CKM fits and kaon decays

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud, 91405 Orsay, France

NA62 Kaon Physics Handbook Workshop 19 January 2016

The CKM matrix

(p,ŋ)

In SM, flavour dynamics related to weak charged transitions which mix quarks of different generations

Encoded in unitary CKM matrix $V_{CKM} =$

$$\left[\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right]$$

- 3 generations ⇒ 1 phase, only source of *CP*-violation in SM
- Wolfenstein parametrisation, defined to hold to all orders in λ and rephasing invariant

$$\lambda^{2} = \frac{|V_{us}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}} \qquad A^{2}\lambda^{4} = \frac{|V_{cb}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}} \qquad \bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}$$
$$\implies 4 \text{ parameters describing the CKM matrix}$$

S. Descotes-Genon (LPT-Orsay)

CKMfitter

Extracting the CKM parameters

• *CP*-invariance of QCD to build hadronic-indep. *CP*-violating asym. or to determine hadronic inputs from data

• Statistical framework to combine data and assess uncertainties

	Exp. uncer	t.	Theoretical uncertainties	
			$B(b) ightarrow D(c) \ell u$	$ V_{cb} $ vs form factor $F^{B \to D}$ (OPE)
Tree	B ightarrow DK	γ	$B(b) ightarrow \pi(u) \ell u$	$ V_{ub} $ vs form factor $F^{B \to \pi}$ (OPE)
			$M ightarrow \ell u, M ightarrow N \ell u$	$ V_{UD} $ vs f_M (decay cst), $F^{M \to N}$
Loop	$B ightarrow J/\Psi K_s$	β	ϵ_{K} (K mix)	$(ar{ ho},ar{\eta})$ vs B_{K} (bag parameter)
	$B \to \pi \pi, \rho \rho$	α	$\Delta m_d, \Delta m_s (B_d, B_s \text{ mix})$	$ V_{tb}V_{tq} $ vs $f_B^2 B_B$ (bag param)

The inputs

frequentist ($\simeq \chi^2$ minim.) + Rfit scheme for theory uncert.

data = weak \otimes QCD \implies Need for hadronic inputs (mostly lattice)

 V_{ud} superallowed β decays Vus Kez $K \to \ell \nu, \tau \to K \nu_{\tau}$ $K \to \ell \nu / \pi \to \ell \nu, \tau \to K \nu_{\tau} / \tau \to \pi \nu_{\tau}$ $|V_{us}/V_{ud}|$ PDG ϵ_{K} Vcd $D \rightarrow \mu \nu, D \rightarrow \pi \ell \nu$ Vcs $D_{\rm S} \rightarrow \mu \nu, D_{\rm S} \rightarrow \tau \nu, D \rightarrow \pi \ell \nu$ $V_{\mu b}$ inclusive and exclusive B semileptonic $|V_{cb}|$ inclusive and exclusive B semileptonic $(1.24 \pm 0.22) \cdot 10^{-4}$ $B \rightarrow \tau \nu$ $|V_{\mu b}/V_{cb}|$ Λ_b semileptonic decays last WA B_d - \overline{B}_d mixing Δm_d last WA B_s - B_s mixing $\Delta m_{\rm s}$ last WA $J/\psi K^{(*)}$ ß last WA $\pi\pi, \rho\pi, \rho\rho$ α last WA $B \rightarrow D^{(*)}K^{(*)}$ γ

PRC79, 055502 (2009) $f_{\pm}(0) = 0.9645 \pm 0.0015 \pm 0.0045$ $f_{\rm K} = 155.2 \pm 0.2 \pm 0.6 \, {\rm MeV}$ $f_K/f_{\pi} = 1.1952 \pm 0.0007 \pm 0.0029$ $\hat{B}_{\kappa} = 0.7615 \pm 0.0027 \pm 0.0137$ $f_{D_s}/f_D = 1.175 \pm 0.001 \pm 0.004, f_+^{D \to \pi}(0)$ $f_{D_s} = 248.2 \pm 0.3 \pm 1.9 \text{ MeV}, f_{\perp}^{D \to K}(0)$ $|V_{ub}| \cdot 10^3 = 4.01 \pm 0.08 \pm 0.22$ $|V_{cb}| \cdot 10^3 = 41.00 \pm 0.33 \pm 0.74$ $f_{B_s}/f_{B_d} = 1.205 \pm 0.003 \pm 0.006$ $f_{B_c} = 224.0 \pm 1.0 \pm 2.0 \text{ MeV}$ integrals of Λ_b form factors $B_{B_s}/B_{B_d} = 1.023 \pm 0.013 \pm 0.014$ $B_{B_{\rm s}} = 1.320 \pm 0.016 \pm 0.030$

isospin GLW/ADS/GGSZ

as well as $m_t, m_c, \alpha_s(M_Z)$!

