Searches of new physics in $s \rightarrow u \ell \nu$:

Interplay between semileptonic kaon and hyperon decays

Jorge Martin Camalich

NA-62 Kaon Physics Handbook

H.M. Chang, M. Gonzalez-Alonso and JMC, PRL114(2015)16,161802 M. Gonzalez-Alonso and JMC, arXiv: 1602:XXXXX

January 21, 2016

Outline

- $s
 ightarrow u \ell
 u$ transitions in EFT of NP
- (Semi)leptonic Kaon decays in the context of NP
 - CKM unitarity and NP in the $\tilde{V}_{us}^{\ell} \tilde{V}_{ud}^{\ell} -$ plane
 - LUV ratios
 - λ_0 in $K_{\mu 3}$ and bounds on scalar interactions
 - The Dalitz plot and the bounds on tensor contributions
- Sensitivity to NP of semileptonic hyperon decays (SHD)
 - What are and why hyperons?
 - SHD and SU(3)_F-breaking expansion in a nutshell
 - Bounds on scalar and tensor operators from SHD
- Discussion: Interest of a SHD physics program

(Lepton universality violating) New-Physics in B decays?

• " $R_{D^{(*)}}$ anomaly" in $B \rightarrow D^{(*)} \ell \nu!$

HFAG @ EPS-HEP 2015

• " R_{κ} anomaly" in $B \rightarrow K\ell\ell$ (FCNC)!

LHCb PRL113(2014)151601

$$R_K = 0.745^{+0.090}_{-0.074}$$
(stat) ± 0.036 (syst

- **Excesses** observed at $\sim 4\sigma$
- Other "anomalies" in $b \to (u, c) \ell \nu$
 - Inclusive vs. Exclusive V_{ub} and V_{cb}

S. Descotes-Genon talk

 $\bullet~\Lambda_{\rm NP}\sim 2~TeV$

- Tension with SM \sim 2.6 σ
- Other anomalies in $b \rightarrow s \mu \mu$
 - Branching fractions
 - Angular analysis $B \to K^* \mu \mu$
- Up to 4σ in global fits

Descotes-Genon et al.'13, Altmannshofer and Straub '14,...

• $\Lambda_{\rm NP}\sim 30~\text{TeV}$

New-physics in light quark charged-current transitions?

• If $\Lambda_{NP} \sim 1$ TeV it might show up in other flavor observables!

$$\mathcal{L}_{\text{eff}}^{s\ell} = -\frac{G_F V_{us}}{\sqrt{2}} [(1 + \epsilon_L^{s\ell}) \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma^\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 + \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell} \gamma_\mu (1 - \gamma_5) s + \epsilon_R^{s\ell} \ \bar{\ell}$$

 $+\bar{\ell}(1-\gamma_5)\nu_\ell\cdot\bar{u}[\epsilon_S^{s\ell}-\epsilon_P^{s\ell}\gamma_5]s+\epsilon_T^{s\ell}\,\bar{\ell}\sigma_{\mu\nu}(1-\gamma_5)\nu_\ell\cdot\bar{u}\sigma^{\mu\nu}(1-\gamma_5)s]+\text{h.c.},$

Wilson coefficients: ϵ_{Γ} decouple as $\sim v^2/\Lambda_{\rm NP}^2$

Experimental data: K_{l2} and K_{l3} boast an extremely rich database FlaviaNet Kaon Working Group, Antonelli *et al.* EPJC69, 399 (2010), Passemar's talk

2 Hadronic matrix elements: Flagship quantities in χ PT and LQCD

FLAG collaboration, Martinelli's talk

8 Radiative and isospin-breaking corrections understood!

Cirigliano et al. Rev.Mod.Phys. 84 (2012) 399, Knecht's talk

Crucial inputs for CKM matrix Descotes-Genon's talk

- Pollutions of NP in determinations of Vus
- Blindspots in kaons \Rightarrow Interplay with hyperon decays!
- High-energy EFT: Interplay with colliders

