Electric Dipole Polarizability Studied by Proton Scattering

Atsushi Tamii

Research Center for Nuclear Physics (RCNP) Osaka University, Japan

MITP Conference on Neutron Skin Mainz, May 17-27, 2016

Symmetry Energy of the Nuclear Equation of State is important for nuclear physics and nuclear-astrophysics

https://www.youtube.com/watch?v=IZhNWh_lFuI

Lattimer and Prakash, Science 304, 536 (2004).

http://www.astro.umd.edu/~miller/nstar.html

Studying the Equation of State

Thermodynamics

Give a "small perturbation"

then observe how the system changes = response

 $\kappa = -\frac{1}{V} \left(\frac{dV}{dp} \right)_{S}$

equilibrium

This is a natural and straightforward way for studying the equation of state.

Nuclear EOS

Electric Dipole Response

is relevant to the isovector property of the nuclear EOS

Ground state is

the lowest energy state in the equilibrium condition.

The proton and neutron density distributions are determined as the system has the lowest energy.

Any perturbation on the density distribution makes system energy larger.

Electric dipole moment

 $= \alpha_D \times E$

 α_D : electric dipole polarizability

Nuclear Equation of State (EOS) at zero temperature

Electric Dipole Response

is relevant to the isovector property of the nuclear EOS

Electric force for separating p and n.

 ρ_n : increase, ρ_p : decrease ρ_n : decrease, ρ_p : increase

inner volume: decrease

Symmetry energy for restoring force.

Symmetry Energy

- Volume term
- Surface term

Surface Effect

- Surface diffuseness
- Neutron Skin

Electric Dipole Polarizability (α_D)

P.-G. Reinhard and W. Nazarewicz, PRC 81, 051303(R) (2010).

Strong correlation between the α_D and the neutron skin of ²⁰⁸Pb

Covariance analysis with SV-min interaction in the framework of the nuclear energy density functional.

X. Roca-Maza et al., PRC88, 024316(2013)

Correlations observed in various interaction sets.

$$\alpha_D^{\rm DM} \approx \frac{\pi e^2}{54} \frac{A \langle r^2 \rangle}{J} \left[1 + \frac{5}{3} \frac{L}{J} \epsilon_A \right]$$

insights from the droplet model

Electric Dipole Polarizability

Inversely energy weighted sum-rule of B(E1)

$$\alpha_{D} = \frac{\hbar c}{2\pi^{2}} \int \frac{\sigma_{abs}^{E1}}{\omega^{2}} d\omega = \frac{8\pi e^{2}}{9} \int \frac{dB(E1)}{\omega}$$

 $\sigma_{abs:}$ photo absorption cross section B(E1) : E1 reduced transition probability

first order perturbation calc.

A.B. Migdal: 1944

in an oscillating electric field

Electric Dipole Polarizability

Clear definition

Unambiguous in the integration range

← Pygmy Dipole Strength

Inversely energy weighted sum-rule

More sensitive to the low-energy strengths

Good convergence in the excitation energy

←→ energy-weighted (TRK) sum rule

Sum-rule for all the transitions

= Ground state property

- Measurements in a broad E_x range is required.
- \leftrightarrow easier comparison with theoretical predications

Electric Dipole Polarizability

Electric Dipole (E1) Response of Nuclei

Electric Dipole (E1) Response of Nuclei

Probing the E1 Response by Proton Scattering

Missing Mass Spectroscopy by Virtual Photon Excitation

Select $q \sim 0$ (~0 deg.) condition

Proton Inelastic Scattering at $q\sim 0$

is suitable for the full E1 response measurement

Electromagnetic Probe

Electromagnetic interaction is well known \longleftrightarrow strong interaction

Absolute determination of the transition strength.