Statistical framework

- ${\pmb q} = ({\pmb A}, \lambda, ar
 ho, ar \eta \ldots)$ to be determined
 - $\mathcal{O}_{meas} \pm \sigma_{\mathcal{O}}$ experimental values of observables
 - $\mathcal{O}_{\text{th}}(q)$ theoretical description in a given model

In case of statistical uncertainties $\sigma_{\mathcal{O}}$, likelihoods and χ^2

$$\mathcal{L}(q) = \prod_{\mathcal{O}} \mathcal{L}_{\mathcal{O}}(q) \qquad \chi^2(q) = -2 \ln \mathcal{L}(q) = \sum_{\mathcal{O}} \left(\frac{\mathcal{O}_{\mathrm{th}}(q) - \mathcal{O}_{\mathrm{meas}}}{\sigma_{\mathcal{O}}} \right)^2$$

Central value: estimator *q̂* max likelihood: χ²(*q̂*) = min_q χ²(q)
 Range: confidence level for each *q*₀ (*p*-value for *q* = *q*₀) by:

$$\Delta \chi^2(q_0) = \chi^2(q_0) - \min_q \chi^2(q)$$

assumed to obey χ^2 law with N = dim(q) to yield CIs • Pull: comparison of χ^2_{min} with and without one measurement

$$p_{\mathcal{O}} = \sqrt{\min_{q} \chi^2_{\text{with meas}}(q) - \min_{q} \chi^2_{\text{without meas}}(q)}$$

 \Longrightarrow Specific scheme to treat theoretical uncertains (currently Rfit)

S. Descotes-Genon (LPT-Orsay)

Averaging lattice results

Collecting lattice results

- follow FLAG to exclude limited results
- supplement with more recent published results with error budget

Splitting error estimates into stat and syst

- Stat : essentially related to size of gauge conf
- Syst : fermion action, $a \rightarrow 0, L \rightarrow \infty$, mass extrapolations...

added linearly using error budget

"Educated Rfit" used to combine the results

- no correlations assumed
- product of (Gaussian + Rfit) likelihoods for central value
- product of Gaussian (stat) likelihoods for stat uncertainty
- syst uncertainty of the combination = most precise method
 - the present state of art cannot allow us to reach a better theoretical accuracy than the best of all estimates
 - best estimate should not be penalized by less precise methods

Illustration for f_K/f_π

Reference	N _f	Mean	Stat	Syst
ETMC09	2	1.210	0.006	0.024
HPQCD/UKQCD07	2+1	1.189	0.002	0.014
MILC10	2+1	1.197	0.002	$^{+0.003}_{-0.007}$
BMW10	2+1	1.192	0.007	0.013
LVdW11	2+1	1.202	0.011	0.024
RBC-UKQCD12	2+1	1.1991	0.0116	0.0185
HPQCD13	2+1+1	1.1938	0.0015	0.0032
FNAL-MILC14	2+1+1	1.1956	0.0010	+0.0033 -0.0024
ETMC14	2+1+1	1.188	0.011	0.020
Our average		1.1952	0.0007	0.0029

- Other values proposed: 1.194 ± 0.005 (N_f = 2 FLAG), 1.192 ± 0.005 (N_f = 3 FLAG)...
- Results for QCD decay constants (further etm corrections in BRs)
- Strange for absolute reference + ratio of non-strange and strange
- Used for decay constants, bag parameters, form factors...

Two decades of CKM

2001

[LEP, KTeV, NA48, Babar, Belle, CDF, DØ, LHCb, CMS...]

