NA62 PHYSICS HANDBOOK

MITP, JANUARY 11-23, 2016

NA62

NA62 warmly acknowledges the MITP support of this scientific program which happens at a crucial time for the Collaboration

AN EARLY START...

- THE IDEA TO GATHER THE PHYSICS INTO A NA62 HANDBOOK ORIGINATED IN 2008
- THE FIRST (AND LATEST) MEETING TOOK PLACE AT THE END OF 2009
- WE IMMEDIATELY REALIZED THAT THERE WAS PLENTY OF PHYSICS TO DO....
- ...BUT NO DETECTOR...
- ...SO WE LEFT THE HANDBOOK UNFINISHED...

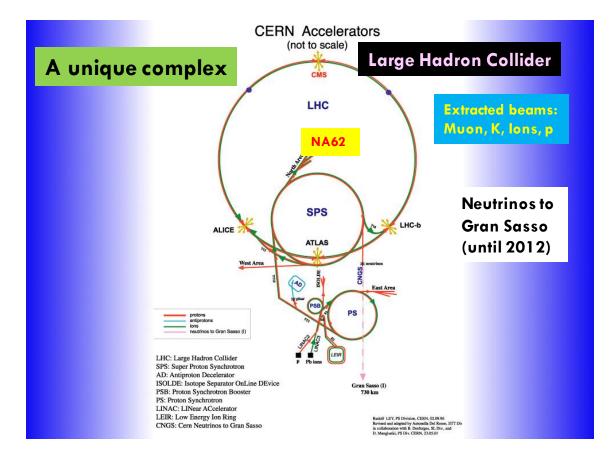
E. E.

• ... AND WE STARTED TO BUILD A NEW EXPERIMENT!

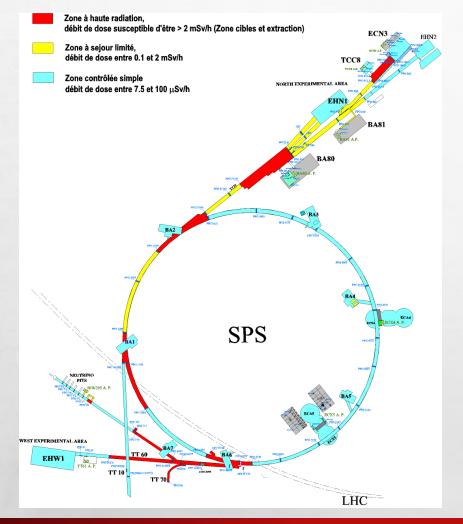
...AND NOW NA62 EXISTS

5 10^12K+ decays / year7 10^12pi+ decays/ year10^12pi0 decays/ year

...provided you know what to do with these decays and you can capture them before they disappear (we make so many decays that we cannot simply record all)



WHAT MAKES NA62 UNIQUE

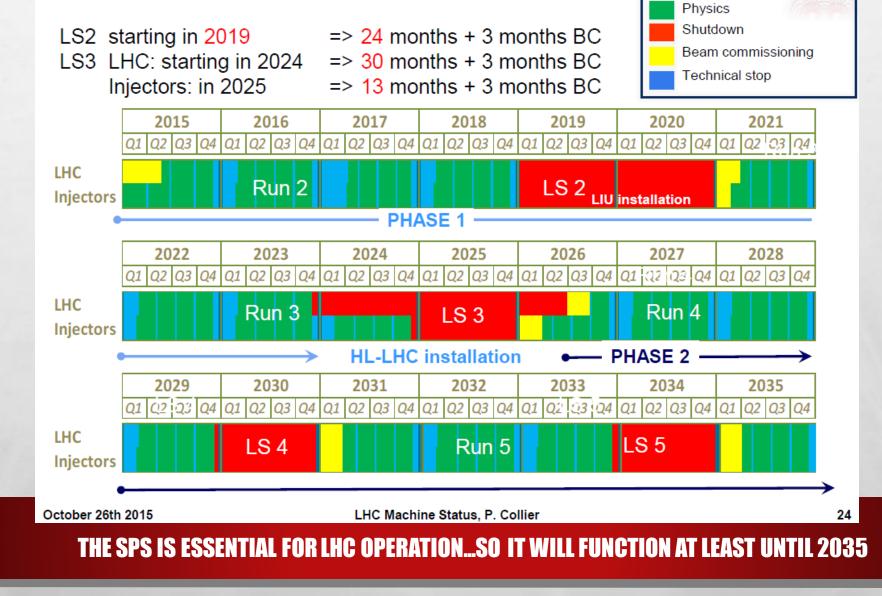

- HIGH MOMENTUM BEAM (75 GEV /C) ightarrow Acceptance and high yield of K PER proton
- CALORIMETRY FOR PRECISE PHOTON RECONSTRUCTION (1% ENERGY RESOLUTION)
- FULL PARTICLE IDENTIFICATION (PION / MUON)
- FAST AND (ALMOST) MASS-LESS TRACKING