High-Energy EFT guiding principle

Construct the most general effective operators \mathcal{O}_k built with **all** the SM fields and subject to the strictures of $SU(3)_c \times SU(2)_L \times U(1)_Y$

Buchmuller& Wyler'86, Grzadkowski et al.'10

- Symmetry relations for ϵ_{Γ}
 - Specially powerful in rare $D \rightarrow D'\ell\ell$: No C_T and less C_S Alonso, Grinstein, JMC, PRL113(2014)241802
 - ▶ In charged-currents ϵ_B^{ℓ} : Bernard, Oertel, Passemar & Stern PLB638(2006)480

$$\mathcal{O}_{Hud} = rac{i}{\Lambda_{\mathrm{NP}}^2} \left(\tilde{H}^\dagger D_\mu H \right) \left(\bar{u}_R \gamma^\mu d_R \right)$$

• **RHC** is lepton universal: $\epsilon_R^{\ell} \equiv \epsilon_R + \mathcal{O}(\frac{v^4}{\Lambda_{\text{NP}}^4})$

- High-energy ⇐⇒ low-energy dictionary
 - Low-energy and collider analyses use the same EFT language
 - Implement flavor symmetries:

*
$$U(3)^5$$
: $\epsilon_R = \epsilon_S^\ell = \epsilon_P^\ell = \epsilon_T^\ell \equiv 0!$

- * MFV: ϵ_R , ϵ_S^{ℓ} , ϵ_P^{ℓ} , ϵ_T^{ℓ} suppressed by small Yukawas!
- Streamline tests of your favorite UV completion!

 $K_{\ell 3}$

• Neglecting contributions $\mathcal{O}(\frac{v^4}{\Lambda_{NP}^4})$ (terms quadratic in ϵ_i^2)

$$\Gamma(\mathcal{K}_{\ell 3(\gamma)}) = \frac{G_F^2 m_K^5}{192\pi^3} C S_{\rm EW} |\tilde{V}_{us}^{\ell}|^2 f_+(0)^2 \underbrace{I_K^{\ell}(\lambda_{+,0}, \epsilon_S^{s\ell}, \epsilon_T^{s\ell})}_{\left(1 + \epsilon_L^{s\ell} + \epsilon_R^s - \tilde{v}_L\right) V_{us}^{\rm SM}} \underbrace{\left(1 + \delta^c + \delta_{\rm em}^{c\ell}\right)^2}_{\rm Rad. and isosp. corr.}$$

- $f_+(0)$, δ^c and $\delta^{c\ell}_{em}$ th. inputs (LQCD and χ PT)
- $\epsilon_{S,T}^{s\ell}$ accessible through the spectra/angular distribution

Interference with SM is $\propto m_{\ell}!$

- K_{e3} spectra is SM-like! (sensitivity to $|\epsilon_{S,T}^{se}|^2$)
- $K_{\mu3}$ sensitive \Rightarrow Simultaneous fit of $\lambda_{+,0}, \epsilon_S^{s\mu}, \epsilon_T^{s\mu}$
- $|\tilde{V}_{us}^{\ell}|$ only accessible through CKM unitarity and LUV tests
 - Less NP-polluted for K_{e3}
 - Cross-contamination from NP in µ decays

K_{e3} , β -decay and CKM unitarity test

• Nuclear β -decay: $|\tilde{V}_{ud}^e| = (1 + \epsilon_L^{de} + \epsilon_R^d - \tilde{v}_L) V_{ud}^{SM} = 0.97425(22)$

Hardy&Towner, PRC70,055502 (2009)

• At $\mathcal{O}(\epsilon_i^2)$ NP enters in K_{e3} only through $|\tilde{V}_{ud}^e| = 0.2237(9)$