Missing mass spectroscopy (inclusive measurement)

Total E1 strength independent on the decay channels

Multipole decomposition analysis

Extraction of the full strength including unresolved small strengths

Single shot measurement

From low (~5) to high (~20) excitation energies across S_n Uniform proton detection efficiency Virtual photon number decreases as E_x increases

Proton Inelastic Scattering at $q\sim 0$

High-resolution of 20-30 keV

Spin observables

Model independent decomposition of $\Delta S=0$ and 1 transitions

Small amount of isotopically enriched target (several mg)

A few days for cross sections, 7-10 days for spin-transfer

Requirement of a halo-free high-quality beamSome nuclear interaction contribution

Two Approaches for the Neutron Skin Thickness

Probing the matter/neutron/weak-charge distribution

Takes the difference from the charge (or *p*) distribution $\rightarrow \Delta R_{np}$

- Less/no model dependence
- Data must be highly accurate

$$\frac{\sigma\left(\Delta R_{np}\right)}{R_{p}} \sim \frac{0.02 \ fm}{5.45 \ fm} \sim 4 \times 10^{-1}$$

PREX, CREX, MREX

p elastic scattering

coherent π_0 production

Both approaches are important.

Probing the difference between the p/n distribution

- Requires theoretical models
- Data can be less accurate

$$\frac{\sigma\left(\Delta R_{np}\right)}{\Delta R_{np}} \sim \frac{0.02 \ fm}{0.2 \ fm} \sim 10^{-1}$$

Dipole Polarizability

PDR, GDR

anti-protonic atom

Experimental Method

July 28 2008 seminar @ LNL

Research Center for Nuclear Physics (RCNP), Osaka University

AVF Cyclotron Facility

Spectrometers in the 0-deg. experiment setup at RCNP, Osaka AT et al., NIMA605, 326 (2009)

High-Resolution Spectrometer Grand Raiden and HRS

Scaled

Grand Raiden at RCNP (Top View)

HRS at J-LAB Hall-A (Side View)

Spin Precession in the Spectrometer

B(E1): continuum and GDR region Method 1: Multipole Decomposition

Neglect of data for $\Theta>4$: (p,p') response too complex

Included E1/M1/E2 or E1/M1/E3 (little difference)

Grazing Angle = 3.0 deg

Comparison between the two methods for the decomposition of E1 and spin-M1

Comparison with (γ, γ') and (γ, xn)

E1 Response of ²⁰⁸Pb and α_D

The full dipole response of ²⁰⁸Pb has been determined.

AT et al., PRL107, 062502(2011)

E1 Response of ²⁰⁸Pb and α_D

Constraints

X. Roca-Maza et al. PRC88, 024316 (2013)

Neutron Skin Thickness Symmetry Energy Parameters $10^{-2} \alpha_{\rm D} J ~({\rm MeV~fm}^3)$ b (MeV fm³) SAMi SAMi $10^{-2} \alpha_{\mathrm{D}} J$ 0.16 0.20.24 0.28140120 0.3260 80 10040 Δr_{np} L (MeV) (fm)

Experimental Value = α_D

Constraint in the J-L plane

Constraints on J and L

AT et al., EPJA**50**, 28 (2014). M.B. Tsang *et al.*, PRC**86**, 015803 (2012) C.J. Horowitz et al., JPG41, 093001 (2014)

DP: Dipole Polarizability HIC: Heavy Ion Collision PDR: Pygmy Dipole Resonance IAS: Isobaric Analogue State FRDM: Finite Range Droplet

Model (nuclear mass analysis) n-star: Neutron Star Observation χEFT: Chiral Effective Field Theory

QMC: S. Gandolfi, EPJA50, 10(2014).

I. Tews et al., PRL110, 032504 (2013)

Dipole Polarizability of ¹²⁰Sn

T. Hashimoto et al., to be published in PRC

Dipole Polarizability of ¹²⁰Sn and ²⁰⁸Pb

Quasi-Deuteron Excitation Contribution Photon absorption by a virtual deuteron in the nucleus Needs to be subtracted for comparison with EDF calculations. ²⁰⁸Pb

 $\alpha_{\rm D}(^{208}{\rm Pb})$: 20.1 ± 0.6 fm³ quasi-*d*: 0.51 ± 0.15 fm³ w/o quasi-*d*: 19.6 ± 0.6 fm³ ~2.5%

 120 Sn

 $\alpha_{\rm D}(^{120}{\rm Sn})$: 8.93 ± 0.36 fm³ quasi-*d*: 0.34 ± 0.08 fm³ w/o quasi-*d*: 8.59 ± 0.37 fm³ ~4%

Constraints on J-L and n-skin thickness from DP Data

Neutron Skin Thickness of ²⁰⁸Pb

J. Piekarewicz et al., PRC85, 041302(R) (2012) C.J. Horowitz et al., JPG41, 093001 (2014)

The DP data give **a constraint on the symmetry energy** that is complementary information with neutron skin thickness measurements. If $J(S_0)$ is determined from other data, the ²⁰⁸Pb DP gives a constant on the ²⁰⁸Pb neutron skin thickness.