1995

2004

2006 S. Descotes-Genon (LPT-Orsay)

MITP15 - 19/1/16 9

EPS-HEP 2015

 $|V_{ud}|, |V_{us}|$ $|V_{cb}|, |V_{ub}|_{SI}$ $B \rightarrow \tau \nu$ $|V_{ub}/V_{cb}|_{\Lambda_b}$ $\Delta m_d, \Delta m_s$ ϵ_K $\sin 2\beta$ α γ $\begin{array}{l} {\it A} = 0.823^{+0.007}_{-0.014} \\ \lambda = 0.2254^{+0.0004}_{-0.0003} \\ \bar{\rho} = 0.150^{+0.012}_{-0.006} \end{array}$ $\bar{\eta} = 0.354^{+ ar{0}. ar{0} ar{0} ar{7}}_{- 0.008}$

S. Descotes-Genon (LPT-Orsay)

(68% CL)

- Pulls for various observables (included in the fit or not)
- For 1D, pull obs =
 - $\sqrt{\chi^2_{\text{min; with obs}} \chi^2_{\text{min; w/o obs}}}$
- If Gaussian errors, uncorrelated, random vars of mean 0 and variance 1
- Here correlations, and some pulls = 0 due to the Rfit model
 for syst

No indication of significant deviations from CKM picture

S. Descotes-Genon (LPT-Orsay)

CKMfitter

Leptonic and semileptonic decays

Leptonic and semileptonic kaon decays

Two type of constraints in the global fit from kaons

- tree-level decays: leptonic and semileptonic decays
- kaon mixing

$$\begin{array}{cccc} |V_{us}|f_{+}^{K \to \pi}(0) & 0.21664 \pm 0.00048 & [PDG] \\ Br(K^{-} \to e^{-}\bar{\nu}_{e}) & (1.581 \pm 0.008) \times 10^{-5} & [PDG] \\ Br(K^{-} \to \mu^{-}\bar{\nu}_{\mu}) & 0.6355 \pm 0.0011 & [PDG] \\ Br(\tau^{-} \to K^{-}\bar{\nu}_{\tau}) & (0.6955 \pm 0.0096) \times 10^{-2} & [HFAG] \\ Br(K^{-} \to \mu^{-}\bar{\nu}_{\mu})/Br(\pi^{-} \to \mu^{-}\bar{\nu}_{\mu}) & 1.3365 \pm 0.0032 & [PDG] \\ Br(\tau^{-} \to K^{-}\bar{\nu}_{\tau})/Br(\tau^{-} \to \pi^{-}\bar{\nu}_{\tau}) & (6.43 \pm 0.09) \times 10^{-2} & [HFAG] \\ \hline f_{K}^{K \to \pi}(0) & 0.9645 \pm 0.0015 \pm 0.0045 & [our average] \\ f_{K}/f_{\pi} & 1.1952 \pm 0.0007 \pm 0.0029 & [our average] \\ \end{array}$$

 $|V_{\mu d}|$ and $|V_{\mu s}|$

- "Direct" (semi- and leptonic) vs "indirect" (other sectors)
- $(|V_{ud}|, |V_{us}|)$: nuclear β + leptonic K, π and τ decays
- Same level of accuracy for exp and lattice inputs

	Le	eptonic	Semilep
	Vus	Vus/Vud	Vus
Exp	0.1%	0.1%	0.2%
Lattice	0.4%	0.3%	0.5%

• $|V_{ud}|$ from superallowed β decays is 10 times more accurate...

Radiative corrections for $K \rightarrow e\nu$, $K \rightarrow \mu\nu$, $\tau \rightarrow K\nu$

[Marciano-Sirlin, Decker-Finkemeier, Cirigliano-Rosell]

 $B = B_0 \times \text{short} - \text{dist. ew corr} \times \text{long} - \text{dist. ew corr} \times \text{struct} - \text{dep.corr}$

- Short. dist. expressing W exchanges in terms of G_F [universal]
- Long. dist. using a point-like meson [universal]
- Struct. dep. probing the structure of the meson [process-dep.]

$$B(K \to \ell \nu) = \frac{G_F^2 |V_{us}|^2}{8\pi} f_K^2 m_K m_\ell^2 \left(1 - \frac{m_\ell^2}{M_K^2}\right)^2 \left(1 + 2\frac{\alpha}{\pi} \log \frac{M_Z}{M_\rho}\right)$$
$$\left(1 + \frac{\alpha}{\pi} F(m_\ell/m_K)\right) (1 + O(\alpha))$$
$$B(\tau \to K \nu_\tau) = \frac{G_F^2 |V_{us}|^2}{16\pi} f_K^2 m_K m_\ell^2 \left(1 - \frac{m_K^2}{M_\tau^2}\right)^2 \left(1 + 2\frac{\alpha}{\pi} \log \frac{M_Z}{M_\tau}\right)$$
$$\left(1 + \frac{\alpha}{\pi} G(m_K/m_\tau)\right) (1 + O(\alpha))$$

S. Descotes-Genon (LPT-Orsay)

The importance of radiative corrections

Comparing the indirect fit results with the measurement for $Br(K \rightarrow \ell \nu)$ \implies Good test of radiative corrections and lattice QCD !

