Atomic Parity Violation in Dy Past, Present & Future

Lykourgos Bougas 25.05.2016 mtp

NON-Conserving

$$H_{\rm W} = \frac{G_F}{\sqrt{2}} \frac{1}{2m_e c\hbar} Q_{\rm W}[\vec{s} \cdot \vec{p} \,\delta^3(\vec{r}) + \delta^3(\vec{r}) \,\vec{s} \cdot \vec{p}]$$

Weak interaction mixes *s* and *p* states

$$|ns\rangle \rightarrow |ns\rangle + \delta_{\rm W}|n'p\rangle,$$

 $\delta_{\rm W} = \frac{\langle n'p|H_{\rm W}|ns\rangle}{\Delta E}$

Helmholtz-Institut Mainz

Bouchiat & Bouchiat (1974): $\langle n'p | H_W | ns \rangle \sim Z^3$

$\mathbf{\nabla}$

Detectable PNC signals in high-Z atoms

 $Dysprosium \left\{ \begin{array}{l} \bullet \ Z=66 \\ \bullet \ 7 \ stable \ isotopes \ (A=156,158,160-164) \\ \bullet \ ^{163}Dy \ \& \ ^{161}Dy: I=5/2 \ (anapole \ moment) \end{array} \right.$

 $Dysprosium \left\{ \begin{array}{l} \circ \ Z=66 \\ \circ \ 7 \ stable \ isotopes \ (A=156,158,160-164) \\ \circ \ ^{163}Dy \ \& \ ^{161}Dy: I=5/2 \ (anapole \ moment) \end{array} \right.$

JGU

 $Dysprosium \left\{ \begin{array}{l} \bullet \ Z=66 \\ \bullet \ 7 \ stable \ isotopes \ (A=156,158,160-164) \\ \bullet \ ^{163}Dy \ \& \ ^{161}Dy: I=5/2 \ (anapole \ moment) \end{array} \right.$

 $Dysprosium \left\{ \begin{array}{l} \bullet \ Z=66 \\ \bullet \ 7 \ stable \ isotopes \ (A=156,158,160-164) \\ \bullet \ ^{163}Dy \ \& \ ^{161}Dy: I=5/2 \ (anapole \ moment) \end{array} \right.$

Experiment

Helmholtz-Institut Mainz

Stark-Interference technique

Zeeman Crossing Spectroscopy

FIG. 3. Partial Zeeman structure of 163 Dy F = 10.5 sublevels of A and B. Zero energy is chosen arbitrarily.

Zeeman Crossing Spectroscopy

Search for parity nonconservation in atomic dysprosium

A. T. Nguyen,¹ D. Budker,^{1,2} D. DeMille,^{1,*} and M. Zolotorev³

¹Physics Department, University of California, Berkeley, California 94720-7300

²Nuclear Science Division, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720 ³Center for Beam Physics, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720

(Received 2 June 1997)

Results of a search for parity nonconservation (PNC) in a pair of nearly degenerate opposite-parity states in atomic dysprosium are reported. The sensitivity to PNC mixing is enhanced in this system by the small energy separation between these levels, which can be crossed by applying an external magnetic field. The metastable odd-parity sublevel of the nearly crossed pair is first populated. A rapidly oscillating electric field is applied to mix this level with its even-parity partner. By observing time-resolved quantum beats between these sublevels, we look for interference between the Stark-induced mixing and the much smaller PNC mixing. To guard against possible systematic effects, reversals of the signs of the electric field, the magnetic field, and the decrossing of the sublevels are employed. We report a value of $|H_w| = |2.3 \pm 2.9$ (statistical) ± 0.7 (systematic)| Hz for the magnitude of the weak-interaction matrix element. A detailed discussion is given of the apparatus, data analysis, and systematic effects. [S1050-2947(97)02111-2]

PHYSICAL REVIEW A 69, 022105 (2004)

Towards a sensitive search for variation of the fine-structure constant using radio-frequency E1 transitions in atomic dysprosium

A. T. Nguyen* Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA

D. Budker[†]

Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA and Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

S. K. Lamoreaux[‡] and J. R. Torgerson[§] University of California, Los Alamos National Laboratory, Physics Division, P-23, MS-H803, Los Alamos, New Mexico 87545, USA (Received 28 August 2003; published 12 February 2004)

PHYSICAL REVIEW A 69, 022105 (2004)

Towards a sensitive search for variation of the fine-structure constant using radio-frequency E1 transitions in atomic dysprosium

PRL 98, 040801 (2007)	PHYSICAL	REVIEW	LETTERS	week ending 26 JANUARY 2007
FKL 30. 040001 (2007)				20 JANUAKI 2007

Limit on the Temporal Variation of the Fine-Structure Constant Using Atomic Dysprosium

A. Cingöz,¹ A. Lapierre,¹ A.-T. Nguyen,² N. Leefer,¹ D. Budker,^{1,3} S. K. Lamoreaux,^{2,*} and J. R. Torgerson² ¹Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA ²Physics Division, Los Alamos National Laboratory, P-23, MS-H803, Los Alamos, New Mexico 87545, USA ³Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Received 1 September 2006; published 26 January 2007)

PHYSICAL REVIEW A 69, 022105 (2004)

Towards a sensitive search for variation of the fine-structure constant using radio-frequency E1 transitions in atomic dysprosium

PRL 98, 040801 (2007)	PHYSICAL	REVIEW	LETTERS	week ending 26 JANUARY 2007
-----------------------	----------	--------	---------	--------------------------------