E. E.

FEW WORDS ON CERN ACCELERATORS

CERN-SPS

SPS (Super Proton Synchroton) since 1976
Circumference: 6.9 km
2.5 km of secondary beam lines.
protons for fixed target physics at 400 GeV/c
protons for LHC at 450GeV/c
lead ions for fixed target physics at 400 GeV/c proton equivalent
Injector for the LHC



E. E.

a at

LHC Roadmap

CHARGED K BEAMS

"Stopped"

- Work in Kaon frame
- High Kaon purity (Electro-Magneto-static Separators)
- Compact Detectors

"In-Flight"

- Decays in vacuum (no scattering, no interactions)
- RF separated or Unseparated beams
- Extended decay regions

Ехр	Machine	Meas. or UL 90% CL	Notes
	Argonne	< 5.7 x 10 ⁻⁵	Stopped; HL Bubble Chamber
	Bevatron	< 5.6 x 10 ⁻⁷	Stopped; Spark Chambers
	KEK	<1.4 x 10 ⁻⁷	Stopped; $\pi^+ \rightarrow \mu^+ \rightarrow e^+$
E787	AGS	(1.57 ^{+1.75} -0.82) x 10 ⁻¹⁰	Stopped
E949	AGS	(1.73 ^{+1.15} -1.05) x 10 ⁻¹⁰	Stopped; PPN1+PPN2
NA62	SPS		In-Flight; Unseparated

NA62 Collaboration

29 Institutes, 233 Collaborators

NA62 MAIN GOAL

• We aim to measure to 10% or better $Br(K^+ \to \pi^+ \nu \overline{\nu})$

with in-flight kaon decays

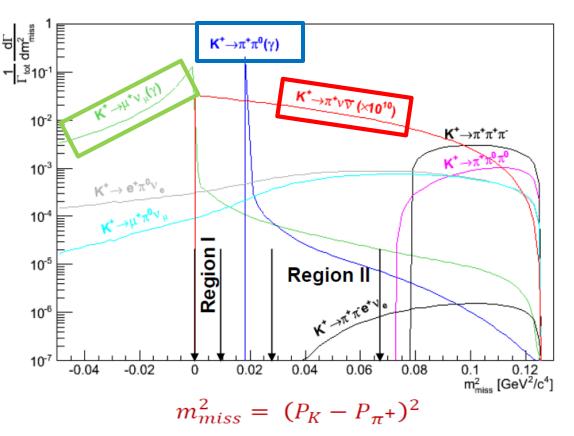
• State of the art:

Decay	Branching Ratio ($\times 10^{10}$)		
	Theory (SM)	Experiment	
$K^+ \to \pi^+ \nu \overline{\nu}(\gamma)$	$0.911 \pm 0.072^{[1]}$	$1.73^{+1.15^{[2]}}_{-1.05}$	

[1] A.J. Buras, D. Buttazzo, J. Girrbach-Noe and R. Knegjens arXiv:1503.02693
[2] AGS-E787/E949 PRL101 (2008) 191802, arXiv:0808.2459

NA62 IN-FLIGHT TECHNIQUE

MA62


 P_{π}

ν

 $\mathbf{P}_{\mathbf{K}}$

 $\theta_{\pi K}$

- Calorimetry to veto extra particles
- Very light trackers to reconstruct the K^+ and the π^+ momenta
- Full particle identification

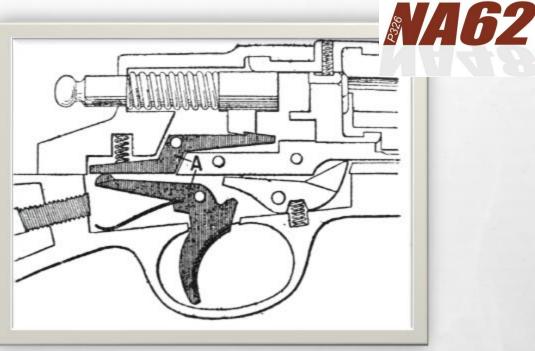
$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Analysis Sensitivity (MC)

