

Nuclear surface probed with antiprotons

Alexandre Obertelli CEA Saclay

Neutron Skin of Nuclei workshop MITP, May 17th-27th, 2016

- Antiprotonic atoms
- Methods, past studies from Brookhaven & CERN
- Sensitivity to neutron skin thickness and uncertainties
- Perspectives with unstable nuclei

Cea Antiproton-nucleon annihilation

- ✓ Annihilation with protons AND neutrons
- Mostly pions emitted
- Electrical charge conserved
 - -1: neutron annihilation
 - 0: proton annihilation

Proton-antiproton annihilation at rest:

- charged pion M= 3.0(2), neutral M=2.0(2)
- Fraction of neutral annihilation: 4% (*ex.* multiple π⁰)

Neutron-antiproton annihilation at rest:

- 2π⁻π⁺nπ⁰ : 60%
- 2π⁻2π⁺nπ⁰: 23%
- 3π⁻2π⁺nπº: 15%

...

L. Agnew et al., Phys. Rev. 110 (1958)

DE LA RECHERCHE À L'INDUSTRI

Cea Antiprotonic atoms

4

Cea Antiprotonic atoms

- Γ reaction probability
- $\Phi_{\rm nl}~$ antiproton radial wave function
- V(r) antiproton-nucleus potential
- *a* effective N-antiproton scattering length *ex. a*=-1.53 2.5 *i* fm (Batty, NPA 1997)
- $\rho(\textbf{r})$ nuclear density convoluted with pbar-N range (0.75-1 fm if finite range)

$$\Gamma_{n\ell} = \int \mathrm{Im} V(r) |\Psi_{n\ell}(r)|^2 r^2 dr$$

with $V(r) = \frac{2\pi}{\mu} a\rho(r)$

Cea Antiprotonic atoms (1): *p,n* annihilation ratio

Brookhaven national laboratory, W. M. Buggs et al., Phys. Rev. Lett. 31, 475 (1973)

Example of ²⁰⁸Pb:

- 1982 annihilation events, with 1805 π^+ and 2626 π^-
- hydrogen events: 232
- after absorption, charge –exchange, geometry corrections: **1654** π^+ , **2606** π^-
- => **1750 annihilations** from Pb, 4260 pions: multiplicity **2.44** (to be compared to **3.13** with deuton)
- Excess of π⁻: **2606-1654=947**
- N(pbar-n)= 947 * 3.13/2.44 = 1216
- N(pbar-p)= 1750-1216= **534**
- Ratio: N(pbar-n)/N(pbar-p)=2.27 (R= 0.632 for carbon due to difference of p/n cross sections)
- Normalized to carbon, ratio=2.27/R=3.59 to be compared to N/Z=1.54, « halo factor: f=2.3(5) »

Cea Antiprotonic atoms (1): *p,n* annihilation ratio

	TABLE IV. "Halo factor" analysis.					$f_{halo} = \frac{N_{(pn)}}{N_{(pp)}} \times \frac{Z}{N} \times \frac{N_{pp}}{N_{pn}} \Big _{Carbor}$		
Element	$N(\pi^{-}) - N(\pi^{+})$	$N(\overline{p}n)$	N(7p)	$rac{N(\overline{p}n)}{N(\overline{p}p)}$	$\frac{N(\overline{p}n)}{N(\overline{p}p)}\Big _{c}$	$\frac{N}{Z}$	Halo factor	
С	2302	2586	4089	0.632	1,00	1.00	1.00]
\mathbf{Ti}	881	1067	1111	0.960	1,52	1.18	1.29 ± 0.21	
Та	1006	1276	931	1.371	2,17	1.48	1.46 ± 0.24	
Pb	947	1216	534	2.270	3.59	1.54	2.34 ± 0.50	

- Evidence for « neutron halo » at the nuclear surface for heavy systems
- Halo factor extraction assumes that the relative pbar-n and pbar-p amplitudes are constant for all elements (R_{np}=0.632 obtained from carbon data).
- Theoretical estimates difficult due to final state interactions (pion interaction with residue)

Ce Antiprotonic atoms (2): radio-chemical analysis

Concept: selection of « cold » residues after annihilation, *i.e.* (Z-1,A-1) and (Z,A-1)

$$\mathrm{Im} V(r) \big| \Psi_{n\ell}(r) \big|^2$$

Selection on cold residues by counting radioactive decays

$$\operatorname{Im} V(r) |\Psi_{n\ell}(r)|^2 P_{miss}(r) P_{dh}(r)$$

Probability that the populated final state is bound (SF) Probability that pions do not interact with the residue

