weak charge densi

C. J. Horowitz, Indiana University Mainz May 2016

PREX measures how much neutrons stick out past protons (neutron skin).

Why not just measure a $2nd Q^2$ point? Or $1,2...\infty!$

- Model dependent Fermi function, Helm,... densities are so 1970s.
- We already know charge density, and to first approx, neutron surface thickness is same as proton.
- The experimental elastic charge density IS our picture of the atomic nucleus and has had a tremendous impact.

Cross section measured over 12 orders of magnitude.

These elastic charge densities **are** our picture of the atomic nucleus!

Charge Density

- Shell oscillations are observed but often smaller than in theoretical models.
- Detailed knowledge of surface thickness for charge density.
- Charge density in interior of ²⁰⁸Pb observed flat —> our most detailed knowledge of nuclear saturation. Saturation density n₀=0.16 fm⁻³ extrapolated from rho_ch(r=0) in 208Pb! Nontrivial because neutron density is not equal to charge density.
- To determine rho_ch(r=0) need

PREX results from 2010 run

- I.05 GeV electrons elastically scattering at ~5 deg. from ²⁰⁸Pb
- A_{PV} = 0.657 ± 0.060(stat) ± 0.014(sym) ppm
- Weak form factor at q=0.475 fm⁻¹: $F_W(q) = 0.204 \pm 0.028$
- Radius of weak charge distr. $R_W = 5.83 \pm 0.18 \text{ fm}$
- Compare to charge radius R_{ch} =5.503 fm --> weak skin: R_{W} R_{ch} = 0.32 ± 0.18 ± 0.03 fm
- First observation that weak charge density more extended than (E+M) charge density --> weak skin.
- Unfold nucleon ff--> neutron skin: $R_n - R_p = 0.33^{+0.16} - 0.18$ fm
- Phys Rev Let. 108, 112502 (2012), Phys. Rev. C 85, 032501(R) (2012)

PV Neutron Density Experiments

- JLAB completed exp.: PREX $R_n-R_p(^{208}Pb)=0.33+/-0.17$ fm
- JLAB approved experiments:
 - –PREX II improve statistics of PREX with goal of R_n - R_p for ²⁰⁸Pb to +/- 0.06 fm

-CREX measure R_n - R_p for ⁴⁸Ca to +/- 0.02 fm

- Possibility at Mainz or at Cornel:
 - –A # of parity violating measurements of neutron densities are possible both with the existing machine and with Mesa.
 - –"Super PREX" could take advantage of a large acceptance detector and the new intense MESA electron accelerator to measure R_n - R_p for ²⁰⁸Pb to +/- 0.03 fm (half the error of PREXII). Very well motivated to maximize information on density dependence of symmetry energy and the pressure of neutron matter from laboratory exp.

CREX: ⁴⁸Ca

- Measuring the neutron radius for both ²⁰⁸Pb (heavy) and ⁴⁸Ca (lighter) constrains both volume and surface isovector terms in energy functionals.
- ⁴⁸Ca is light enough that microscopic coupled cluster calculations are feasible to directly relate R_n to 2 and 3 nucleon forces (G. Hagen et al.).
 [These calculations should soon provide first microscopic double beta decay matrix element determination!]
- Indeed ⁴⁸Ca provides an important interface between density functionals, accurate for heavy nuclei, and more microscopic approaches.

Full ⁴⁸Ca weak charge density

- Measure A_{pv} at multiple q² points to determine the full radial form of the weak density. This is feasible for ⁴⁸Ca, really hard for ²⁰⁸Pb.
- Expand in Fourier Bessel series:

$$\rho_W(r) = \sum_{i=1}^{n_{max}} a_i j_0(q_i r)$$

 q_i=πi/R_{max}, j₀(x)=sin(x)/x, n_{max}=6, R_{max}=7 fm.

Example statistical error at JLAB: 60 days for all five q²

Optimizations

- Choose R_{max} beyond which rho_W=0
- Choose q_{max}=π i_{max}/R_{max}
- Choose energy and angle and run times for each of the q_i points. Much time at last point!
- Look for highest solid angle detector with good energy resolution.
- Minimize stat error in some quantity such as weak density at origin.
- One constraint: total weak charge.

q_i	\mathbf{E}	$\frac{d\sigma}{d\Omega}$	A_{pv}	т	a_i	$\Delta a_i/a_i$
fm^{-1}	GeV	mb	ppm	days	fm^{-3}	%
0.45					0.0752	1.1
0.90	2.06	2.44	2.54	5	0.0468	5.9
1.35	3.09	1.07×10^{-1}	8.31	7	-0.0438	7.6
1.80	4	2.9×10^{-3}	9.92	10	-0.0147	27
2.24	4	4.05×10^{-4}	22.5	15	0.0161	29
2.69	4	$9.7 imes 10^{-6}$	36.5	23	0.0066	90

Beam Energy

- Want q_{max} ~ 2.7 fm⁻¹ to resolve internal weak charge density in ⁴⁸Ca.
- Need beam energy of order E_{lab} ~ q_{max} ~ 500 MeV.
- Measure q_{max} at about 60 degrees in Lab.
- MESA at Mainz is too low energy 150-200 MeV.

Systematic errors at high Q²

- Very different from low Q² experiments.
- Low cross section and large stat error.
- Normalization errors very small
- Helicity correlated beam properties may not be a problem since A_{pv} is large and poorly determined.
- Backgrounds and energy resolution likely important issues!

Full ⁴⁸Ca weak charge density

- Would provide text book picture of where neutrons and protons are in a nucleus.
- Learn about shell oscillations of neutrons, saturation density of nuclear matter, neutron skin thickness, surface thickness of the neutrons...
- We expect central baryon density in ²⁰⁸Pb to be approximately constant but we only know what the proton density is.
- Compare to new microscopic calculations of the neutron density in ⁴⁸Ca based on chiral effective field theory two and three nucleon interactions.

Weak form factors and neutron rich matter

- PREX uses parity violating electron scattering to measure the neutron radius of ²⁰⁸Pb —> determines pressure of n rich matter.
- Complimentary to astronomical observations of neutron matter with photons, neutrinos and gravitational waves.
- Can measure not just radius but full model independent weak form factor.
- Collaborators: D. Berry, S. Ban, J. Piekarewicz, R. Michaels, K. Kumar, P. Souder, Students: Z. Lin, M. Caplan...
- Supported in part by DOE grants DE-FG02-87ER40365 (Indiana U.) and DE-SC0008808 (NUCLEI SciDAC).