K+(k)
〉

= − H

M3
K

εµνρσL
νP ρQσ

• contribution of R invisible in the electron mode

• H chirally suppressed

• concentrate here on F and G

• form factors are functions of the Mandelstam
variables s, t and u
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2 Decomposition of the Form Factors

Analytic properties

• F (s, t, u) and G(s, t, u) have a right-hand branch cut
in the complex s-plane, starting at the ππ-threshold

• left-hand cut present due to crossing

• analogous situation in t- and u-channel
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2 Decomposition of the Form Factors

Reconstruction theorem
→ Stern, Sazdjian, Fuchs (1993), Ananthanarayan, Buettiker (2001), . . .

• define a function that has just the right-hand cut of f0,
the first partial wave of F :

M0(s) := P (s) +
s2

π

∫ ∞
4M2

π

Imf0(s′)

(s′ − s− iε)s′2
ds′

• similar functions take care of the right-hand cuts of all
the other S- and P -waves (also crossed channels)

• all the discontinuities are split up into functions of a
single variable

• neglect imaginary parts of D- and higher waves
12



2 Decomposition of the Form Factors

Reconstruction theorem

Form factors decomposed into functions of one
Mandelstam variable only:

F (s, t, u) = M0(s) +
u− t
M2

K

M1(s) + (functions of t or u),

G(s, t, u) = M̃1(s) + (functions of t or u).
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3 Integral Equations

Omnès representation

Function M0 contains only right-hand cut of the partial
wave f0: difference is the ‘inhomogeneity’ M̂0:

f0(s) = M0(s) + M̂0(s)

Inhomogeneous Omnès problem:

ImM0(s) = (M0(s) + M̂0(s))e−iδ
0
0(s) sin δ0

0(s)

Watson’s theorem: δ0
0 is elastic ππ phase shift
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3 Integral Equations

Omnès representation

Omnès function takes care of rescattering:

ΩI
l (s) := exp

{
s

π

∫ ∞
s0

δIl (s
′)

(s′ − s− iε)s′
ds′
}

δIl : elastic ππ or Kπ phase shifts

Write dispersion relation for
M0(s)

Ω0
0(s)
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3 Integral Equations

Omnès representation

Omnès solution for the functions M0(s), M1(s), M̃1(s),
etc.:

M0(s) = Ω0
0(s)

{
P (s) +

s3

π

∫ Λ2

4M2
π

M̂0(s′) sin δ0
0(s′)

|Ω0
0(s′)|(s′ − s− iε)s′3

ds′

}
,

P : subtraction polynomial
M̂i: inhomogeneities, angular averages of all the
functions Mi
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3 Integral Equations

Intermediate summary

• problem parametrised by 9 subtraction constants

• input: elastic ππ- and Kπ-scattering phase shifts

• energy dependence fully determined by the
dispersion relation

18



3 Integral Equations

Intermediate summary

• set of coupled integral equations:
⇒M0(s), M1(s), . . . : DR involving M̂0(s), M̂1(s), . . .

⇒ M̂0(s), M̂1(s), . . . : angular integrals over M0(s), M1(s), . . .

• system solved by iteration

• problem linear in the subtraction constants
⇒ construct 9 basic solutions
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3 Integral Equations

Determination of the subtraction constants

• fit to data of the high-statistics experiments E865 and
NA48/2

• soft-pion theorems as additional constraints

• chiral input for the subtraction constants that are not
well determined by data
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3 Integral Equations

Numerical solution of the dispersion relation

fix one subtraction
constant to 1,
all others to 0

compute M̂i with
angular integrals

compute Mi with
dispersive integrals

compute Omnès
functions ΩI

l

ππ/Kπ
elastic phase

shifts δIl

convergence?

linear fit of
subtraction

constants to data

matching to χPT:
extract LECs

apply isospin
corrections

experimental
data on F , G
form factors

no

yes
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4 Fit to Data and Matching to χPT

Fit results for partial waves
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4 Fit to Data and Matching to χPT

Fit results for partial waves
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4 Fit to Data and Matching to χPT

Matching to χPT

• matching to χPT at the level of subtraction constants
in Omnès form: separate rescattering effects

• fit to 2-dimensional data set of NA48/2

• Lr9 can be determined from dependence on s`
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4 Fit to Data and Matching to χPT

Matching at NNLO

• many poorly known LECs Cr
i at NNLO

• include additional constraints in the fit: require good
chiral convergence

• input: Cr
i contribution to subtraction constants with

±50% uncertainty

• fit the Cr
i contribution

• not all sets of Cr
i input lead to a good chiral

convergence: prefer BE14 → Bijnens, Ecker (2014)
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4 Fit to Data and Matching to χPT

Low-energy constants

Results for the LECs using χPT at NLO and NNLO.