NB: Struct-dep corr not incuded but much smaller than the two others

CKMfitter

... but not in all cases

Ratios of *K* and π leptonic decays into μ or τ less sensitivity to the issue (part of radiative corrections cancel + heavy leptons)

Radiative corrections needed in the global fit to get a decent fit $\chi^2_{min} = 58$ (naive *p*-value 0.002%) $\rightarrow \chi^2_{min} = 20$ (naive *p*-value 49.3%)

Kaon mixing

ϵ_{K}

Two type of constraints in the global fit from kaons

- tree-level decays
- kaon mixing: ϵ_K

$$\begin{aligned} |\epsilon_{\mathcal{K}}| &= \kappa_{\epsilon} C_{\epsilon} \hat{B}_{\mathcal{K}} [\operatorname{Im}[(V_{ts} V_{td}^{*})^{2}] \eta_{tt} S(x_{t}) + 2\operatorname{Im}[(V_{cs} V_{cd}^{*} V_{ts} V_{td}^{*})] \eta_{ct} S(x_{c}, x_{t}) \\ &+ \operatorname{Im}[(V_{cs} V_{cd}^{*})^{2}] \eta_{cc} S(x_{c})] \end{aligned}$$

• Inami-Lim
$$\mathcal{S}_0(x_q=m_x^2/m_W^2)$$

- C_{ϵ} normalisation
- κ_{ϵ} correcting factor (determination of Q_6 , higher order OPE)

$ \epsilon_K $	$(2.228\pm0.011) imes10^{-3}$	PDG
B_K	$0.7615 \pm 0.0027 \pm 0.0137$	[our average]
η_{cc}	$1.87\pm0\pm0.76$	[Brod-Gorbahn]
η_{ct}	$0.497 \pm 0 \pm 0.047$	[Brod-Gorbahn]
η_{tt}	$0.5765 \pm 0 \pm 0.0065$	[Nierste]
κ_ϵ	$0.940 \pm 0.013 \pm 0.023$	[Buras, Guadagnoli, Isidori]

ϵ_{K}

From time to time, issues with the compatibility of ϵ_K with the rest of the fit, related to the fact that ϵ_K has a strong dependence on

- B_K : role of theoretical uncertainties
- $|V_{cb}|$: inclusive, exclusive or average

$|V_{cb}|$ from semileptonic *B* decays

Two ways of getting $|V_{cb}|$:

- Inclusive : $b \rightarrow c\ell\nu$ + OPE for moments
- Exclusive : $B \rightarrow D(^*)\ell\nu$ + Form factors

[HFAG, Gambino and Schwanda]

[J. A. Bailey et al., Fermilab-MILC]

w/o |V . |

$$|V_{cb}|_{inc} = 42.42 \pm 0.44 \pm 0.74$$

 $|V_{cb}|_{exc} = 38.99 \pm 0.49 \pm 1.17$

$$|V_{cb}|_{ave}$$
 = 41.00 ± 0.33 ± 0.74

with all values $\times 10^{-3}$

- HFAG, with theory errors added linearly
- systematics combined using Educated Rfit

Indirect det. from global fit: $|V_{cb}|_{fit} = 43.0^{+0.4}_{-1.4}$ (4%)

S. Descotes-Genon (LPT-Orsay)

--- semilept, aver,

CKMfitter

Exclusive versus inclusive for ϵ_K

- Exclusive slightly off compared to inclusive
- But good agreement in all cases

ϵ_{K} at NNLO

QCD short-distance corrections computed up to NNLO

- η_{tt} : 0.5765 ± 0.0065 \rightarrow 0.5765 ± 0.0065
- η_{cc} : $(1.46 \pm \delta_{cc}) \left[1 1.2 \left(\frac{\bar{m}_c}{1.25 \text{ GeV}} \right) \right] \left[1 + 52(\alpha_s(M_Z) 0.118) \right], \ \delta_{cc} \simeq 0.22$ $\rightarrow 1.87 \pm 0.76$ [Brod, Gorbahn]

[Buras, Jamin, Weisz]

The role of lattice inputs

- Compare input and fit result (without including the inputs)
- Fit results consistent, but not always competitive in accuracy, with lattice results

