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INTRODUCTION
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Nuclear Energy Density Functionals (EDFs):

Based on effective interactions solved at the HF level, EDFs
are successful in the description of ground and excited state
properties such as m, 〈r2〉1/2 or GR along the nuclear chart

Main types of EDFs:
Relativistic mean-field models (RMF), based on Lagrangians where effective
mesons carry the interaction:

Lint = Ψ̄Γσ(Ψ̄, Ψ)ΨΦσ +Ψ̄Γδ(Ψ̄, Ψ)τΨΦδ

−Ψ̄Γω(Ψ̄, Ψ)γµΨA
(ω)µ −Ψ̄Γρ(Ψ̄, Ψ)γµτΨA

(ρ)µ

Non-relativistic mean-field models (NRMF), based on Hamiltonians where ef
f. interactions are proposed and tested:

Veff
Nucl = V

long−range
attractive + V

short−range
repulsive + VSO + ...

-EDFs are phenomenological → not directly connected to any
NN (or NNN) interaction in the vacuum
-EDFs derived from a Mean-Field → we expect bulk properties
more accurate as heavier is the nucleus 4



Dipole polarizability: definition
From a macroscopic perspective

The electric polarizability measures the tendency of the
nuclear charge distribution to be distorted

αD ∼
electric dipole moment

external electric field

From a microscopic perspective

The electric polarizability is proportional to the inverse

energy weighted sum rule (IEWSR) of the electric dipole
response in nuclei

αD =
8π

9
e2

∑ B(E1)

E
or

αD =
 hc

2π2

∫
σph. abs.(E)

E2
dE
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In more detail (from theory) ...

◮ The linear response or dynamic polarizability of a nuclear
system excited from its g.s., |0〉, to an excited state, |ν〉, due to the
action of an external isovector oscillating field (dipolar in our
case) of the form (Feiwt + F†e−iwt):

FJM =

A∑
i

rJYJM(r̂)τz(i) (∆L = 1 → Dipole)

◮ is proportional to the static polarizability for small oscillations

α = (8π/9)e2m−1 = (8π/9)e2
∑
ν

|〈ν|F|0〉|2/E where m−1 is the

inverse energy weighted moment of the strength function

The dielectric theorem establishes that the m−1 moment can be
computed from the expectation value of the Hamiltonian in
the constrained ground state H ′ = H + λD.
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STATISTIC UNCERTAINTIES
AND CORRELATIONS IN

EDFs
Example on the dipole polarizability
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Covariance analysis: χ2 test

◮ Observables O used to calibrate the parameters p (e.g. of an EDF)

χ2(p) =
1

m− np − 1

m∑
ı=1

(

Otheo.
ı − Oref.

ı

∆Oref.
ı

)2

◮ Assuming that the χ2 can be approximated by an
hyper-parabola around the minimum p0,

χ2(p) − χ2(p0) ≈
1

2

n∑
ı,

(pı − p0ı)∂pı
∂p

χ2(p − p0)

where M ≡ 1

2
∂pı

∂p
χ2 (curvature m.) and E ≡ M−1 (error m.).

◮ errors between predicted observables A

∆A =

√

√

√

√

n∑
ı

∂pı
AEıı∂pı

A

◮ correlations between predicted observables,

cAB ≡ CAB√
CAACBB

where, CAB = (A(p) −A)(B(p) − B) ≈
n∑
ı

∂pı
AEı∂p

B
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Example: Fitting protocol of SLy5-min (NON-Rel)

and DD-ME-min1 (Rel)
SLy5-min:

◮ Binding energies of 40,48Ca, 56Ni, 130,132Sn and 208Pb with a
fixed adopted error of 2 MeV

◮ the charge radius of 40,48Ca, 56Ni and 208Pb with a fixed
adopted error of 0.02 fm

◮ the neutron matter Equation of State calculated by Wiringa et al.
(1988) for densities between 0.07 and 0.40 fm−3 with an adopted
error of 10%

◮ the saturation energy (e(ρ0) = −16.0± 0.2 MeV) and density
(ρ0 = 0.160± 0.005 fm−3) of symmetric nuclear matter.