FlaviaNet Kaon Working Group, Antonelli et al. EPJC69, 399 (2010), FLAG'13

• CKM unitarity test:

$$\left| \begin{array}{c} |\tilde{V}^{e}_{ud}|^{2} + |\tilde{V}^{e}_{us}|^{2} + |\tilde{V}^{e}_{ub}|^{2} - 1 \equiv \Delta_{\mathrm{CKM}} \\ |V^{\mathrm{SM}}_{ud}|^{2} + |V^{\mathrm{SM}}_{us}|^{2} + |V^{\mathrm{SM}}_{ub}|^{2} \equiv 1 \end{array} \right\} \Rightarrow |\tilde{V}^{e}_{ud}| (\epsilon_{L}^{\ell\ell} + \epsilon_{R}^{d} - \tilde{v}_{L}) + |\tilde{V}^{e}_{us}| (\epsilon_{L}^{s\ell} + \epsilon_{R}^{s} - \tilde{v}_{L}) = \frac{\Delta_{\mathrm{CKM}}}{2},$$

Cirigliano, Gonzalez-Alonso, Jenkins, NPB, 830(2010)95

$$\Delta_{\rm CKM} = -0.0008(6) \Longrightarrow \Lambda_{\rm NP} \sim 12 \text{ TeV}$$

Passemar's talk

Interplay of K_{e3} y $\Gamma(K_{e2(\gamma)}^{\pm})/\Gamma(\pi_{e2(\gamma)}^{\pm})$

• $\Gamma(K_{e2(\gamma)}^{\pm})/\Gamma(\pi_{e2(\gamma)}^{\pm})$ and K_{e3} lead to CKM matrix elements with only LQCD input

Marciano, PRL93(2004)231803

• However: P_{e2} is also sensitive to ϵ_{R}^{D} and ϵ_{P}^{De} !

$$\frac{\Gamma(K_{\theta^2(\gamma)}^{\pm})}{\Gamma(\pi_{\theta^2(\gamma)}^{\pm})} = \frac{|V_{us}^{\theta}|^2}{|V_{ud}^{\theta}|^2} (1 - 2\epsilon_{NP}) \left(\frac{f_{K^{\pm}}}{f_{\pi^{\pm}}}\right)^2 \frac{m_{K^{\pm}}}{m_{\pi^{\pm}}} (1 + \delta_{em}) + \mathcal{O}((m_{\theta}/m_{\pi^{\pm},K^{\pm}})^2, \epsilon^2)$$
$$\epsilon_{NP} = 2\epsilon_R^s - 2\epsilon_R^d - \frac{m_{K^{\pm}}^2}{m_{\theta}(m_{\theta^{\pm}m_{\theta^{\pm}}})} \epsilon_P^{s\theta} + \frac{m_{\pi^{\pm}}^2}{m_{\theta}(m_{\pi^{\pm}m_{\theta^{\pm}}})} \epsilon_P^{d\theta}$$

• NP in the $|\tilde{V}^e_{ud}| - |\tilde{V}^e_{ud}|$ plane

 $\epsilon_{\rm NP} = 0.0068(26)~(\pm 0.0050~{\rm at}~95\%~{\rm C.L.})$

Uncertainties dominated by $f_+(0)$, $f_{K^{\pm}}/f_{\pi^{\pm}}$

Connecting to the μ -sector: LUV ratios

- Consequence of High-Energy EFT: ε^s_R factors out from LUV ratios!
- *K*_{ℓ3}

$$r_{\mu e} = \frac{\tilde{v}_{US}^{\ell} f_{+}(0) \Big|_{\ell=\mu}}{\tilde{v}_{US}^{\ell} f_{+}(0) \Big|_{\ell=e}} \equiv \frac{\tilde{v}_{US}^{\mu}}{\tilde{v}_{US}^{e}} = 1 + \epsilon_{L}^{s\mu} - \epsilon_{L}^{se} + \mathcal{O}(\epsilon^{2})$$

