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Charm Quark Mass
Quadratic GIM suppresses light quark contribution

Sensitive to short distances (SD)
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Contributions to
 No quadratic suppression for KL ! ��

(same for photon penguin)
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Suppressed Light Quark Contribution

7

Log(ΛQCD/mc,u) from coupling to final state electrons

⇒ K → ! ῡ υ should have a clean theory prediction

CP violation is absent in 2 generation Standard Model

⇒ CP violating decays should exhibit increased short 
distance sensitive
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Figure 5: �Xt as a function of MH , in two di�erent renormalisation schemes. The dashed lines
show the LO results, the dashed-dotted lines the LO results including the electroweak corrections
in the large-mt limit. The full two-loop results are represented by the dotted lines. The left panel
shows the results where all parameters are defined in the MS scheme. By contrast, in the right
panel, all parameters apart from � are defined in the on-shell scheme. For comparison, we also
plot in both panels the NLO result, where all masses are defined on-shell and all couplings in the
MS scheme. It is represented by the solid lines.

long distance contributions were calculated in Reference [30] to be

⇥Pc,u = 0.04± 0.02 . (4.7)

The hadronic matrix element of the low-energy e⇥ective Hamiltonian can be extracted
from the well-measured Kl3 decays, including isospin breaking and long-distance QED
radiative corrections [27, 32, 33]. The long-distance contributions are contained in the pa-
rameters ⇧+, including NLO and partially NNLO corrections in chiral perturbation theory.
�EM denotes the long distance QED corrections [27].

Including the two-loop electroweak corrections to Xt, we find for the branching ratio of
the charged mode

Br(K+ ⇤ �+⌥⌥̄) = (8.22+0.74
�0.65 ± 0.29)� 10�11 , (4.8)

The first error is related to the uncertainties in the input parameters. The main contri-
butions are (Vcb : 49%,  ̄ : 22%, �s : 9%, mc : 8%, mt : 7%, ⇤̄ : 4%, sin2 ⌅W : 1%). The
second error quantifies the remaining theoretical uncertainty. In detail, the contributions
are (⇥Pc,u : 49%, Pc : 21%, Xt(QCD) : 17%, ⇧+

� : 8%, Xt(EW) : 7%), respectively. Here
and below, we determine the QCD error on Xt by varying the scale µc between 80 GeV
and 320 GeV. Correspondingly, our central value of Xt is the average of Xt(µ = 80GeV)
and Xt(µ = 320GeV).
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long distance contributions were calculated in Reference [30] to be

⇥Pc,u = 0.04± 0.02 . (4.7)

The hadronic matrix element of the low-energy e⇥ective Hamiltonian can be extracted
from the well-measured Kl3 decays, including isospin breaking and long-distance QED
radiative corrections [27, 32, 33]. The long-distance contributions are contained in the pa-
rameters ⇧+, including NLO and partially NNLO corrections in chiral perturbation theory.
�EM denotes the long distance QED corrections [27].

Including the two-loop electroweak corrections to Xt, we find for the branching ratio of
the charged mode

Br(K+ ⇤ �+⌥⌥̄) = (8.22+0.74
�0.65 ± 0.29)� 10�11 , (4.8)

The first error is related to the uncertainties in the input parameters. The main contri-
butions are (Vcb : 49%,  ̄ : 22%, �s : 9%, mc : 8%, mt : 7%, ⇤̄ : 4%, sin2 ⌅W : 1%). The
second error quantifies the remaining theoretical uncertainty. In detail, the contributions
are (⇥Pc,u : 49%, Pc : 21%, Xt(QCD) : 17%, ⇧+

� : 8%, Xt(EW) : 7%), respectively. Here
and below, we determine the QCD error on Xt by varying the scale µc between 80 GeV
and 320 GeV. Correspondingly, our central value of Xt is the average of Xt(µ = 80GeV)
and Xt(µ = 320GeV).
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K+ → !+ ῡ υ from MW to mc
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Figure 1: One-loop diagrams corresponding to the T-products in Eqs. (2)–(4).

the other hand, we differ from these works in the last step, namely the removal of the
charm as dynamical degrees of freedom. In this case we proceed as in Ref. [9], matching
the operator product expansion of the T-products into an effective theory which includes
also dimension-8 operators. The structure of the local terms, for µIR