	Input		Fit [input not ir	icluded]
f _K	$155.2 \pm 0.2 \pm 0.6$	(0.4%)	$156.5^{+0.1}_{-0.8}$	(0.3%)
f_K/f_π	$1.194 \pm 0.001 \pm 0.003$	(0.3%)	$1.191^{+0.006}_{-0.003}$	(0.4%)
$f_+^{K o\pi}(0)$	$0.9645 \pm 0.0015 \pm 0.0045$	(0.5%)	$0.9594^{+0.0024}_{-0.0029}$	(0.3%)
\hat{B}_{K}	$0.762 \pm 0.003 \pm 0.014$	(1.9%)	$0.70\substack{+0.28\\-0.05}$	(24%)

Similarly for κ_{ϵ} , we have

$\mathbf{K} \to \pi \nu \bar{\nu}$

$$\mathcal{B}[\mathcal{K}^{+} \to \pi^{+} \nu \bar{\nu}]_{\mathrm{SM}} = \kappa_{+} \left(1 + \Delta_{em}\right) \left[\left(\frac{lm\lambda_{t}}{\lambda^{5}} X_{t}\right)^{2} + \left(\frac{Re\lambda_{c}}{\lambda} \left(P_{c} + \delta P_{c,u}\right) + \frac{Re\lambda_{t}}{\lambda^{5}} X_{t}\right)^{2} \right]$$

$$\mathcal{B}[\mathcal{K}_L \to \pi^0 \nu \bar{\nu}]_{\mathrm{SM}} = \kappa_L \left(\frac{Im\lambda_t}{\lambda^5} X_t\right)^2,$$

[Buras et al.; Brod, Gorbahn; Mescia, Smith]

- isospin-breaking parameter $\kappa_{+,L}$ from semileptonic K decays
- Δ_{em} electromagnetic correction,
- X_t top-quark contributions, P_c and $\delta P_{c,u}$ light-quark contributions

Prospective

- NA62 : $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ at 10% accuracy
- KOTO : Phase 1 ~ 3σ constraint on the branching ratio (SM), Phase 2 stage with $Br(K_L \rightarrow \pi^0 \nu \bar{\nu})$ at 10% accuracy

- NA62: in grey the role played by theoretical uncertainties
- KOTO : phases 1 and 2 indicated

More information

		1	ER
CKMfi	tter global fit re	sults as of Sun	nmer 15:
• Wol	fenstein parameters		
• UT.	angle and apex & elements		
 Input Dec 	It parameters av branching fractions		
For a mor	e extensive discussion	please read the summa	ry of inputs and resu
Wolfenste	in parameters and Jarls	kog invariant:	
Observa	ble Central ± 1 σ	±2 σ	±3 σ
A	0.8227 [+0.0066 -0.0136]	0.823 [+0.013 -0.027]	0.823 (+0.020 -0.035
λ	0.22543 [+0.00042 -0.00031]	0.22543 (+0.00075 -0.00064)	0.22543 [+0.00101 -0.00097]
pber	0.1504 [+0.0121 -0.0062]	0.150 [+0.029 -0.013]	0.150 [+0.037 -0.019
	0.3540 [+0.0069	0.354 [+0.016 -0.019]	0.354 (+0.025 -0.027
nbar	10.0010		
n bar J [10 ⁻⁵]	3.140 [+0.069 -0.084]	3.14 [+0.16 -0.21]	3.14 [+0.26 -0.31]
nber U [10 ⁻⁵]	[3.140 [+0.069 -0.084]	[3.14 [+0.16 -0.21]	[3.14 [+0.26 -0.31]
nbar U [10 ⁻⁵] UT angles Observa	[3.140 (+0.069 -0.064] and sides: ble Central ± 1 σ	[3.14 [+0.16 -0.21] ±2σ	[3.14 [+0.26 -0.31] ±3σ
UT angles Observa	[3.140 [+0.069 -0.084] and sides: ble Central ± 1 o	[3.14 +0.16 -0.21] ±2 σ	[3.14 [+0.26 -0.31] ±3 σ [-0.01 [+0.11 -0.22]
ut a give a construction of the second secon	[0.0479] [3.140 [+0.069 -0.084] and sides: ble Central ± 1 σ [-0.013 [+0.034 -0.071] at. [-0.024 [+0.038 -0.134] [3]	[3.14 [+0.16 -0.21] ±2σ [-0.013 [+0.069 -0.168] -0.024 [+0.075 -0.181]	3.14 (+0.26 -0.31) ±3σ [-0.01 (+0.11 -0.22) -0.02 (+0.11 -0.23)
nber U [10 ⁻⁵] UT anglet Observa sin 2a sin 2a (me not in the sin 28	Control 3.140 (+0.069 -0.084) and sides: ble Central ± 1 σ -0.013 (+0.034 -0.071) -0.024 (+0.038 -0.134) 0.710 (+0.011 -0.011)	3.14 [+0.16 -0.21] ±2σ [-0.013 [+0.059 -0.168] -0.024 [+0.075 -0.181] 0.710 [+0.025 -0.021]	3.14 (+0.26 -0.31) ± 3 σ (-0.01 (+0.11 -0.22) -0.02 (+0.11 -0.23) [0.710 (+0.039 -0.032)
riber UT angles Observa sin 2a (me not in the sin 23 (me not in the	Docurroj 3.140 [+0.069 -0.084] and sides: bie Central ± 1 o 0.013 [+0.034 -0.071] 0.024 [+0.038 -0.154] 0.710 [+0.011 -0.011] 0.748 [+0.030 -0.052]	3.14 [+0.16 -0.21] ±2 σ -0.013 [+0.089 -0.168] -0.024 [+0.075 -0.181] 0.716 [+0.085 -0.021] 0.748 [+0.056 -0.050]	3.14 [+0.28 -0.31] ±3.0 -0.01 [+0.11 -0.22] -0.02 [+0.11 -0.23] 0.710 (+0.039 -0.032 0.748 [+0.071 -0.086]