 $r_{\mu e} = 1.002(5)$

FlaviaNet Kaon Working Group, Antonelli et al. EPJC69, 399 (2010)

$$R_{K} = \frac{\Gamma(K_{e2(\gamma)}^{\pm})}{\Gamma(K_{\mu2(\gamma)}^{\pm})} = \frac{|\tilde{V}_{US}^{\theta}|^{2}}{|\tilde{V}_{US}^{\mu}|^{2}} \left(1 + \frac{2m_{P}^{2}}{m_{U} + m_{S}} \left(\frac{\epsilon_{P}^{se}}{m_{e}} - \frac{\epsilon_{P}^{s\mu}}{m_{\mu}}\right)\right) \frac{m_{\theta}^{2}}{m_{\mu}^{2}} \frac{(1 - m_{\theta}^{2}/m_{P}^{2})^{2}}{(1 - m_{\mu}^{2}/m_{K}^{2})^{2}} \left(1 + \delta_{\rm EM}\right) + \mathcal{O}(\epsilon^{2})$$
(1)

- Very accurately predicted in the SM: $R_K^{SM} = 2.477(1) \times 10^{-5}$ Cirigliano&Rosell, PRL99(2007)231801
- Very precise experimental measurement: $R_{K}^{\text{SM}} = 2.488(12) \times 10^{-5}$
- ▶ Bound on $\tilde{V}_{us}^{e}/\tilde{V}_{us}^{\mu}$ from $r_{\mu e} \implies$ Very strong bounds on $\epsilon_{P}^{s\ell}!$ ($\Lambda_{NP} > 100 \text{ TeV}!$)
- ▶ **Loophole:** Flavor structure $\epsilon_P^{S\ell} \propto m_\ell \epsilon_P^{S}!!$ (MFV or 2HDMs)

$$\begin{array}{c} \begin{array}{c} \text{SM} & \text{SM} + \text{NP} \\ \hline m_{\mu} \frac{t_0(q^2)}{t_+(0)} & \longrightarrow & m_{\mu} \frac{t_0(q^2)}{t_+(0)} \left(1 + \frac{q^2}{m_{\mu}(m_S - m_u)} \epsilon_S^{S\mu} \right) \\ \\ \lambda_0^{\prime} & \text{SM} \longrightarrow \lambda_0^{\prime} = \lambda_0^{\prime} \frac{\text{SM}}{m_{\mu}(m_S - m_u)} \epsilon_S^{S\mu} \end{array}$$

• Callan-Treiman th.: Very accurate prediction of λ_0^{ISM} using $f_+(0)$, f_K/f_{π} and χPT

$$\lambda_0^{\prime\,{
m SM}}=$$
 14.3(8) $imes$ 10⁻³

Bernard et al.'06'09 (Dispersive), FLAG'13, Gasser&Leutwyler'84, Bijnens and Ghorbani'07

 λ_0 has $\mathcal{O}(1)$ sensitivity to $\epsilon_S^{S\mu}$! Probing $\Lambda_{NP} \sim 10$ TeV

• Tensor conts. not simply absorbed into FF parameters Direct analysis of the Dalitz plots is needed!

New parameter in the FF fits, e.g. ISTRA+

O.P. Yushchenko et al. / Physics Letters B 581 (2004) 31-38

• In our parametrization $f_T = \epsilon_T^{s\mu} B_T^{\text{QCD}}(0) \rightarrow \epsilon_T^{s\mu} = 0.001 \pm 0.011 (\Lambda_{\text{NP}} \sim 5 \text{ TeV})$

Baum et al., PRD84,074503 (2011) (LQCD)

Question: Is a *full* fit to $\lambda_{+,0}^{\prime, \prime\prime}$ and ϵ_T^{μ} feasible?

