

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Flavor Portal to Dark Matter

Andreas Crivellin

PAUL SCHERRER INSTITUT

Outline

- Quark masses and CKM elements
- Froggatt Nielsen and Flavour Symmetries
- Flavour Portal to Dark Matter
 - Explicit U(1) model
 - Relic Density
 - Direct detection
 - Flavour constraints (Kaon mixing)
- Conclusion and Outlook

Quark masses

- Volume of the sphere is proportional to the mass
- Quark masses are strongly hierarchical

CKM elements

CKM elements are hierarchical

CKM elements

- Inclusive and exclusive determinations of the V_{ub} and V_{cb} do not agree well.
- Right-handed
 W-b-u
 coupling?

Update of AC, S. Pokorski '2014

5

No new physics in CKM elements

Global CKM fit

- CKM fit work very well
- Strong constraints on New Physics

Flavour Puzzle

• How do we explain the hierarchy of the CKM elements and the quark masses?

$$\frac{m_c}{m_t} \approx \varepsilon^4, \frac{m_u}{m_t} \approx \varepsilon^8 \qquad |V| \approx \begin{pmatrix} 1 & \varepsilon & \varepsilon^3 \\ \varepsilon & 1 & \varepsilon^2 \\ \varepsilon^3 & \varepsilon^2 & 1 \end{pmatrix}$$
$$m_s = \varepsilon^3, m_d = \varepsilon^5$$

- - Hints for a organizing principle?
 - Dynamical Explanation?

Froggatt Nielsen Mechanism

Froggatt Nielsen '79, Leurer Seiberg Nir '92, '93

- SM fermions are charged under a new flavour symmetry
- Vector-like fermions Q_L, Q_R, D_L, D_R, U_L, U_R charged under the flavour symmetry are added
- SM scalar singlets ϕ with flavour charge breaks the flavour symmetry (flavons) by the vev v_{ϕ}

U(1) Example

Chankowski et al. '05

Dark Matter

- Existence established on cosmological scales
- Weakly interacting
- SM singlet?!
- Why is it stable?
- How is it connected to the SM (relic density)

Flavour Portal to Dark Matter

L. Calibbi, AC, B. Zaldivar '14

- DM is a SM singlet but is charged under the flavour symmetry
 - Minimal (no additional quantum number etc.)
 - Stability can be ensured
- Flavour interactions connect DM with the Standard Model
- Flavour symmetry
 - Global: Flavon exchange
 - Local: Flavour gauge boson exchange

Flavour Constraints

- Best constraints from Kaon mixing on U(1) models
 - SM is smallest
 - Flavour charges are highest

Calibbi, Lalak, Pokorski, '12

Direct Detection

Spin independent

 $\sigma_{\phi}^{\mathrm{SI}}$ $\mu_{\chi N}^2$

MFV-like couplings

Flavon exchange: Direct Detection

k =

Conclusions

- Flavour symmetries explain the hierarchy of quark masses and mixing
- In a general class of models, Dark Matter is charged under some flavour symmetry and interacts with the SM via
 - Flavons (scalars)
 - Flavour gauge bosons (vectors)
- In abelian models one finds strong constraints from Kaon Physics

Outlook

- DM with different Flavour Symmetries
 - SU(3) with DM Bishara, Greljo, et al., '15
 - SU(2)xU(1) can explain the $b \rightarrow s \mu \mu$ anomalies Falkowski, Nardecchia, Ziegler '15
 - A4, etc...
- Effects in ε'/ε
- Inclusion of the lepton sector
 - Effects in semileptonic Kaon decays Talk of Lewis Tunstall