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๏ Z=66 
๏ 7 stable isotopes (A=156,158,160-164) 
๏ 163Dy & 161Dy : I=5/2 (anapole moment) 

Dysprosium{

V. A. Dzuba, V. V. Flambaum, & I. B. Khriplovich (1986)
Enhancement of P- & T-odd effects in rear-earth atoms 

APV in Dy
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APV in 163Dy
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Zeeman Crossing Spectroscopy

APV in 163Dy Experiment
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hole made in the opposite end cap. A piece of Ta sheet was
press fitted to this hole in order to seal it.
Resistive heaters, made from coiled tantalum wire and

held in high-purity alumina ceramic tubes, surrounded the
oven. To guard against dysprosium condensation at the slits,
the heaters extended past the exit orifice by 3.6 cm. In addi-
tion, a fraction of the heaters were ;50% shorter in the back
of the oven, which allowed for overheating of the front ~typi-
cally maintained 100 K hotter than the back!. Five layers of
tantalum radiation shielding surrounded the heaters and
oven.
The oven typically operated at a temperature of 1500 K,

which corresponds to a Dy vapor pressure of ;1021 Torr.
The material output of the oven was ;0.6 g/h. Using laser
absorption measurements, it was determined that the beam
density was ;1010 atoms/cm3 at the laser–atomic-beam in-
teraction region, in agreement with estimates based on effu-
sive flow from the slits.
After passing through collimators, the atomic beam en-

countered a chopper wheel ~see Figs. 5 and 6!, which was

used to block oven blackbody radiation. The anodized alu-
minum wheel was 13 cm in diameter and had two slits, each
with area 2.030.8 cm2, which allowed passage of the atomic
beam. The water-cooled chopper wheel motor drive was
placed inside the vacuum chamber. The wheel rotated at 230
rps. A sensor of its angular position ~a light-emitting diode
and a photodiode! was used for triggering of the laser pulses,
the electric-field sequence, and detection electronics.

B. Lasers and optics

Pulsed laser light with wavelengths of 626 and 2614 nm
was used in the experiment ~see Fig. 7!. The laser system
was described in detail elsewhere @10#. In order to produce
626-nm light, a pulsed dye amplifier ~PDA! with DCM @4-
Dicyanmethylene -2-methyl -6- ~p-dimethylaminostyryl! -4H-
pyran# dye was used. The PDA was pumped by a Quanta
Ray DCR-2 Nd:YAG laser ~where YAG denotes yttrium alu-
minum garnet! and seeded with ;100 mW of 626-nm cw
light produced by a dye laser ~Coherent CR599-21! operat-
ing with Rhodamine 590 or DCM dye. Typical PDA output
pulses had an energy of ;3 mJ, a duration of ;7 ns, a beam
diameter of ;3 mm, and a repetition rate of 10 Hz. A por-
tion of this light was split off and directed to the vacuum
chamber. This 626-nm light was attenuated to ;10 mJ/pulse
in order to saturate only the desired hyperfine components
~see below!.
2614-nm light was produced by nonlinear mixing ~in a

3.5-cm MgO:LiNbO3 crystal! of the remainder of the
626-nm light and light at 823 nm. The 823-nm light was
produced by a pulsed dye laser ~Quanta Ray PDL-2!,
pumped by a second Nd:YAG laser. The typical pulse en-
ergy for the 2614-nm light was ;5 mJ. In order to stabilize
the output power, the crystal was placed inside a thermally
insulated housing that was temperature stabilized to within
0.5 K with a thermoelectric element. The residual 626- and
823-nm light was filtered from the 2614-nm light by a 0.05-
cm-thick Si plate.
State A (J510) was populated by two DJ511 transi-

tions from the ground state (J58) via an intermediate state
(J59) ~see Fig. 1!. In general, the DF5DJ511 transitions
are the strongest ~see @15# for a discussion!. Thus, in order to
populate F510.5, umFu510.5 sublevels of state A , it was
necessary to efficiently transfer atoms initially in the F

FIG. 5. Schematic view of the apparatus ~not to scale!: ~a!
atomic beam; ~b! collimators; ~c! atomic beam chopper; ~d! inter-
action region of atoms with electric and magnetic fields, with the
entire region enclosed in a magnetic shield ~not shown!, ~e! mirror
~other mirrors are installed above and below the E-field wire grids!;
~f! light pipe; and ~g! interference filter.

