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Low-energy theorem for ππ scattering

Some notation

〈πiπj
out|πkπl

in〉 = δijδklA(s, t , u)+δikδjlA(t , u, s)+δilδjkA(u, t , s)

All physical amplitudes can be expressed in terms of A(s, t , u)

T I=0(s, t , u) = 3A(s, t , u) + A(t , s, u) + A(u, t , s)

Low energy theorem Weinberg 1966

A(s, t , u) =
s − M2

π

F 2
π

+O(p4) ⇒ T I=0 =
2s − M2

π

F 2
π

S wave projection (I=0)

t0
0 (s) =

2s − M2
π

32πF 2
π

a0
0 = t0

0 (4M2
π) =

7M2
π

32πF 2
π

= 0.16
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Low-energy theorem for ππ scattering

Some notation

〈πiπj
out|πkπl

in〉 = δijδklA(s, t , u)+δikδjlA(t , u, s)+δilδjkA(u, t , s)

All physical amplitudes can be expressed in terms of A(s, t , u)

T I=0(s, t , u) = 3A(s, t , u) + A(t , s, u) + A(u, t , s)

Low energy theorem Weinberg 1966

A(s, t , u) =
s − M2

π

F 2
π

+O(p4) ⇒ T I=0 =
2s − M2

π

F 2
π

S wave projection (I=2)

t2
0 (s) =

2M2
π − s

32πF 2
π

a2
0 = t2

0 (4M2
π) =

−M2
π

16πF 2
π

= −0.045
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Higher orders

Higher order corrections are suppressed by O(p2/Λ2)
Λ ∼ 1 GeV ⇒ expected to be a few percent

a0
0 = 0.200 +O(p6) a2

0 = −0.0445 +O(p6)

Gasser and Leutwyler (84)
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Higher orders

Higher order corrections are suppressed by O(p2/Λ2)
Λ ∼ 1 GeV ⇒ expected to be a few percent

a0
0 = 0.200 +O(p6) a2

0 = −0.0445 +O(p6)

The reason for the rather large correction in a0
0 is a chiral log

a0
0 =

7M2
π

32πF 2
π

[

1 +
9

2
ℓχ + . . .

]

a2
0 = −

M2
π

16πF 2
π

[

1 −
3

2
ℓχ + . . .

]

ℓχ =
M2

π

16π2F 2
π

ln
µ2

M2
π

Gasser and Leutwyler (84)
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Higher orders
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Higher orders
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Roy equations

Unitarity effects can be calculated exactly using dispersive

methods

Unitarity, analyticity and crossing symmetry ≡ Roy equations

Input: imaginary parts above 0.8 GeV

two subtraction constants, e.g. a0
0 and a2

0

Output: the full ππ scattering amplitude below 0.8 GeV

Note: if a0
0, a

2
0 are chosen within the universal band

the solution exist and is unique

Numerical solutions of the Roy equations:

Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s)

Ananthanarayan, GC, Gasser and Leutwyler (00)

Descotes-Genon, Fuchs, Girlanda and Stern (01)

Garcia-Martin, Kaminski, Pelaez, Ruiz de Elvira, Yndurain

(08,11)
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Numerical solutions
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Numerical solutions
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Numerical solutions
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Numerical solutions
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Numerical solutions

Example of a fit to data
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Combining CHPT and dispersive methods

In CHPT the two subtraction constants are predicted

Subtracting the amplitude at threshold (a0
0, a

2
0) is not mandatory

The freedom in the choice of the subtraction point

can be exploited to use the chiral expansion

where it converges best, i.e. below threshold
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Combining CHPT and dispersive methods
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Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved

if CHPT is used only below threshold

CHPT at threshold

a0
0 = 0.159 → 0.200 → 0.216

10 · a2
0 = −0.454 → −0.445 → −0.445

p2 p4 p6

GC, Gasser and Leutwyler (01)
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Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved

if CHPT is used only below threshold

CHPT at threshold

a0
0 = 0.159 → 0.200 → 0.216

10 · a2
0 = −0.454 → −0.445 → −0.445

p2 p4 p6

CHPT below threshold + Roy

a0
0 = 0.197 → 0.2195 → 0.220

10 · a2
0 = −0.402 → −0.446 → −0.444

GC, Gasser and Leutwyler (01)
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Roy+ChPT: final results GC, Gasser and Leutwyler (01)

Scattering lengths

a0
0 = 0.220 ± 0.001 + 0.009∆ℓ4 − 0.002∆ℓ3

10 · a2
0 = −0.444 ± 0.003 − 0.01∆ℓ4 − 0.004∆ℓ3

where ℓ̄4 = 4.4 +∆ℓ4 ℓ̄3 = 2.9 +∆ℓ3

Adding errors in quadrature [∆ℓ4 = 0.2, ∆ℓ3 = 2.4]

a0
0 = 0.220 ± 0.005

10 · a2
0 = −0.444 ± 0.01

a0
0 − a2

0 = 0.265 ± 0.004
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Roy+ChPT: final results GC, Gasser and Leutwyler (01)
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Final result for the phase shifts