Limit on the Temporal Variation of the Fine-Structure Constant Using Atomic Dysprosium

PHYSICAL REVIEW A 76, 062104 (2007)

Investigation of the gravitational-potential dependence of the fine-structure constant using atomic dysprosium

S. J. Ferrell,¹ A. Cingöz,¹ A. Lapierre,² A.-T. Nguyen,³ N. Leefer,¹ D. Budker,^{1,4} V. V. Flambaum,^{5,6} S. K. Lamoreaux,⁷ and J. R. Torgerson³

PHYSICAL REVIEW A 69, 022105 (2004)

Towards a sensitive search for variation of the fine-structure constant using radio-frequency E1 transitions in atomic dysprosium

PRL 98, 040801 (2007)	PHYSICAL	REVIEW	LETTERS	week ending 26 JANUARY 2007
-----------------------	----------	--------	---------	--------------------------------

Limit on the Temporal Variation of the Fine-Structure Constant Using Atomic Dysprosium

PHYSICAL REVIEW A 76, 062104 (2007)

Investigation of the gravitational-potential dependence of the fine-structure constant using atomic dysprosium

S. J. Ferrell,¹ A. Cingöz,¹ A. Lapierre,² A.-T. Nguyen,³ N. Leefer,¹ D. Budker,^{1,4} V. V. Flambaum,^{5,6} S. K. Lamoreaux,⁷ and J. R. Torgerson³

PHYSICAL REVIEW A 81, 043427 (2010)

Transverse laser cooling of a thermal atomic beam of dysprosium

N. Leefer,^{1,*} A. Cingöz,^{1,†} B. Gerber-Siff,² Arijit Sharma,³ J. R. Torgerson,⁴ and D. Budker^{1,5,‡}

New apparatus

- a) oven chamber
- b) gate valve
- c) interaction-region chamber
- d) Dy oven
- e) vacuum chokes
- f) laser access/in-vacuum polarizer

- g) magnetic-field coils
- h) light pipe
- i) rf electrodes
- j) light-collection mirrors
- k) two-layer magnetic shielding

CW lasers & New transition scheme

New apparatus

CW lasers & New transition scheme

New apparatus

Status

RF-spectroscopy : 200mHz in 10 minutes

PRL 111, 060801 (2013)	PHYSICAL	REVIEW	LETTERS	week ending 9 AUGUST 2013		
New Limits on Var	riation of the Fine-	Structure (Constant Using At	omic Dysprosium		
PRL 111, 050401 (2013)	PHYSICAL	REVIEW	LETTERS	week ending 2 AUGUST 2013		
Limits on Violations of Lorentz Symmetry and the Einstein Equivalence Principle using Radio-Frequency Spectroscopy of Atomic Dysprosium						

Started taking APV data again!

Improved theory (2010) $|H_W|=4 \pm 4 \text{ Hz}$ V. A. Dzuba & V. V. Flambaum, PRA 81, 052515 (2010)

Started taking APV data again!

Future

Future

Bring experiment in Mainz

Future

Bring experiment in Mainz Re-setup experiment + 421 pumping

Future

Bring experiment in Mainz

- Re-setup experiment + 421 pumping
- First PNC measurement
- PNC in chain of isotopes

t₀

Anapole moment

Future

- Bring experiment in Mainz
 Re-setup experiment + 421 pumping
- First PNC measurement
- PNC in chain of isotopes

Helmholtz-Institut Mainz

Future

Bring experiment in Mainz
Re-setup experiment + 421 pumping
First PNC measurement
PNC in chain of isotopes

t₀ t₀+ 2 months t₀+ 6 months t₀+ 1 year

PNC experiments

*Lanthanide series

* * Actinide series

00	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
62	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
S	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Successful PNC experiments

Ongoing PNC experiments

PNC experiments

*Lanthanide series

* * Actinide series

	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
s	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Successful PNC experiments

Ongoing PNC experiments

New **PNC optical-rotation** ideas

APV in ¹²⁷I

Transition @ 1315nm

APV in ¹²⁷I

Transition @ 1315nm	Iodine	Cavity-enhanced PNC-OR				
config. term J 127 $5s^25p^5$ $2p^\circ$ $\frac{1}{2}$ $M1$ $E1_{PNC}$ $M1$ $\frac{3}{2}$ PNC pNC pNC pixing	High, steady-state, densities of atomic I from I ₂ photodissociation	 to just the product of the				
	35	Е НІМ				

Helmholtz-Institut Mainz

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 87, 040101(R) (2013)

Calculation of parity-nonconserving optical rotation in iodine at 1315 nm

G. E. Katsoprinakis, L. Bougas, and T. P. Rakitzis*

Institute of Electronic Structure and Lasers, Foundation for Research and Technology-Hellas, 71110 Heraklion-Crete, Greece and Department of Physics, University of Crete, 71003 Heraklion-Crete, Greece

> V. A. Dzuba[†] and V. V. Flambaum School of Physics, University of New South Wales, Sydney 2052, Australia (Received 25 January 2013; published 1 April 2013)

APV in ¹²⁷I

Towards Iodine-PNC in Crete

Proof-of-Principle

Team

Prof. P. T. Rakitzis Dr. G. Katsoprinakis

FORTH Institute of Electronic Structure and Laser

37

Prof. Dmitry Budker group


```
A. Fabricant
```


Prof. P. T. Rakitzis Dr. G. Katsoprinakis