FIG. 6. Side cross-sectional view of the oven and the electric- and magnetic-field interaction region ~not to scale!. E-field wires with
distributed potential ~see Sec. II C! are not shown.
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Results of a search for parity nonconservation ~PNC! in a pair of nearly degenerate opposite-parity states in
atomic dysprosium are reported. The sensitivity to PNC mixing is enhanced in this system by the small energy
separation between these levels, which can be crossed by applying an external magnetic field. The metastable
odd-parity sublevel of the nearly crossed pair is first populated. A rapidly oscillating electric field is applied to
mix this level with its even-parity partner. By observing time-resolved quantum beats between these sublevels,
we look for interference between the Stark-induced mixing and the much smaller PNC mixing. To guard
against possible systematic effects, reversals of the signs of the electric field, the magnetic field, and the
decrossing of the sublevels are employed. We report a value of uHwu5u2.362.9 ~statistical!60.7~systematic!u
Hz for the magnitude of the weak-interaction matrix element. A detailed discussion is given of the apparatus,
data analysis, and systematic effects. @S1050-2947~97!02111-2#

PACS number~s!: 32.80.Ys

I. INTRODUCTION

We present here the results of a search for parity noncon-
servation ~PNC! in atomic dysprosium. PNC measurements
in atoms provide a test of the standard model and possible
extensions to it complementing experiments using high-
energy accelerators. Atomic PNC measurements have al-
ready reached the experimental precision of 0.35–3 % in
several elements @1–4#. The highest precision, recently
achieved in cesium @1#, also allowed detection of the nuclear-
spin-dependent component of atomic PNC, which is induced
primarily by the nuclear anapole moment ~see Ref. @5# and
references therein!. Measurements of nuclear-spin-dependent
PNC in a variety of atoms would lead to better understanding
of nucleon-nucleon weak interactions, particularly the weak
meson-nucleon coupling @6#.
Dysprosium (Z566) is an attractive system for PNC ex-

periments. There is an enhancement of the PNC mixing
caused by the near degeneracy of a pair of opposite-parity
levels ~both with J510 lying 19 797.96 cm21 above the J58
ground level @7#; see Fig. 1!. The magnitude of the level
separation is on the order of hyperfine splittings and isotope
shift energies. In addition, the existence of many stable iso-
topes in dysprosium allows for a determination of the weak
charge through isotopic comparisons, eliminating the uncer-
tainties associated with atomic calculations @8#. Unfortu-
nately, along with the enhancement of the PNC mixing, there
are also factors leading to a reduction of the effect. In par-
ticular, the dominant electronic configurations of the nearly
degenerate levels are not mixed by the weak interaction and
the PNC effect arises from configuration mixing and core
polarization.
In this experiment, we look for interference between the

PNC and Stark-induced amplitudes connecting the two

opposite-parity levels. The value of Hw is extracted from
an analysis of the time dependence of fluorescence. With
30 h of integration time, we report the result uHwu
5u2.362.9~statistical!60.7~systematic!u Hz ~the sign of Hw
is the same as the yet undetermined sign of the electric-
dipole matrix element!. This result is in disagreement with
the theoretical prediction of Hw570(40) Hz obtained using
a multiconfiguration Hartree-Fock-Dirac calculation @9#.
In this paper we first give an overview of the experiment,

discuss in detail the apparatus and systematic errors, and
finally give our results and conclusions.

A. Experimental overview

The spectroscopic properties of the nearly degenerate pair
of levels in Dy were investigated in an earlier work @10,11#.
The lifetime of the even-parity level ~designated as A! is

*Present address: Department of Physics, Amherst College, Am-
herst, MA 01002.

FIG. 1. Partial energy-level diagram of Dy showing PNC and
Stark mixing of levels A and B . Solid arrows indicate excitation;
dashed arrows indicate fluorescence. Light is detected at 564 nm.
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Moving forward…
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New apparatus

Present
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a)  oven chamber
b)  gate valve
c)  interaction-region chamber
d)  Dy oven
e)  vacuum chokes
f)  laser access/in-vacuum polarizer

g)  magnetic-field coils
h)  light pipe
i)  rf electrodes
j)  light-collection mirrors
k)  two-layer magnetic shielding

Present
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APV in 163Dy Started taking APV data again!
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Successful PNC experiments

Ongoing PNC experiments

PNC experiments
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New PNC optical-rotation ideas

PNC experiments

Successful PNC experiments

Ongoing PNC experiments
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APV in 127I

Prof. P. T. Rakitzis Dr. G. Katsoprinakis

Setup Iodine cell

Proof-of-Principle Team

Iodine PNC signals  

Not much smaller!

Towards Iodine-PNC in Crete
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