J. Martin Camalich (JGU)

Searches of NP in $s \rightarrow u \ell \nu$

Interplay with semileptonic hyperon decays

- Semileptonic hyperon decays: Same short-distance physics as $K_{\ell 2}$ and $K_{\ell 3}$
 - **1** Alternative determination of $|\tilde{V}_{us}^{\ell}|$
 - 2 Combination of RHCs and pseudoscalar in $K_{\ell 2}$: Disentangle ϵ_{R}^{s} and $\epsilon_{P}^{s\ell}$
 - 3 Subtle extraction of tensor from $K_{\ell 3}$: Alternative bounds from SHD ϵ^{μ}_{T}
 - Tensions in λ₀: Independent bounds on ε^μ_S
- Successfully applied to $d \rightarrow u \ell \nu$ transitions: Nuclear and neutron β -decay

Bhattacharya et al., PRD85(2012)054512

- **5** $SU(3)_F$ channels $\times 2$ lepton channels (e and μ) $\Lambda \to p\ell\nu, \Sigma^- \to n\ell\nu, \Xi^- \to \Sigma^0\ell\nu,$ $\Xi^- \to \Lambda\ell\nu, \Xi^0 \to \Sigma^+\ell\nu$ (and $\Omega^- \to \Xi^{0(*)}\ell\nu$)
- Half lifes: $\tau_Y \sim 10^{-10}$ s
- Very rich phenomenology:
 - Polarization observables
 - SU(3)-relations to nucleon-structure observables
 - Data is (very) old: Much room for improvement

Semileptonic hyperon decays: Form factors and SU(3)_F

• In the SM there are 6 FF per channel

$$\langle B_2(\rho_2) | \bar{u}\gamma_{\mu} s | B_1(\rho_1) \rangle = \bar{u}_2(\rho_2) \left[\frac{f_1(q^2) \gamma_{\mu} + \frac{f_2(q^2)}{M_1} \sigma_{\mu\nu} q^{\nu} + \frac{f_3(q^2)}{M_1} q_{\mu} \right] u_1(\rho_1), \\ \langle B_2(\rho_2) | \bar{u}\gamma_{\mu}\gamma_5 s | B_1(\rho_1) \rangle = \bar{u}_2(\rho_2) \left[\frac{g_1(q^2) \gamma_{\mu} + \frac{g_2(q^2)}{M_1} \sigma_{\mu\nu} q^{\nu} + \frac{g_3(q^2)}{M_1} q_{\mu} \right] \gamma_5 u_1(\rho_1)$$

- Exact $SU(3)_F$: $\langle B_a | J_b | B_c \rangle = f_{bac} F_J(q^2) + d_{bac} D_J(q^2)$
- Measure of $SU(3)_F$ -breaking: $\delta \equiv (M_1 M_2)/M \sim 10 20\%$
- Kinematic expansion: $q/M_1 \sim \mathcal{O}(\delta)$
 - * $f_1(0)$ ($f_2(0)$) related to the charges (magnetic moments) of p and n up to $\mathcal{O}(\delta^2)$ ($\mathcal{O}(\delta)$)
 - * Second-class currents: $f_3(q^2)$ and $g_2(q^2)$ are $\mathcal{O}(\delta)$
 - * $f_{2,3}(q^2)$ and $g_2(q^2)$ kinematically suppressed $\sim \delta$
 - * $g_3(q^2)$ suppressed by $\sim \delta^2$ because of $\langle B_2 | \bar{u} \gamma_5 s | B_1 \rangle \sim E_1 / M_1$

$$\Gamma_{\theta} \simeq \frac{G_{F}^{2} |V_{US} f_{1}(0)|^{2} \Delta^{5}}{60 \pi^{3}} \left[\left(1 - \frac{3}{2} \delta\right) + 3 \left(1 - \frac{3}{2} \delta\right) \frac{g_{1}(0)^{2}}{f_{1}(0)^{2}} \right] + \mathcal{O}(\delta^{2})$$

• Including $\mathcal{O}(\delta^2)$ in the rates is standard in analyses of SHD!