<
∼ mc, takes the form

of the following effective Hamiltonian density

H(6+8)
eff (µIR) =

GF√
2

α

2π sin2 θW
λc
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l=e,µ,τ
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X l
c(xc)Q

(6)
l +

1

M2
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i(µIR)Q(8)

il

]

. (9)

Neglecting neutrino masses, the only Q(8)
il with non-vanishing coefficients to lowest order

in αs(mc) are

Q(8)
1l = s̄γµ(1 − γ5)d ∂2 [ν̄lγµ(1 − γ5)νl] ,

Q(8)
2l = (s̄

←−
Dα)γµ(1 − γ5)(

−→
Dαd) ν̄lγµ(1 − γ5)νl ,

Q(8)
3l = (s̄

←−
Dα)γµ(1 − γ5)d

[

ν̄l(
←−
∂α −

−→
∂α)γµ(1 − γ5)νl

]

. (10)

The operator Q(8)
1l arises by the neutral-current coupling (left diagram in Figure 1), while

Q(8)
2l and Q(8)

3l are generated by the charged-current coupling (right diagram in Figure 1).

The operator Q(8)
3l , which has been considered first in Ref. [8], is the only term which can

induce a CP-conserving contribution to the K2 → π0νlν̄l transition. In agreement with
the results of Ref. [8, 9], we find

C l
1(µIR) =

1
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4

No GIM below the charm quark mass scale
higher dimensional operators UV scale dependent
One loop ChiPT calculation approximately cancels 
this scale dependence �Pc,u = 0.04± 0.02

[Isidori, Mescia, Smith `05]
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Could be calculated on the lattice 
[Isidori, Martinelli, Turchetti `06] [Christ, Fang, Portelli, Sachrajda `15]



K → ! ῡ υ: Error Budget 

kappa
2 %

Xt
7 %

Pc
6 %

delta Pcu
14 %

CKM
53 %

Parametric
18 %

BRth(K+→!+ῡυ) = 7.8(8)(3) ⋅ 10-11

BRexp(K+→!+ῡυ) = 17(11) ⋅ 10-11

[E787, E949 ´08] NA62 → 10% accuracy
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Xt
8 %

kappa
2 %CKM

84 %

Mt
6 %

BRth(KL →!0ῡυ) = 2.43(39)(6) ⋅ 10-11

BRexp(K+→!+ῡυ) < 6.7 ⋅ 10-8

[E391a ´08]

[Brod, MG, Stamou
`2011]

[Buras et.al. `15]
BR+ = 8.4(6) ⋅ 10-11 (CKM tree) BRL = 3.4(6) ⋅ 10-11 (CKM tree)



KL → ! ῡ υ might be correlated to CP violation in εK and ε‘/ε 

CP Violation
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⟷

Re(ε‘/ε)  ≃ ε‘/ε measures CP violation in the K → ! ! decay

K → ! ! decay amplitude receives contribution from

QCD Penguins and Electroweak Penguins



Schrödinger type equation for meson mixing

K0 Meson Mixing

M12 from ∆s = 2 Box ⟷ Electroweak process

Γ12  ⟷ ∆Γ maximal and ∆I = 1/2 saturates Γ12  = A0 A̅0
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Diagonalise ⇒

i
d

dt
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0
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◆
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"✓
M11 M12
M⇤

12 M11

◆
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CP violation in Kaons

⌘+� =
h⇡+⇡�|K0

Li
h⇡+⇡�|K0

Si
⌘00 =

h⇡0⇡0|K0
Li

h⇡0⇡0|K0
Si
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✏0 = (⌘+� � ⌘00)/3✏K = (⌘00 + 2⌘+�)/3

CP violation in mixing, interference & decay → non-zero

Only CP violation in mixing (Re ϵK), interference of mixing 
and decay (Im ϵK, Im ϵ‘) and direct CP violation (Re ϵ‘)

�K � ⇥(⇥⇥)I=0|KL⇤
⇥(⇥⇥)I=0|KS⇤

⇥K = ei⇥� sin ⌅�

�
Im(MK

12)

�MK
+ ⇤

⇥

from experiment small



εK: CP violation in Kaon Mixing

(+75(1)%):  λtλt mt2/MW2 + 

(+40(6)%):  λcλt mc2/MW2 
                 log(mc2/MW2) + 

( -15(6)%):  λcλc mc2/MW2   

ηct: 3-loop RGE,
2-loop Matching

[Brod, MG `10]