Decay	event/year
K ⁺ → π^+ νν [SM] (flux 4.5×10 ¹²)	45
$K^+ \rightarrow \pi^+ \pi^0$	5
$K^+ \rightarrow \mu^+ \nu$	1
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	<1
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ + other 3 tracks decays	<1
$K^+ \rightarrow \pi^+ \pi^0 \gamma (IB)$	1.5
$K^+ \rightarrow \mu^+ \nu \gamma (IB)$	0.5
$K^+ \rightarrow \pi^0 e^+(\mu^+) \nu$, others	negligible
Total background	< 10

Decay	Physics	Present limit (90% C.L.) / Result	NA62
$\pi^+\mu^+e^-$	LFV	1.3×10^{-11}	0.7×10^{-12}
$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}
$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	0.7×10^{-12}
$\pi^-e^+e^+$	LNV	6.4×10^{-10}	2×10^{-12}
$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	0.4×10^{-12}
$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}
$e^- \nu \mu^+ \mu^+$	LNV	No data	10 ⁻¹²
$\pi^+ X^0$	New Particle	$5.9 \times 10^{-11} m_{X^0} = 0$	10^{-12}
$\pi^+\chi\chi$	New Particle	—	10^{-12}
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10 ⁻¹¹
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10 ⁻¹¹
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10 ⁻¹²
$\mu^+ \nu_h, \nu_h \to \nu \gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 \ MeV$	
R _K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better
$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events
$\pi^0\pi^0e^+\nu$	χPT	66000 events	O(10 ⁶)
$\pi^0\pi^0\mu^+\nu$	χPT	-	O(10 ⁵)

FURTHER NA62 PROGRAM

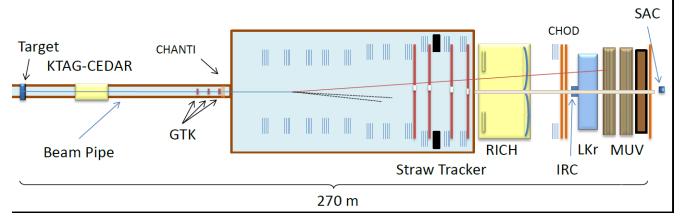
- WHICH ULTIMATE PRECISION TO BE TARGETED?
- IS THERE A COMPELLING K-LONG PROGRAM?
- WHAT ABOUT THE DARK SECTOR?
- WHAT ELSE WAS OVERLOOKED?


A. A.

- CHARGED PIONS? (OPTIMIZING ACCEPTANCE REDUCING THE BEAM MOMENTUM)
- NEUTRAL PIONS?