Garcia, Kielanowski, Bohm, Lect. Notes Phys. 222, 1 (1985), Cabibbo et al. Ann.Rev.Nucl.Part.Sci. 53 (2003) 39-75

$f_1(0)$ and $g_1(0)/f_1(0)$

• $f_1(0)$ essential to extract \tilde{V}_{us}^{ℓ} from SHD

- $f_1(0)$ protected by Ademollo-Gatto th $f_1(0) = f_1^{SU(3)}(0) + \mathcal{O}(\delta^2)$
- Corrections in χ PT problematic

Geng, Li & JMC, PRD89(2014)11,113007

• Efforts in LQCD!

Sasaki, PRD86(2012)114502, Shanahan et al. PRD92(2015)7,074029

• $g_1(0)/f_1(0)$ measured using angular and polarization information

Alexandrou, arXiv:1512.03924

	$\Lambda { ightarrow} ho$	$\Sigma^{-} \rightarrow n$	$\Xi^0\!\!\!\rightarrow\!\Sigma^+$	$\Xi^-\!\!\rightarrow\!\Lambda$
$g_1(0)/f_1(0)$	0.718(15)	-0.340(17)	1.210(50)	0.250(50)

Measurement of g₁(0) sensitive to RHCs!

$$g_1(0) = (1 - 2\epsilon_R^s)g_1(0)^{\text{QCD}}$$

• Much effort on g_A(0) in LQCD !

J. Martin Camalich (JGU)

Searches of NP in $s \rightarrow u \ell \nu$

NP contributions in SHD

• New form factors: Determine the sensitivity to $\epsilon_S^{s\ell}$, $\epsilon_P^{s\ell}$ and $\epsilon_T^{s\ell}$

 $\langle B_2(p_2) | \bar{u} s | B_1(p_1) \rangle = f_S(q^2) \bar{u}_2(p_2) u_1(p_1)$

 $\langle B_2(p_2) | \bar{u} \gamma_5 s | B_1(p_1) \rangle = g_P(q^2) \bar{u}_2(p_2) \gamma_5 u_1(p_1)$

 $\langle B_2(p_2) | \bar{u} \sigma_{\mu\nu} s | B_1(p_1) \rangle = f_T(q^2) \bar{u}_2(p_2) \sigma_{\mu\nu} u_1(p_1) + O(\delta)$

• $f_{S}(0)$ and $g_{P}(0)$ from CVC and PCAC

Gonzalez-Alonso&JMC, PRL112(2014)4,042501

$$\frac{f_{S}(0)}{f_{1}(0)} = \frac{M_{2} - M_{1}}{m_{s} - m_{u}}, \qquad \frac{g_{P}(0)}{g_{1}(0)} = \frac{M_{2} + M_{1}}{m_{s} + m_{u}}$$

• $f_T(0)$ calculated in LQCD for $n \rightarrow p$

Bhattacharya et al., PRD85(2012)054512,..., ETMC, PRD92(2015)114513

• **SHD**: Use a model +
$$SU(3)_F$$

$$f_T(0)^{\text{LQCD}} = 1.027(62), f_T(0)^{\text{model}} = 1.22 \text{ for } n \to p$$

Ledwig et al. PRD82(2010)034022

	$\Lambda { ightarrow} ho$	$\Sigma^{-} \rightarrow n$	$\Xi^0\!\!\!\rightarrow\!\Sigma^+$	$\Xi^-\!\!\rightarrow\!\!\Lambda$
$f_{S}(0)/f_{1}(0)$	1.90(10)	2.80(14)	1.36(7)	2.25(11)
$f_T(0)/f_1(0)$	0.72	-0.28	1.22	0.22

- Interference with SM $\propto m_{\ell}$: μ -modes sensitive to $\epsilon_{S,P}^{s\ell}$ and $\epsilon_{T}^{s\ell}$
 - Electronic modes appropriate for measuring form factors!
- Sensitivity to $\epsilon_P^{s\ell}$ neutralized by $\sim E_1/M_1$
- Define LUV ratio: $R^{\mu e} = \frac{\Gamma(B_1 \rightarrow B_2 \mu^- \bar{\nu}_{\mu})}{\Gamma(B_1 \rightarrow B_2 e^- \bar{\nu}_{e})}$