DD-ME-min1:

◮ binding energies, charge radii, diffraction radii and surface
thicknesses of 17 even-even spherical nuclei, 16O, 40,48Ca,
56,58Ni, 88Sr, 90Zr, 100,112,120,124,132Sn, 136Xe, 144Sm and
202,208,214Pb. The assumed errors of these observables are 0.2%,
0.5%, 0.5%, and 1.5%, respectively. 9



Covariance analysis: SLy5-min (NON-Rel) and

DD-ME-min1 (Rel)

J. Phys. G: Nucl. Part. Phys. 42 034033 (2015).

The neutron skin is correlated with L in both models but NOT

with αD. (I will come back on that latter)
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Covariance analysis: SLy5-min (NON-Rel) and

DD-ME-min1 (Rel)

SLy5-min DDME-min1
A A0 σ(A0) A0 σ(A0) units

SNM

ρ0 0.162 ± 0.002 0.150 ± 0.001 fm−3

e(ρ0) −16.02 ± 0.06 −16.18 ± 0.03 MeV
m∗/m 0.698 ± 0.070 0.573 ± 0.008

J 32.60 ± 0.71 33.0 ± 1.7 MeV
K0 230.5 ± 9.0 261 ± 23 MeV
L 47.5 ± 4.5 55 ± 16 MeV

208Pb

EISGMR
x 14.00 ± 0.36 13.87 ± 0.49 MeV

E
ISGQR
x 12.58 ± 0.62 12.01 ± 1.76 MeV

∆rnp 0.1655 ± 0.0069 0.20 ± 0.03 fm

EIVGDR
x 13.9 ± 1.8 14.64 ± 0.38 MeV

mIVGDR
−1 4.85 ± 0.11 5.18 ± 0.28 MeV−1 fm2

E
IVGQR
x 21.6 ± 2.6 25.19 ± 2.05 MeV

Statistical uncertainties depend on the fitting protocol, that is
on the data (or pseudo-data) and associated errors used for the

fits: Let us see an example...
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Covariance analysis: modifying the χ2

→ SLy5-a: χ2 as in SLy5-min except for the neutron EoS (relaxed the required accuracy = increasing associated error).

→ SLy5-b: χ2 as in SLy5-min except the neutron EoS (not employed) and used instead a tight constraint on the ∆rnp in 208Pb

J. Phys. G: Nucl. Part. Phys. 42 034033 (2015).

◮ When a constraint on a property is relaxed, correlations of other observables with such a property should
become larger → SLy5-a: αD is now better correlated with ∆rnp

◮ When a constraint on a property is enhanced —artificially or by an accurate experimental measurement—
correlations of other observables with such a property should become small → SLy5-b: ∆rnp is not
correlated with any other observable
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SISTEMATIC
UNCERTAINTIES AND

CORRELATIONS IN EDFs
Example on the dipole polarizability
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Dipole polarizability: macroscopic approach

The dielectric theorem establishes that the m−1 mo-
ment can be computed from the expectation value of

the Hamiltonian in the constrained ground state H ′ =

H + λD.

Adopting the Droplet Model (m−1 ∝ αD):

m−1 ≈ A〈r2〉1/2
48J

(

1+
15

4

J

Q
A−1/3

)

within the same model, connection with the neutron skin
thickness:

αD ≈ A〈r2〉
12J



1+
5

2

∆rnp +

√

3
5
e2Z
70J − ∆rsurface

np

〈r2〉1/2(I− IC)





Is this correlation appearing also in EDFs?
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Isovector Giant Dipole Resonance in 208Pb:

Dipole polarizability: microscopic results HF+RPA
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X. Roca-Maza, et al., Phys. Rev. C 88, 024316 (2013).

αDJ is linearly correlated with ∆rnp and no αD alone within EDFs
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Warnings: RPA versus experiment
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- Important to take into account the full energy range to compare
with RPA results. (we expect RPA to be quantitative for excitation
energy and sum rules but not in details of the response function)
- RPA do not reproduce the resonance width, maximum possible

error: ∆αD . −αD
Γ2

4E2
x

< 2% in 208Pb

- Including pairing correlations for Sn: ∆rnp and αD tend to be
smaller by few % (0-8% in 120Sn and studied models).

- quasi-deuteron contributions should be substracted from exp. 16



Isovector Giant Dipole Resonance in 68Ni:

What about other nuclei?

Dipole polarizability: microscopic results HF+RPA
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X. Roca-Maza et al. Phys. Rev. C 92, 064304 (2015)

Experimental dipole polarizability αD = 3.40± 0.23 fm3 D. M.
Rossi et al., PRL 111, 242503 (GSI). αD = 3.88± 0.31 fm3 “full”
response D. M. Rossi, T. Aumann, and K. Boretzky.
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208Pb vs 68Ni:

Dipole polarizability: microscopic results HF+RPA
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X. Roca-Maza et al. Phys. Rev. C 92, 064304 (2015)

Just as an indication DM would predict:

αD(A = 208)/αD(A = 68) ∼ (208/68)5/3
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Can we use this correlation to predict the

polarizability in other nuclei?
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X. Roca-Maza et al. Phys. Rev. C 92, 064304 (2015)

