Dipole Polarizability of ⁴⁸Ca

TECHNISCHE UNIVERSITÄT DARMSTADT

Peter von Neumann-Cosel Institut für Kernphysik, Technische Universität Darmstadt

- ⁴⁸Ca(p,p') data
- MDA and associated uncertainties
- Conversion to photoabsorption cross sections and associated uncertainties
- Results for ⁴⁸Ca and comparison to ⁴⁰Ca

Supported by DFG under contract SFB 1245

Data

Data

Multipole Decomposition Analysis

- DWBA analysis:
 - Code: DWBA07
 - Effective proton-nucleus interaction (Love & Franey)
 - QPM wave functions
- Multipole decomposition

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}_{\mathrm{DATA}} = \sum_{J^{\pi}} a_{J^{\pi}} \cdot \frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}_{J^{\pi},\mathrm{DWBA}}$$

MDA Input

Multipole Decomposition Analysis

- DWBA analysis:
 - Code: DWBA07
 - Effective proton-nucleus interaction (Love & Franey)
 - QPM wave functions
- Multipole decomposition

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}_{\mathrm{DATA}} = \sum_{J^{\pi}} a_{J^{\pi}} \cdot \frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}_{J^{\pi},\mathrm{DWBA}}$$

- Variants for ⁴⁸Ca compared to MDA in heavy nuclei
 - M1 neglected
 - E2 (ISGQR) subtracted from spectra prior to MDA
 - Nuclear background approximately constant

M1 Cross sections

J. Birkhan et al., Phys. Rev. C 93, 041302(R) (2016)

E2 cross sections

From MDA of ${}^{48}Ca(\alpha, \alpha')$ data

→ input to DWBA calculation of corresponding (p,p') cross sections

Y.-W. Lui et al., Phys. Rev. C 83, 044327 (2011)

Nuclear Background

At E_x = 24 – 25 MeV cross sections approximately constant

MDA Results

E2 cross sections very small

Resulting background has similar shape as observed in heavy nuclei

MDA Uncertanties

- Statistical and systematic errors of cross sections
- MDA uncertainties: variance of x2-weighted averaging over all possible combinations
- All contributions taken into account in MC simulation
- Uncertainty ≈7% dominated by MDA errors

Conversion to Photoabsorption Cross Sections (

$$\left. \frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}E_{\gamma}} \right|_{\mathsf{E1}} (E_{\gamma}) = \frac{1}{E_{\gamma}} \frac{\mathrm{d}N_{\mathsf{E1}}}{\mathrm{d}\Omega} (E_{\gamma}, \Omega) \ \sigma_{\mathsf{abs}}^{\mathsf{E1}} (E_{\gamma})$$

Angle Integration

- Maximum angle (= minimal impact parameter) from touching meansquare radii of p and ⁴⁸Ca
- Uncertainty ≈ 7 8%

B(E1) Strength in ⁴⁸Ca

G.J. O'Keefe et al. Nucl. Phys. A 469, 239 (1987 S. Strauch et al., Phys. Rev. Lett. 85, 2913 (2000)

- O'Keefe et al: result discarded because of method
- Strauch et al: (e,e'p) channel missing

Photoabsorption Cross Section in ⁴⁰Ca up to 160 MeV

TECHNISCHE

darmstadt

Note: above E_x = 60 MeV cross section is negligibly small

Data in GDR region differ from original paper (see EXFOR data base)

• Cross sections are comparable but there is an energy shift of (1.0 ± 0.3) MeV

• ⁴⁸Ca (GDR): $\alpha_D = (1.73 \pm 0.18) \text{ fm}^3$

⁴⁰Ca (GDR): $\alpha_D = (1.50 \pm 0.02) \text{ fm}^3$

Comparison of ⁴⁰Ca/ ⁴⁸Ca in the GDR Region

TECHNISCHE

UNIVERSITÄT DARMSTADT

Qualitatively agrees with comparison of ⁴⁰Ca and ⁴⁸Ca RCNP data

Polarizability Contribution from E1 Strength Below Threshold

• $\alpha_D(0 - 10 \text{ MeV}) =$ 0.0101 ± 0.0006 fm³

Photoabsorption Cross Section and Running Sum of α_D compared to χ EFT predictions

Present Status of Experiment and Theory for the Dipole Polarizability of ⁴⁸Ca

- ⁴⁰Ca: $\alpha_D = (1.87 \pm 0.03) \text{ fm}^3$
- ⁴⁸Ca: α_D = (2.07 ± 0.22) fm³
- α_D(⁴⁰Ca) α_D(⁴⁸Ca) provides additional constraint

Collaboration

Experiment: Darmstadt-Osaka Theory: Darmstadt-Tennessee-TRIUMF

- S. Bacca (TRIUMF)
- S. Bassauer (TUD)
- J. Birkhan (Darmstadt)
- G. Hagen (ORNL)
- H. Matsubara (RCNP)
- M. Miorelli (TRIUMF)
- P. von Neumann-Cosel (TUD)
- T. Papenbrock (U Tennessee)
- N. Pietralla (TUD)
- A. Richter (TUD)
- A. Schwenk (TUD)
- A. Tamii (RCNP)

Predictions for observables related to the neutron distribution in ⁴⁸Ca

TECHNISCHE UNIVERSITÄT DARMSTADT

G. Hagen et al., Nature Physics 12 (2016)

Running Sum of α_D from χEFT predictions for ⁴⁰Ca

TECHNISCHE UNIVERSITÄT

DARMSTADT

Running Sum of α_D from χ EFT predictions for ⁴⁸Ca

TECHNISCHE UNIVERSITÄT

DARMSTADT

Measured spectra – high energy region