S. Wycech et al., PRC 54, 1832 (1996).

Cera Antiprotonic atoms (2): radio-chemical analysis

P. Lubinski *et al.,* Phys. Rev. Lett. 73, 3199 (1994) P. Lubinski *et al.,* Phys. Rev. C 57, 2962 (1998)

Cera Antiprotonic atoms (2): comparison to theory

Theoretical assumptions:

- a=-1.5 –*i* 2.5 fm, pbar-N scattering length
- Range pf pbar-N: 0.75 fm
- Capture from orbitals (n=l+1,l)
- Sudden approximation for pion absorption (Pmiss) / A-1 residues selected
- HFB shell structure (Pdh) with SKP
- R_{np}=0.63

Not quantified theoretical uncertainties

Ignored in the calculation:

- fission of residue
- deformation
- density or isovector dependance of R_{np}

Main conclusions:

- clear and unique dependence over $\rho_{\text{n}}/\rho_{\text{p}}$
- complementary observable to radii (sensitive to 2-4 fm from the half-max density radius)
- more systematic microscopic theoretical estimates needed

Ceral Antiprotonic atoms (3): X rays

Energy width and shift modified by the strong interaction at the nuclear surface compared to pure EM orbital & decay

B. Klos et al., Phys. Rev. C 76, 014311 (2007).

Energy (keV)

OF LA RECHERCHE À CINDUSTR

Cera Antiprotonic atoms (3): X rays and NS thickness

Cera Antiprotonic atoms (2 & 3): radiochemical & X rays

- Stable nuclei from ⁴⁰Ca to ²³⁸U
- X-ray method « consistent » with radiochemical with R=1 (R=0.63 in previous works)
- Neutron distributions (2pF) « deduced » from X-ray data
- a = 2.5(3) + *i* 3.4(3) fm, zero range
- charge distributions from published tables
- assume pure halo: $c_n = c_p$
- Δa_{np} ajusted to best reproduce E shift, width

A. Trzcinska et al., Phys. Rev. Lett. 87, 082501 (2001)

DE LA RECHERCHE À L'INDUSTI

Cell Neutron skins and halos in neutron-rich nuclei

Nupecc Long Range Plan (2016-2026) / under preparation

5. How do neutron halos and skins evolve across the nuclear chart?

« A systematic study of neutron skins would open the way to map out its evolution and the occurrence of low-density neutron matter as a function of proton number. [...] »

6. How do nucleon correlations appear in dilute neutron matter?

"Cluster correlations are also an important feature in heavier nuclei. Recent generalized relativistic functional calculations predict a significant alpha cluster at the surface of heavy nuclei with a more pronounced effect in neutron-rich nuclei. A systematic search from alpha quasi-free scattering or transfer along isotopic chains should be pursued in the coming years. The surface α clustering affects the correlation of the neutron skin thickness of heavy nuclei with the density dependence of the symmetry energy."

Cea Antiprotonic atoms with radioactive ions: concept

Concept:

Collision of low-energy antiprotons and unstable nuclei Low luminosity counter-balanced by high capture cross section + Radioactive ion cycles

• **Method:** RI ring or trapped ions Ex. future FLAIR program at FAIR

Physics case:

 ρ_n/ρ_p at the nuclear surface in very neutron-rich & short-lived nuclei (halos, thick neutron skins)

M. Wada, Y. Yamazaki, Nucl. Instr. Meth. B 214, 196 (2004).

Uncertainties:

 f_{halo} impacted by (1) statistics, (2) final state interactions (FSI)

If enough statistics, f_{halo} and FSI can be constrained from the data. **<10% uncertainties** can be reached.

Cea PUMA: original experimental method

- PUMA: antiProton Unstable Matter Annihilation
- The antiproton filling at CERN/ELENA
- Transportation of antiprotons to CERN/ISOLDE
- In-trap annihilations and measurement from 2020

- Antiprotonic atoms have been used to study neutron skins / halos at the nucleus surface
- A unique **sensitivity** to proton/neutron densities **« beyond » the nuclear surface (tail)**
- Three methods have been used:
 - pion emission (ρ_n/ρ_p) after annihilation
 - radiochemical (cold residue selection)
 - X-ray measurement
- **Model dependences** are the main limitation to precision
- Neutron skin thicknesses extracted have significant systematic errors
 - 1) choice of 2pF for radial density profiles
 - 2) antiproton-N optical potential (parameterization, range,...)
 - given systematic errors estimated to **0.04 fm** for ΔR_{np} are **underestimated**
- More theoretical/microscopic efforts necessary are needed for comprehensive uncertainties
- Method could be applied to **unstable nuclei**
 - evidence of halos in medium-mass neutron-rich nuclei
 - neutron-skin thickness evolution along long isotopic chains
- New opportunities at ELENA low-energy ring at CERN/AD from 2020 (after the CERN LS2) Later possibilities at FLAIR, when/if available
- New project (PUMA) for unstable nuclei studies under development