Nucleus ∆rnp (fm) αD (fm3)

48Ca 0.15−0.18 (0.16 ± 0.01) 2.06−2.52 (2.30 ± 0.14)
90Zr 0.058−0.077 (0.067± 0.008) 5.30−6.06 (5.65± 0.23)

Table: Estimates for the neutron skin thickness and electric dipole
polarizability of 48Ca and 90Zr from models that predict αexp in 68Ni,
132Sn and 208Pb. 19



Constraints of this analysis on the J− L plane

αD ≈ A〈r2〉
12J

[

1+
5

3

L

J

ρ0 − ρA

3ρ0

]

where S(ρA) ≡ asym(A)
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X. Roca-Maza et al. Phys. Rev. C 92, 064304 (2015)

J = (24.9± 2.0) + (0.19± 0.02)L for 68Ni
J = (25.4± 1.1) + (0.17± 0.01)L for 120Sn

J = (24.5± 0.8) + (0.168± 0.007)L for 208Pb

For S(< ρ > → ρ0) ≈ J− L
(ρ0− < ρ >)

3ρ0
20



CONCLUSIONS
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Conclusions:
• We have studied theoretically how sensitive is the isovector

channel of the interaction to a measurement of the dipole
polarizability in a heavy nucleus such as 208Pb.

• we have proposed a physically meaningful correlation between
the polarizability and the properties of the effective interaction:
αDJ vs ∆rnp and not αD alone.

• Our results for 208Pb can be extended to other nuclei such as
the exotic 68Ni.

• Within our approach, we have derived three bands in the J− L

plane consistent with the recent measurements of the
polarizability in 68Ni, 120Sn and 208Pb

• The slope shown by the derived bands in the J− L is not strictly
followed by the models used for the analysis

• Subset of models that reproduce simultaneously the measured
polarizabilities are employed to predict J = 30− 35 MeV,
L = 20− 66 MeV; and the values for ∆rnp in 68Ni, 120Sn, and
208Pb are in the ranges: 0.15-0.19 fm, 0.12-0.16 fm, and 0.13-0.19
fm
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EXTRA MATERIAL
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∆rnp in 208Pb:

MSk7

D1S
Sk-T6

SkM*

DD-ME2
FSUGold Ska Sk-Rs

Sk-T4
G2 NLC

NL3*

NL-Z
NL1

0 50 100 150
L  (MeV)

0

0.1

0.2

0.3

∆r
np

  o
f 

 20
8 Pb

   
(f

m
)

HFB-8

SGII
HFB-17

SLy4

SkSM*
SkMP

NL-SH

D1N

TM1

NL3

NL-RA1

Total
 fit: r=0.992, slope=1.6 fm/GeV
Bulk
 fit: r=0.993, slope=1.4 fm/GeV
Surface
 fit: r=0.602, slope=0.2 fm/GeV

24



0,09 0,12 0,15 0,18 0,21
∆r

np
  (fm)

250

300

350

400
α D

J 
  (

M
eV

 f
m

3 )

Skyrmes
SAMi-J
KDE0-J
DD-ME

120
Sn

r = 0.95

(a)

25



100 150 200 250 300 350
α

D
(
68

Ni) J α
D

(
120

Sn) J

500

600

700

800

900

α D
(20

8 Pb
) 

J 
 (

M
eV

 f
m

3 )

r = 0.99 r = 0.99 (a)

100 125 150 175
α

D
(
68

Ni) J  (MeV fm
3
)

250

300

350

400

α D
(12

0 Sn
) 

J 
 (

M
eV

 f
m

3 ) Skyrmes
SAMi-J
KDE0-J
DD-ME

r = 0.98 (b)

26



3,4 3,6 3,8 4 4,2 4,4 4,6 4,8

α
D

(
68

Ni) (fm
3
)

18

20

22

24

α D
(20

8 Pb
) 

(f
m

3 )

KDE0-J
FSUΛ
NL3Λ
TAMU-FSU
DD-ME
SAMi-J
Skyrmes

r = 0.96GSI

RCNP

(a)
8 8,5 9 9,5 10 10,5

α
D

(
120

Sn) (fm
3
)

18

20

22

24

α D
(20

8 Pb
) 

(f
m

3 )

r = 0.96RCNP

RCNP

(b)

27



0,12 0,16 0,2 0,24
∆r

np
  (fm)

60

70

80

90

100

α D
J 

  (
M

eV
 f

m
3 )

48
Ca

(c)

r = 0.84

0,04 0,06 0,08 0,1 0,12
∆r

np
  (fm)

150

200

250

α D
J 

  (
M

eV
 f

m
3 )

90
Zr

(d)

r = 0.92

28