ηcc: 3-loop RGE,
3-loop Matching

[Brod, MG `12]15

2MKM12 = hK0|H|�S|=2 |K̄0i� i

2

Z
d4x hK0|H|�S|=1(x)H|�S|=1(0) |K̄0i

dispersive part
s

d s

d

u

c

t

u

c

t

W

W

K̄0 K0 Q̃ = (s̄L�µdL)(s̄L�
µdL)

�K0|Q̃|K̄0�Lattice:

Local Interaction:

Only known at NLO

NNLO



Long Distance ϵK
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Study for ∆MK [Bai et.al. `14] and ideas for ϵK

Z
d4xd4y hK0|T{H(x)H(y)} |K̄0i

Integrate over tA < tx,y < tB
[Christ et. al.]

Use λu λt instead of λc λt 
λu λu  finite after GIM & charm – renormalise ∆S=1 Operator
λu λt  log divergent – renormalise ∆S=1 & ∆S=2 Operator, 

i.e. match Lattice to continuum perturbation theory.



Residual Theory Uncertainty

17

After Lattice QCD & NNLO progress: ηcc dominant uncertainty

εK is very important for phenomenology: 
Future improvements are expected from Lattice QCD and 
interplay with perturbative QCD  

parametric
43 %

LD
15 %

η_tt
4 %
η_ct
13 %

η_cc
26 %

exp.
= 2.23(1) · 10�3

|�K| = 1.81(28) · 10�3

Vcb dominates parametric
uncertainty

uncertainty in BK sub-leading 

[Brod et.al. `12]



CP violation in Kaons

⌘+� =
h⇡+⇡�|K0

Li
h⇡+⇡�|K0

Si
⌘00 =

h⇡0⇡0|K0
Li

h⇡0⇡0|K0
Si
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✏0 = (⌘+� � ⌘00)/3✏K = (⌘00 + 2⌘+�)/3

CP violation in mixing, interference & decay → non-zero

Only CP violation in mixing (Re ϵK), interference of mixing 
and decay (Im ϵK, Im ϵ‘) and direct CP violation (Re ϵ‘)

✏0 ⇡ 1

6
(�00 � �+�) +

1

12
(�00 � �+�)(2� �00 � �+�) + . . .

�ij =
q

p

h⇡i⇡j |K̄0i
h⇡i⇡j |K0iUsing: and |1� �ij | ⌧ 1



Formula for ε‘/ε 
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a0, a2 & a2+ from experiment
[Cirigliano,  et.al. `11]

 a0 & a2: isospin amplitudes
for isospin conservation

h⇡0⇡0|K0i = a0e
i�0 + a2e

i�2/
p
2

h⇡+⇡�|K0i = a0e
i�0 � a2e

i�2
p
2

h⇡+⇡0|K+i = 3a+2 e
i�+

2 /2



Formula for ε‘/ε 

19

AI = h(⇡⇡)I |He↵ |KiCurrent theory gives us only:

Normalise to K+ decay (ω+, a) and εK ,
expand in A2/A0 and CP violation:
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i�+
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AI = h(⇡⇡)I |He↵ |KiCurrent theory gives us only:

Normalise to K+ decay (ω+, a) and εK ,
expand in A2/A0 and CP violation:

a0, a2 & a2+ from experiment
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 a0 & a2: isospin amplitudes
for isospin conservation

h⇡0⇡0|K0i = a0e
i�0 + a2e

i�2/
p
2

h⇡+⇡�|K0i = a0e
i�0 � a2e

i�2
p
2

h⇡+⇡0|K+i = 3a+2 e
i�+

2 /2

Re

✓
✏0

✏

◆
' ✏0

✏
= � !+p

2 |✏K |


ImA0

ReA0
(1� ⌦̂e↵)�

1

a

ImA2

ReA2

�

[Buras, MG, Jäger, Jamin `15] Adjusted to keep electroweak 
penguins in Im A0 [Cirigliano,  et.al. `11]



Computation of A0 & A2

20

Currently we use the effective Hamiltonian below the charm: 

He↵ =
GFp
2
VudV

⇤
us

10X

i=1

�
zi(µ) + ⌧ yi(µ)

�
Qi(µ) , ⌧ ⌘ � VtdV ⇤

ts

VudV ⇤
us
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Currently we use the effective Hamiltonian below the charm: 