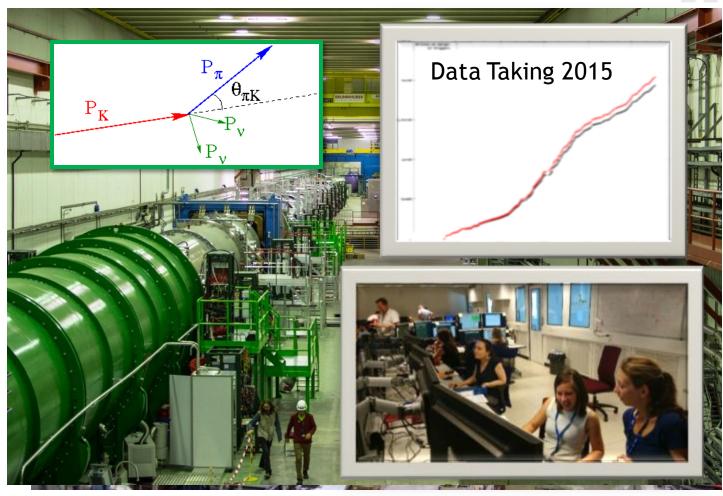
THIS WORKSHOP

And the second water of the second

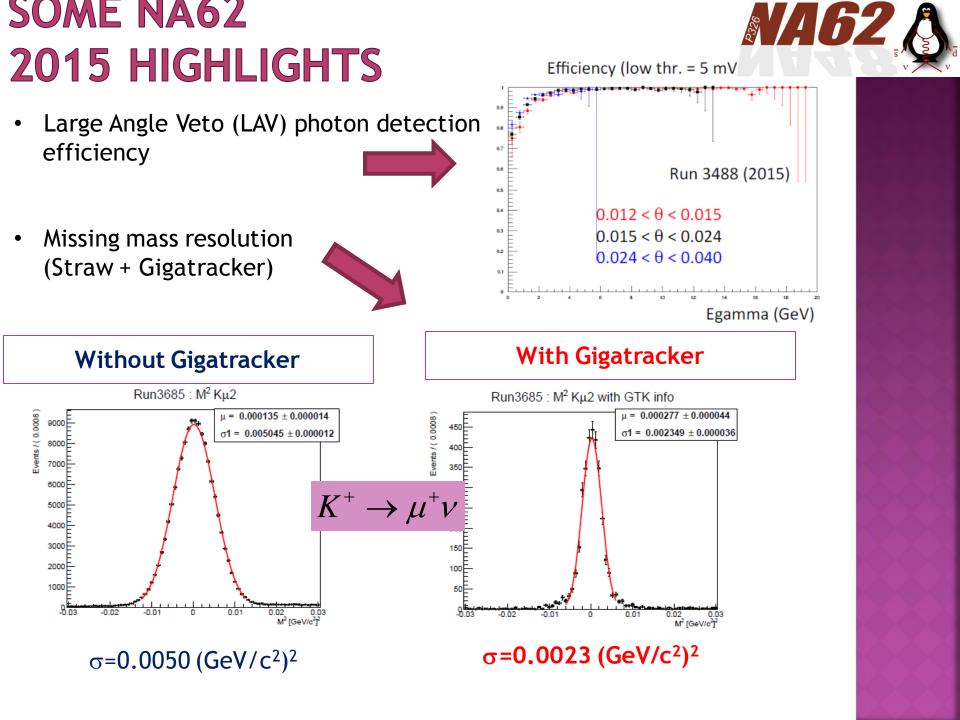

THE TRIGGER

- BETWEEN A REACH WEALTH OF DATA AND NA62 STANDS THE TRIGGER
- WE CANNOT SIMPLY WRITE ON TAPE ALL KAON DECAYS
- WE NEED TO USE VERY FAST ALGORITHMS TO REJECT THE UNWANTED DECAYS
- THE TRIGGER MUST BE MOSTLY BLIND TO MUONS (70% OF THE SINGLES RATE IN NA62 IS MUONS)
- FOR INSTANCE THERE IS AN OBVIOUS CONFLICT SELECTING A PI+ AND NOTHING ELSE OR PI+ AND TWO PHOTONS

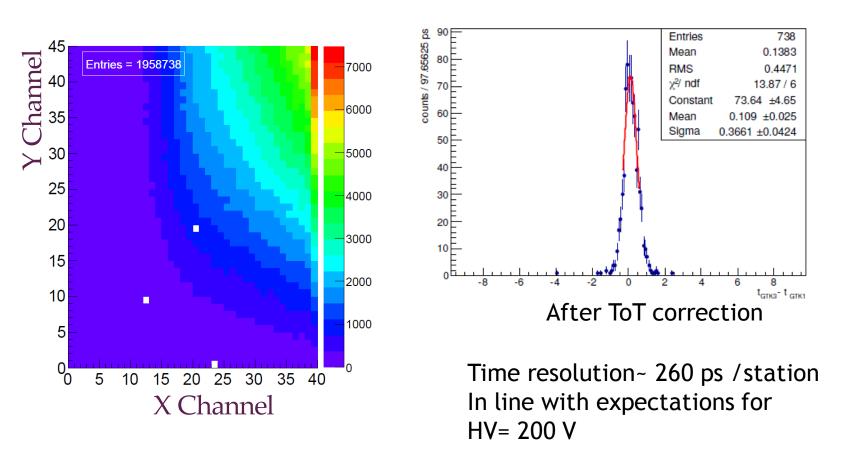
NA62 SCHEMATIC LAYOUT


10¹²/ s protons from SPS (400 GeV/c) on Be target (~1 λ)

750 MHz secondary beam: 75 GeV/c
Positive polarity
Kaon fraction ~6%
Δ p/p ~ 1%
Useful kaon decays ~10% (5 MHz)


NA62 is designed for a specific "silver bullet" measurement. This requires high beam rate, full PID, hermetic coverage, very light, high-rate tracking and state-of-the-art trigger and DAQ. It paves the way to a broad physics program

NA62:STATUS



- Beam time 2015: June 22 November 15
- ~2 10¹⁰ triggers on tape
- reached nominal beam intensity by the end of the run

GIGATRACKER PERFORMANCE

K12 Beam; Illumination of one GTK chip

STATUS OF NA62: OUTLOOK

- 2015 was instrumental to collect a first significant sample of kaon decays with the complete detector
- Immediate Goal: Accumulate and analyze $O(10^{13})$ good kaon decays before LS2 to make a O(10%) measurement of $Dr(V^+ \to \sigma^+ v\bar{v})$

 $Br(K^+ \to \pi^+ \nu \overline{\nu})$

- Define a physics driven program of data taking after LS2
- The "NA62 Kaon Physics Handbook" is a great opportunity