NLO NNLO Bijnens, Ecker (2014)

103 · Lr1 0.51(2)(6) 0.69(16)(8) 0.53(6)

103 · Lr2 0.89(5)(7) 0.63(9)(10) 0.81(4)

103 · Lr3 −2.82(10)(7) −2.63(39)(24) −3.07(20)

χ2/dof 141/116 = 1.2 124/122 = 1.0
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5 Prospects for NA62

What could be done in NA62?

• Kµ4 (i.e. K+ → π+π−µ+νµ) may come through trigger

• Ke4 does not, but is background for K → πνν̄

→ maybe a special run is planned?
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5 Prospects for NA62

Electron mode Ke4

What could be done with higher statistics?

• s`-dependence of F and G can be used to extract Lr9
• determination of Lr1, Lr2, Lr3 with even higher precision

• (better) determination of linear combinations of Cr
i
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5 Prospects for NA62

Error budget: Lr3
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Figure 15: Contributions to the uncertainty of Lr
1 in the O(p4) and O(p6) matching in units of 10−5.

4.6total statistical

4.3form factor data
1.7isospin corr.

Cr
i

6.5total systematic

1.8ππ phases, low en.
4.1ππ phases, high en.

0.3Kπ phases, low en.
1.9Kπ phases, high en.

3.7Lr
4

2.1Lr
5

Lr
6

Lr
7

Lr
8

0.3Lr
9

NLO

9.5

3.7
1.4

8.6

9.6

0.5
4.9

0.1
0.5
0.8

4.5
0.1
0.2
0.1

6.9

NNLO

Figure 16: Contributions to the uncertainty of Lr
2 in the O(p4) and O(p6) matching in units of 10−5.
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Figure 17: Contributions to the uncertainty of Lr
3 in the O(p4) and O(p6) matching in units of 10−5.
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5 Prospects for NA62

Radiative corrections for Ke4

→ EPJC 74 (2014) 2749

• full 1-loop calculation of photonic (and strong
isospin-breaking) corrections in χPT+γ + `

(virtual and real corrections)

• NA48/2: PHOTOS Monte Carlo and
Gamow-Sommerfeld factor

• a posteriori correction only possible for normalisation

• for NA62, Ke4(γ) could be included in Monte Carlo
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5 Prospects for NA62

Muon mode Kµ4

• larger values of s`

• form factor R is accessible

• s-dependence of R contains Lr4, Lr5 and Lr9:

R ∝ Z

s` −M2
K

+Q,

ZL = 32
[
Σs− 4M2

KM
2
π

]
Lr4

+ 4
[
Σ(s+ t− u)− 8M2

KM
2
π

]
Lr5 + . . . ,

QL = 2
[
(s+ t− u)− (M2

K − s`)
]
Lr9 + . . .

• information on Kπ scattering
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6 Conclusion

Summary

• parametrisation valid up to and including O(p6)

• model independence

• resummation of rescattering effects

• very precise data available

• determination of LECs from matching to χPT
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6 Conclusion

Summary

• even higher statistics could be useful for better
determination of Lri and combinations of Cr

i

• better data on s`-dependence would enable
independent determination of Lr9

• radiative corrections should be included in
Monte Carlo

• new form factor and further LECs accessible in Kµ4
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7 Backup

Error budget: Lr1
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Figure 15: Contributions to the uncertainty of Lr
1 in the O(p4) and O(p6) matching in units of 10−5.
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Figure 16: Contributions to the uncertainty of Lr
2 in the O(p4) and O(p6) matching in units of 10−5.

9.5total statistical

9.0form factor data
3.2isospin corr.

Cr
i

7.0total systematic

1.5ππ phases, low en.
1.3ππ phases, high en.

0.4Kπ phases, low en.
5.0Kπ phases, high en.

0.7Lr
4

4.2Lr
5

Lr
6

Lr
7

Lr
8

0.9Lr
9

NLO

39.3

11.0
3.6

37.6

23.7

2.8
5.9

1.2
14.9

2.9
8.7

0.2
0.0
0.3

14.7

NNLO

Figure 17: Contributions to the uncertainty of Lr
3 in the O(p4) and O(p6) matching in units of 10−5.
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7 Backup

Error budget: Lr2
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Figure 15: Contributions to the uncertainty of Lr
1 in the O(p4) and O(p6) matching in units of 10−5.
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Figure 16: Contributions to the uncertainty of Lr
2 in the O(p4) and O(p6) matching in units of 10−5.
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Figure 17: Contributions to the uncertainty of Lr
3 in the O(p4) and O(p6) matching in units of 10−5.
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7 Backup

Relation to SU(2) LECs

lr1 = 4Lr1 + 2Lr3 + x1 +O(p2), l̄1 = 96π2lr1 − ln
M2

π

µ2
,

lr2 = 4Lr2 + x2 +O(p2), l̄2 = 48π2lr2 − ln
M2

π

µ2
,

NLO matching, Cr
i BE14 → CGL 2001

l̄1 −0.0± 0.3 −0.4± 0.6

l̄2 4.4± 0.2 4.3± 0.1

(only error due to Lr1, Lr2, Lr3)
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