Phase shifts:
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Final result for the phase shifts

Phase shifts:
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Final result for the phase shifts

Phase shifts:
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Final result for the phase shifts

Determination by RBC/UKQCD:

δ0
0(MK ) = 23.8(4.9)(1.2)

δ2
0(MK ) = −11.6(2.5)(1.2)

Our determination (at Mk = 0.4976 GeV)

δ0
0(MK ) = 39.2(1.5)

δ2
0(MK ) = −8.5(0.15)

or (at Mk = 0.4906 GeV value used by RBC/UKQCD):

δ0
0(MK ) = 38.0(1.3)

δ2
0(MK ) = −8.3(0.15)
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Sensitivity to the quark condensate

The constant ℓ̄3 appears in the chiral expansion

of the pion mass

M2
π = 2Bm̂

[

1 +
2Bm̂

16πF 2
π

ℓ̄3 +O(m̂2)

]

m̂ =
mu + md

2
B = −

1

F 2
〈0|q̄q|0〉
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Sensitivity to the quark condensate

The constant ℓ̄3 appears in the chiral expansion

of the pion mass

M2
π = 2Bm̂

[

1 +
2Bm̂

16πF 2
π

ℓ̄3 +O(m̂2)

]

m̂ =
mu + md

2
B = −

1

F 2
〈0|q̄q|0〉

Its size tells us what fraction of the pion mass is given by the

Gell-Mann–Oakes–Renner term

M2
GMOR ≡ 2Bm̂
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Sensitivity to the quark condensate
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Experimental tests
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Experimental tests

0.28 0.3 0.32 0.34 0.36 0.38 0.4

E(GeV)

0

5

10

15

20
δ 00 -δ

11 (d
eg

re
es

)

E865

Geneva-Saclay

NA48

0.26

0.22

0.18



CHPT Dispersive methods Lesson learnt? Conclusion

Experimental tests
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Experimental tests
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Experimental tests
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isospin breaking corrections recently calculated for Ke4 are

essential at this level of precision GC, Gasser, Rusetsky (09)
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Experimental tests

0.16 0.18 0.2 0.22 0.24 0.26

a
0
0

-0.06

-0.05

-0.04

-0.03

-0.02

a
2
0

Universal band
tree (66), one loop (83), two loops (96)
Prediction (ChPT + dispersion theory, 2001)
DIRAC (2005)
NA48 K -> 3 π (2005)
all data isospin corrected

isospin breaking corrections recently calculated for Ke4 are

essential at this level of precision GC, Gasser, Rusetsky (09)



CHPT Dispersive methods Lesson learnt? Conclusion

Experimental tests
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Lattice determinations of ℓ̄3,4
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Lattice determinations of ℓ̄3,4
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Remarks on a possible new measurement of a0
0

◮ the burning question about the mechanism of chiral

symmetry breaking has been answered experimentally by

past measurements of a0
0

◮ the precision of the theoretical prediction for a0
0 has de

facto already been improved by lattice determinations of ℓ̄3

◮ increasing the precision of the experimental measurement

ofa0
0 will require a better handling of radiative corrections

(→ talks by P. Stoffer and M. Knecht)

◮ this could lead to a precise determination of ℓ̄3, i.e. of the

quadratic dependence of Mπ on m̂

◮ in itself this is a remarkable achievement, but not a

qualitative change in our knowledge of nonperturbative

QCD
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Remarks on the relevance of the measurement of a0
0

◮ the burning question about the mechanism of chiral

symmetry breaking has been answered experimentally by

past measurements of a0
0

◮ an accurate measurement of the S wave scattering lengths

implies also a precise knowledge of the ππ phase shifts

below ∼ 1 GeV

◮ which makes a dispersive treatment of several other

low-energy matrix elements – in particular K decays –

meaningful and potentially very precise

◮ e.g. Kℓ4, K → ππ, K → 3π, KS → γ(∗)γ(∗), KS → ℓ+ℓ−,

K → πγγ, K → πℓ+ℓ−, ∆MK , ǫK

(→ talks by P. Stoffer and R. Stucki)



Dispersion relations: basics I

◮ analyticity properties of Green’s functions (and form factors

and scattering amplitudes) can be rigorously established

◮ the absence of singularities for complex (unphysical)

values of kinematic variables1 follows from causality

◮ the presence of singularities is related to dynamical

phenomena (exchange of particles) and can be

understood in terms of the underlying dynamics

◮ analytic functions are determined by their singularities:

dispersion relations provide an explicit representation of

this mathematical property

◮ QFTs satisfy these properties automatically.

Weinberg: QFT emerges by imposing analyticity and

unitarity (and other properties)

1Exceptions known: anomalous thresholds.



Dispersion relations: basics II

◮ dispersion relations are exact

◮ their usefulness is directly related to our knowledge of the

singularities of the function of interest

◮ depending on where one wants to calculate the function,

some singularities (or regions thereof) may be more

important than others: approximation schemes may be

successfully applied

◮ singularities at infinity = subtraction constants, if present

are essential input

◮ use of dispersion relations in combination with QFT

calculations (whether perturbative or not) is always

possible
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