More on http://ckmfitter.in2p3.fr

- J. Charles, Theory
- O. Deschamps, LHCb
- SDG, Theory
- H. Lacker, ATLAS/BaBar
- A. Menzel, ATLAS
- S. Monteil, LHCb
- V. Niess, LHCb
- J. Ocariz, ATLAS/BaBar
- J. Orloff, Theory
- A. Perez, Babar
- W. Qian, LHCb
- V. Tisserand, BaBar/LHCb
- K. Trabelsi, Belle/LHCb
- P. Urquijo, Belle/Belle II
- L. Vale Silva, Theory

Rfit scheme

CKM if the reatment of systematics within the Rfit scheme

- modify likelihood $\mathcal{L} = \exp(-\chi^2/2)$ to get a χ^2 with flat bottom (syst) and parabolic walls (stat)
- all values within range of syst treated on the same footing

$|V_{ub}|$ from semileptonic *B* decays

Two ways of getting $|V_{ub}|$:

• Inclusive : $b \rightarrow u \ell \nu$ + Operator Product Expansion

[HFAG BLNP]

• Exclusive : $B \rightarrow \pi \ell \nu$ + Form factors

[J. A. Bailey et al., Fermilab-MILC]

$$\begin{array}{ll} |V_{ub}|_{inc} &=& 4.45 \pm 0.18 \pm 0.31 \\ |V_{ub}|_{exc} &=& 3.72 \pm 0.09 \pm 0.22 \end{array}$$

$$|V_{ub}|_{ave} = 4.01 \pm 0.08 \pm 0.22$$

with all values $\times 10^{-3}$

- HFAG, with theory errors added linearly
- systematics combined using Educated Rfit

Indirect det. from global fit: $|V_{ub}|_{fit} = 3.57^{+0.15}_{-0.14}$ (4%)

S. Descotes-Genon (LPT-Orsay)

CKMfitter

 $|V_{ub}|, |V_{cb}|$

- Information on $|V_{ub}|$ from $Br(B \rightarrow \tau \nu)$
- New LHCb result on $|V_{ub}/V_{cb}|$ from $\Gamma(\Lambda_b \rightarrow p\mu\nu)/\Gamma(\Lambda_b \rightarrow \Lambda_c \mu \nu)$ at high q^2

[Detmold, Lehner and Meinel]

• Global fit favours exclusive |V_{ub}|_{SL} but inclusive |V_{cb}|_{SL}

From 2014 to 2015

- Increase in the average used as input for |V_{ub}|_{SL}
- slight tension between $|V_{ub}|_{SL}$ and sin(2 β) (1.5 σ for 2D hyp)

Consistency of the KM mechanism

Validity of Kobayashi-Maskawa picture of CP violation

S. Descotes-Genon (LPT-Orsay)

CKMfitter