He↵ =
GFp
2
VudV

⇤
us

10X

i=1

�
zi(µ) + ⌧ yi(µ)

�
Qi(µ) , ⌧ ⌘ � VtdV ⇤

ts

VudV ⇤
us

Q1,2/± = (s̄iuj)V�A (ūkdl)V�A

Q3,...,6 = (s̄idj)V�A

X

q=u,d,s

(q̄kql)V±A

Q7,...,10 = (s̄idj)V�A

X

q=u,d,s

eq(q̄kql)V±A

current-current
QCD &

electroweak
penguins



Computation of A0 & A2

20

Currently we use the effective Hamiltonian below the charm: 

He↵ =
GFp
2
VudV

⇤
us

10X

i=1

�
zi(µ) + ⌧ yi(µ)

�
Qi(µ) , ⌧ ⌘ � VtdV ⇤

ts

VudV ⇤
us

Q1,2/± = (s̄iuj)V�A (ūkdl)V�A

Q3,...,6 = (s̄idj)V�A

X

q=u,d,s

(q̄kql)V±A

Q7,...,10 = (s̄idj)V�A

X

q=u,d,s

eq(q̄kql)V±A

current-current
QCD &

electroweak
penguins

We have zi & yi at NLO [Buras et.al., Ciuchini et. al. `92 `93]

And now also a Lattice QCD calculation of: ⟨(!!)I|Qi|K⟩=⟨Qi⟩I 
by RBC-UKQCD [Blum et. al., Bai et. al. `15]



We need an expression for Im A0/Re A0 and Im A2/Re A2

Compute Im AI/Re AI 

21

ReA0 =
GFp
2
VudV

⇤
us

�
z+hQ+i0 + z�hQ�i0

�
, ReA2 =

GFp
2
VudV

⇤
us z+hQ+i2



We need an expression for Im A0/Re A0 and Im A2/Re A2

Compute Im AI/Re AI 

21

ReA0 =
GFp
2
VudV

⇤
us

�
z+hQ+i0 + z�hQ�i0

�
, ReA2 =

GFp
2
VudV

⇤
us z+hQ+i2

Fierz relations for (V-A)x(V-A) give, e.g.: ⟨Q4⟩0=⟨Q3⟩0+2⟨Q–⟩0
✓
ImA0

ReA0

◆

V�A

= Im⌧
2y4

(1 + q)z�
+O(p3)

Is only a function of Wilson coefficients and of the ratio   

q = (z+(µ)hQ+(µ)i0)/(z�(µ)hQ�(µ)i0)



We need an expression for Im A0/Re A0 and Im A2/Re A2

Compute Im AI/Re AI 

21

ReA0 =
GFp
2
VudV

⇤
us

�
z+hQ+i0 + z�hQ�i0

�
, ReA2 =

GFp
2
VudV

⇤
us z+hQ+i2

Expression with p3 = ⟨Q3⟩0/⟨Q4⟩0  and EW penguins given in
[Buras, MG, Jäger & Jamin `15]

Fierz relations for (V-A)x(V-A) give, e.g.: ⟨Q4⟩0=⟨Q3⟩0+2⟨Q–⟩0
✓
ImA0

ReA0

◆

V�A

= Im⌧
2y4

(1 + q)z�
+O(p3)

Is only a function of Wilson coefficients and of the ratio   

q = (z+(µ)hQ+(µ)i0)/(z�(µ)hQ�(µ)i0)



Prediction for ε‘/ε
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"0

"
= 10�4


Im�t

1.4 · 10�4

�h
a
�
1� ⌦̂e↵

��
� 4.1(8) + 24.7B(1/2)

6

�
+ 1.2(1)� 10.4B(3/2)

8

i

I=2 Similarly for (V-A)x(V-A):
I=0 (V-A)x(V-A)

(V-A)x(V+A) Matrix elements B6=0.57(19) and B8=0.76(5) 
from Lattice QCD [Blum et. al., Bai et. al. `15]

I=2 (V-A)x(V-A)



Prediction for ε‘/ε

22

"0

"
= 10�4


Im�t

1.4 · 10�4

�h
a
�
1� ⌦̂e↵

��
� 4.1(8) + 24.7B(1/2)
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�
+ 1.2(1)� 10.4B(3/2)

8

i

I=2 Similarly for (V-A)x(V-A):
I=0 (V-A)x(V-A)