Plans in Near Future

- Result on ⁴⁸Ca (talk by P. von Neumann-Cosel)
- ¹¹²Sn, ¹²⁴Sn and on ⁹²Zr, ⁹⁴Zr, ⁹⁶Zr, have been measured in May-June, 2015.
- Data analysis on ⁹⁰Zr, ⁹⁶Mo, and ¹⁵⁴Sm

Summary

- The electric dipole polarizability (DP) is a welldefined observable which is sensitive to the isovector property of the nuclear EOS.
- **Proton inelastic scattering** at very forward angles is an **electromagnetic probe** which is suitable for the study of the **full electric dipole response** of nuclei.

Measured: ²⁰⁸Pb and ¹²⁰Sn:

T. Hashimoto *et al.*, to be published in PRC.

- **Theoretical models are indispensable** for extracting a constraint on the EOS from the measured DPs.
- The DP data give a constraint on the symmetry energy that is complementary information with neutron skin thickness measurements.
 If J (S₀) is determined from other data, the ²⁰⁸Pb DP data give a constant on the ²⁰⁸Pb neutron skin thickness.

²⁰⁸Pb

RCNP-282 Collaboration

RCNP, Osaka University

A. Tamii, H. Matsubara, H. Fujita, K. Hatanaka, H. Sakaguchi Y. Tameshige, M. Yosoi and J. Zenihiro

IKP, TU-Darmstadt

P. von Neumann-Cosel, A-M. Heilmann, Y. Kalmykov, I. Poltoratska, V.Yu. Ponomarev, A. Richter and J. Wambach

KVI, Univ. of Groningen T. Adachi and L.A. Popescu IFIC-CSIC, Univ. of Valencia B. Rubio and A.B. Perez-Cerdan Sch. of Science Univ. of Witwatersrand J. Carter and H. Fujita iThemba LABS F.D. Smit Texas A&M Commerce C.A. Bertulani **GSI** E. Litivinova

Dep. of Phys., Osaka University Y. Fujita

Dep. of Phys., Kyoto University T. Kawabata

CNS, Univ. of Tokyo K. Nakanishi, Y. Shimizu and Y. Sasamoto

CYRIC, Tohoku University M. Itoh and Y. Sakemi

Dep. of Phys., Kyushu University M. Dozono
Dep. of Phys., Niigata University Y. Shimbara 33

^{120}Sn

RCNP-316 Collaboration

T. Hashimoto⁺, A. M. Krumbholz¹, A. Tamii², P. von Neumann-Cosel¹, N. Aoi²,
O. Burda², J. Carter³, M. Chernykh², M. Dozono⁴, H. Fujita², Y. Fujita²,
K. Hatanaka², E. Ideguchi², N. T. Khai⁵, C. Iwamoto², T. Kawabata⁶,
D. Martin¹, K. Miki¹, R. Neveling⁷, H. J. Ong², I. Poltoratska¹, P.-G. Reinhard⁸,
A. Richter¹, F.D. Smit⁶, H. Sakaguchi^{2,4}, Y. Shimbara⁹, Y. Shimizu⁴, T. Suzuki²,
M. Yosoi¹, J. Zenihiro⁴, K. Zimmer¹

[†]Institute for Basic Science, Korea ¹IKP, Technische Universität Darmstadt, Germany ²RCNP, Osaka University, Japan ³Wits University, South Africa ⁴RIKEN, Japan ⁵Institute for Nuclear Science and Technology (INST), Vietnam ⁶Kyoto University, Japan ⁷iThemba LABs, South Africa ⁸Institut Theoretical Physik II, Universität Erlanen-Nürnberg, Germany ⁹CYRIC, Tohoku University, Japan