NP:

$$R_{\rm SM}^{\mu\theta} = \sqrt{1 - \frac{m_{\mu}^2}{\Delta^2}} \left(1 - \frac{9}{2} \frac{m_{\mu}^2}{\Delta^2} - 4 \frac{m_{\mu}^4}{\Delta^4}\right) + \frac{15}{2} \frac{m_{\mu}^4}{\Delta^4} \arctan\left(\sqrt{1 - \frac{m_{\mu}^2}{\Delta^2}}\right) \qquad \qquad R_{\rm NP}^{\mu\theta} \simeq \frac{\left(\frac{c_S \frac{f_S(0)}{f_1(0)} + 12 c_T \frac{g_1(0)}{f_1(0)} \frac{f_T(0)}{f_1(0)}\right)}{(1 - \frac{3}{2}\delta)\left(1 + 3\frac{g_1(0)^2}{f_1(0)^2}\right)} \Pi(\Delta, m_{\mu})$$

• Most data in the μ -channel is very old (60's and 70's)! δ Br/Br \sim 10% – 100%

	$\Lambda \rightarrow p$	$\Sigma^{-} \rightarrow n$	${\Xi^0}{\rightarrow}{\Sigma^+}$	$\Xi^- { ightarrow} \Lambda$
Expt.	0.189(41)	0.442(39)	0.0092(14)	0.6(5)
SM-NLO	0.153(8)	0.444(22)	0.0084(4)	0.275(14)

• Good agreement between SM and data \Rightarrow Bounds on $\epsilon_S^{s\ell}$ and $\epsilon_T^{s\ell}$

Chang, Gonzalez-Alonso and JMC PRL114(2015)16,161802

SHD bounds on $\epsilon_S^{s\ell}$ and $\epsilon_T^{s\ell}$

• SHD competitive despite poor data!

 $\epsilon_S^{s\mu} = 0.003(40)$ $\epsilon_T^{s\mu} = 0.017(34)$

- $\epsilon_S^{s\mu}$ an $\mathcal{O}(10)$ worse than Kaons
- $\epsilon_T^{s\mu}$ only a $\times 3$ worse!!
- Bounds better than LHC searches!

Chang et al. PRL114(2015)16,161802

- Bounds from HE $s\bar{u}
 ightarrow \ell
 u$
- Same EFT language: Assume that $\Lambda_{\rm NP} \gg \overline{m}_T$

$$N_{pp \to \ell \nu X}(m_T^2 > m_{T,cut}^2) = \varepsilon \times L \times \left(\sigma_W + \sigma_s \epsilon_S^2 + \sigma_T \epsilon_T^2\right)$$

Cirigliano et al. JHEP1302(2013)046

Collider sensitivity is quadratic!

Discussion: Interest of resurrecting SHD physics program

- SHD can be probes of TeV scales complementary to Kaons
 - Experimental side: <u>Vast</u> room for improvement specially with muonic modes!
 - e-modes should be useful for ...
 - * Alternative determination of \tilde{V}_{us}^{e}
 - Measure of form factors with Dalitz plots and spin observables (e.g. g₂(0))
 - μ -modes useful for $\epsilon_{S,T}^{s\mu}$: $K_{\ell 3}$ bound on $\epsilon_T^{s\mu}$ can be easily improved!
- **Theory side:** Developments in LQCD and in χ PT to go to $\mathcal{O}(\delta^2)$ accuracy (radiative corrections revisited?)
- Rare hyperon decays? Almost uncharted territory ...

Hyperon Physics @ NA62 Mauro Piccini¹

NA62 Physics Handbook Workshop

NA62 (or NAXX) could do a very good job on the expt. side!

J. Martin Camalich (JGU)

Back in 2009

Searches of NP in $s \rightarrow u \ell \nu$