(V-A)x(V+A) Matrix elements B6=0.57(19) and B8=0.76(5) 
from Lattice QCD [Blum et. al., Bai et. al. `15]

I=2 (V-A)x(V-A)

✓
✏0

✏

◆

SM

= 1.9(4.5)⇥ 10�4

✓
✏0

✏

◆

exp

= 16.6(2.3)⇥ 10�4

2.9 σ difference

3 Prediction for "0/" in the SM 14

the precision on mt increased by much in the last two decades. a
(3/2)
0

contributes
positively to "0/".

iv) The contribution of the (V �A)⌦(V +A) electroweak penguin operators Q
7

and Q
8

to P (3/2) is represented by the second term in (55). This contribution is dominated
by Q

8

and depends sensitively on mt and ↵s. It contributes negatively to "0/".

The competition between these four contributions is the reason why it is di�cult to
predict "0/" precisely. In this context, one should appreciate the virtue of our approach:
the contributions i) and iii) can be determined rather precisely by CP-conserving data so
that the dominant uncertainty in our approach in predicting "0/" resides in the values of

B
(1/2)
6

and B
(3/2)
8

.

3 Prediction for "0/" in the SM

3.1 Prediction for "0/" and discussion

We begin our analysis by employing the lattice values in (2) and (3). Varying all parame-
ters within their input ranges and combining the resulting variations in "0/" in quadrature,
we obtain:

("0/")
SM

= (1.9± 4.5)⇥ 10�4. (61)

Comparing to the experimental result ("0/")
exp

= (16.6±2.3)⇥10�4 (average of NA48 [26]
and KTeV [27,28]), we observe a discrepancy of 2.9 � significance.

quantity error on "0/" quantity error on "0/"

B
(1/2)
6

4.1 md(mc) 0.2
NNLO 1.6 q 0.2

⌦̂
e↵

0.7 B
(1/2)
8

0.1
p
3

0.6 Im�t 0.1

B
(3/2)
8

0.5 p
72

0.1
p
5

0.4 p
70

0.1
ms(mc) 0.3 ↵s(MZ) 0.1
mt(mt) 0.3

Table 4: Error budget, ordered from most important to least important. Each line shows
the variation from the central value of our "0/" prediction, in units of 10�4, as the cor-
responding parameter is varied within its input range, all others held at central values.

A detailed error budget is given in Table 4. It is evident that the error is dominated
by the hadronic parameter B

(1/2)
6

. Uncertainties from higher-order corrections are still
significant yet small if compared to the deviation from the experimental value. All other
individual errors are below 10�4, with the third most important uncertainty coming from
the isospin breaking parameter ⌦̂

e↵

, at a level of 0.7 ⇥ 10�4 and about six times smaller
than the error due to B

(1/2)
6

.



NLO vs NNLO

23

Theory prediction only at NLO at the moment

Convergence at mc is not clear – should calculate next 
order

Long term use Lattice QCD



Status of ε‘/ε NNLO

24

Energy Fields Order

%W
g,γ,W,Z,h,
u,d,s,c,b,t

NNLO Q1-Q6 & Q8g i)
NNLO EW Penguins (traditional Basis) ii)

RGE γ,g,u,d,s,c,b NNLO Q1-Q6 & Q8g iii)

%b γ,g,u,d,s,c,b NNLO Q1-Q6 iv)

RGE γ,g,u,d,s,c NNLO Q1-Q6 & Q8g iii)

%c γ,g,u,d,s,c NLO Q1-Q10 v)

RGE γ,g,u,d,s NNLO Q1-Q6 & Q8g iii)

MLattice g,u,d,s NLO Q1-Q10 (traditional Basis) vi)
i)  [Misiak, Bobeth, Urban]
ii) [Gambino,Buras, Haisch]
iii)[Gorbahn, Haisch]

iv)[Gorbahn, Brod]
v) [Buras, Jamin, Lautenbacher]
vi)[Blum et. al., Bai et. al. ‘15]



y6 (MLattice) at NLO

For αs(MZ) =0.1185 GeV

Plot the residual %c dependence:

1, RGE: y6(%b) → y6(%c)

2, Match y6(f=4)(%c) → y6(f=3)(%c)

3, RGE: y6(%c) → y6(MLattice)

The scale dependence in 1 & 3 is

canceled by the log(%c) in 2.

y6 [MLattice](%c)

%c

25

The (V-A) (V+A) × y6 : largest contribution to Im(A0) and ε‘/ε

How well do we know y6 at the scale of the Lattice matrix 
elements MLattice?

Integrating out mc results in strong %c dependence.



NNLO Operator Basis
The traditional basis requires the calculation of traces with "5 .

 Issues with the treatment 
of the "5 in D dimensions 

Higher order calculations can be significantly simplified 
if we use a different  operator basis.

c

Q2

c

s

b

!

g

g

g
b s s s

c

c
g

!

Q2

g

g

q q q

b s

c

c
!

Q2

g
g g

q q q

b s

cc
g

!

Q2

g g

Figure 5: Some of the three-loop 1PI diagrams we had to calculate in order to find the
mixing among the four-quark operators Q1–Q6 at O(α3

s).

The finite parts of Eq. (33) in the limit of ϵ going to zero give the anomalous dimensions.
Inserting the expansions of γ̂(g) and β(g) in powers of g, as given in Eq. (5), one im-
mediately finds [15, 18] for the anomalous dimensions governing the evolution of physical
operators up to third order in the strong coupling parameter:

γ̂(0) = 2Ẑ(1,1) ,

γ̂(1) = 4Ẑ(2,1) − 2Ẑ(1,1)Ẑ(1,0) ,

γ̂(2) = 6Ẑ(3,1) − 4Ẑ(2,1)Ẑ(1,0) − 2Ẑ(1,1)Ẑ(2,0) .

(35)

The matrices Ẑ(1,0), Ẑ(1,1), Ẑ(2,0) and Ẑ(2,1) are found by calculating various one- and
two-loop diagrams with a single insertion of Q1–Q6, E(1)

1 –E(1)
4 and E(2)

1 –E(2)
4 , whereas

the matrix Ẑ(3,1) requires the computation of three-loop diagrams with insertions of Q1–
Q6 as shown in Figure 5. The pole and finite parts of these one-, two- and three-loop
diagrams are evaluated using the method we have described together with Paolo Gambino
in detail in [15]: We perform the calculation off-shell in an arbitrary Rξ gauge which allows
us to explicitly check the gauge-parameter independence of the mixing among physical
operators. To distinguish between IR and UV divergences we follow [17,18] and introduce
a common mass M for all fields, expanding all loop integrals in inverse powers of M . This
makes the calculation of the UV divergences possible even at three loops, as M becomes
the only relevant internal scale and three-loop tadpole integrals with a single non-zero
mass are known [18, 32]. On the other hand, this procedure requires to take into account

insertions of the non-physical operators N (1)
1 and N (2)

1 –N (2)
10 , as well as of appropriate

counterterms of dimension-three and four, some of which explicitly break gauge invariance.
A comprehensive discussion of the technical details of the renormalization of the effective
theory and the actual calculation of the operator mixing is given in [15].

Having summarized the general formalism and our method, we will now present our
results for an arbitrary number of quark flavors denoted by f . For completeness we start
with the regularization- and renormalization-scheme independent matrix γ̂(0), which is

14

s       Q5          ds  Q5    d s       Q5          d

O5,6 = (s̄idj)V-A

P
u,d,s(q̄kql)V+A

Om
5,6 = (s̄i�µ�⌫�⇢PLdj)V-A

P
u,d,s(q̄k�

µ�⌫�⇢ql)
No trace of 

"5 

26



Charm Matching NLO

27

O1 & O2 have the largest Wilson Coefficients.

Only one type of s → d gluon
diagram for O1 & O2

There are no one-light-particle-irreducible  diagrams for s→ d ū u.

 No evanescent operators are generated at one-loop.

We perform an off-shell matching:
expanding in external momentum O(k2)

O31 = 1
g s̄L�

µT abLD⌫Ga
µ⌫ +O4

O4 = (s̄L�µT abL)
P

q(q̄�
µT aq)

d

s

g
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NNLO Matching
There are Q1 & Q2 have the largest Wilson Coefficients.

The calculation produces several types of structures,

(s̄i�⌫T
a
ijPLdj)G

a
µk

µ
1 k

⌫
2(s̄i�

µPLT
a
ijdj)G

a
µk

2
1 ...

– more than operators.

s

d

gg

d

s

g

g
q

q

O1 / O2
O1 / O2
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Renormalisation f=4

Our procedure: Full (f=4) theory is still divergent after 
renormalisation.

Counterterm matrix element

vanishing for ms = md = mu = 0

O1/2



Vanishing f=4 matrix element 

Renormalisation f=3

30

Will be canceled in f=3 theory by
One-loop matching coefficient × one-loop operator mixing

Afull = Aeff results then in finite threshold corrections for 

Additional Check: All results can be projected onto the 
Physical and EOM vanishing Operator Basis.
Note: Evanescent Operators only contribute in f=4 theory 
at NNLO

Counterterm matrix element

vanishing for ms = md = mu = 0



Future improvements?

31

RBC-UKQCD will reduce the statistical uncertainty.

While 1/N [Buras Gerard `15] consistent with RBC-UKQCD, we 
still need an independent Lattice calculation.

Perturbative NNLO calculation is currently performed to 
hopefully reduce theory uncertainty.
First numerics – considering only NNLO matching 
contributions of O1/O2 – suggest that perturbation theory 
seems to be OK.
TODO: NNLO continuum matching

Long term: Lattice treatment of isospin violation and 
computation above charm scale.



Perturbative BSM Calculations

Effective theory give model independent results,
but different operators contribute to
K → ! ῡ υ and K → ! !  – and other observables.

It might be interesting to have results for rare decays
as functions of a minimal set

of masses and coupling constants

and still arrive at a renormalisable result?
(In the SM calculation we e.g. need MW = MZ cos(θw))

32



Toy example: consider theories with arbitrary number of W±

Toy example: Only Extra Vectors

h
V1,V2,V3

i
= i

6

⇣
V1,µV2,⌫ @[µV

⌫]
3 + V3,µV1,⌫ @

[µ
V

⌫]
2 + V2,µV3,⌫ @

[µ
V

⌫]
1

⌘

V1+t-cb bs s

Equivalence to spontaneously broken theories allows us
Rξ-gauge fix the Vector Bosons

and use STI to fix Goldstone-Boson interactions

L3 =
�

f1f2v1�
g�

v1f̄1f2
Vv1,µf̄1�

µP�f2 +
�

v1v2v3

gv1v2v3

�
V1, V2,V3

�
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gL
W+ūjdk

= e
sw

p
2VjkIn the Standard Model



Renormalisation

g�
v+
1 t̄sg

�
Zt̄t �

�

v2

gZv+
1 v�

2
g�

v+
2 t̄s + g�

v+
1 t̄sg

�
Zs̄s

g�
v+
1 t̄sg

�̄
Zt̄t �

�

v2

M2
v1

� M2
Z

2M2
v2

gZv+
1 v�

2
g�

v+
2 t̄s + 1

2g�
v+
1 t̄s

�
g�

Zs̄s + g�
Zt̄t

�
plus the one ∝ mt:

STIs lead to the following constraints on the couplings:

34

g�
v+
1 t̄sg

�̄
Zt̄t �

�

v2

M2
v1

+ M2
v2

� M2
Z

2M2
v2

gZv+
1 v�

2
g�

v+
2 t̄s + g�

v+
1 t̄sg

�
Zs̄s

Which results in the (renormalisation) condition

generalisation of the MW = MZ cos(θw) relation



 Full 1-loop result
V1+ V2+

V1+t

t t

Z0 Z0

b bs s
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sb b t-c

Z0

V1+

Applying the derived constraints on the full result yields
�

v1v2

gZv+
1 v�

2
gL

v�
1 b̄t

gL
v+
2 t̄sF1(mt, Mv1 , Mv2) +

�

v1

gL
Zs̄sg

L
v�
1 b̄t

gL
v+
2 t̄sF0(mt,Mv1)

Just like in the Standard Model we have a result in terms of a 
fewer number of couplings and finite loop functions F1 and F2

Z-coupling to top-quark eliminated



Right handed Z penguin with
additional W‘s and charged scalars:

Extended to arbitrary perturbative model

36

[Brod, Gorbahn in progress]



Outlook

37

There has been a continuous improvement in theory 
(Lattice + perturbation theory) and experiment.
And there is still work do be done, e.g.
continuum and perturbative matching at NNLO 

This leads to an increased new physics sensitivity.

Independent confirmation of K→ ! ! matrix elements 
on the Lattice would be exciting.

The measurements of K → ! ῡ υ and 
the theory improvements in ε‘ & ε will 
provide new information on short distance physics.


