Neutron skins and dipole polarizabilities from first principles computations

Gaute Hagen Oak Ridge National Laboratory

Neutron Skins of Nuclei

MITP, May 19th, 2016

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Collaborators

@ ORNL / UTK: S. Binder, T. Papenbrock, G. R. Jansen, M. Schuster

@ MSU: W. Nazarewicz

@ Chalmers: B. Carlsson, A. Ekström, C. Forssén

@ Hebrew U: N. Barnea, D. Gazit

@ MSU/ U Oslo: M. Hjorth-Jensen

@ U. Idaho: R. Machleidt

@ Trento: G. Orlandini

@ TRIUMF: S. Bacca, M. Miorelli, P. Navratil

@ TU Darmstadt: C. Drischler, H.-W. Hammer, K. Hebeler, A. Schwenk, J. Simonis, K. Wendt

- Status of ab initio computations of nuclei
- Accurate binding energies and radii from a chiral interaction
- The neutron skin and dipole polarizability of ⁴⁸Ca
 - Symmetry energy and size of a neutron star
- Charge radii of neutron-rich ⁵²Ca
- Neutron skin and dipole polarizability of ⁸He
- Towards heavier nuclei
 - Dipole polarizability of ⁶⁸Ni and ⁹⁰Zr
 - What is the structure of ⁷⁸Ni?

Trend in realistic ab-initio calculations

Explosion of many-body methods (Coupled clusters, Green's function Monte Carlo, In-Medium SRG, Lattice EFT, MCSM, No-Core Shell Model, Self-Consistent Green's Function, UMOA, ...)

Application of ideas from EFT and renormalization group (V_{low-k}, Similarity Renormalization Group, ...)

Reach of ab-initio computations of nuclei

H. Hergert et al, Physics Reports 621, 165-222 (2016)

Nuclear forces from chiral effective field theory

- developing higher orders and higher rank (3NF, 4NF) [Epelbaum 2006; Bernard et al 2007; Krebs et al 2012; Hebeler et al 2015; ...]
- local / non-local formulations [Gezerlis et al 2013/2014]
- propagation of uncertainties on horizon [Navarro Perez 2014, Carlsson et al 2015]
- different optimization protocols
 [Ekström et al 2013]
- Improved understanding and handling via renormalization group transformations [Bogner et al 2003; Bogner et al 2007]
- Problem: Not RG invariant.

Oxgyen chain with interactions from chiral EFT

(2015)

Nuclear saturation is finely tuned

G. Hagen et al., PRC 89 014319 (2013)]

- Lattice EFT suggests that nuclei are close to a quantum phase transition [Elhatisari et al., (2016)]
- Regulator dependence in saturation properties of nuclear matter
- Difficult to describe nuclear matter and light nuclei by only adjusting $c_{\rm E}$ and $c_{\rm D}$

Accurate nuclear binding energies and radii from a chiral interaction

- Chiral interactions have failed at describing both binding energies and radii of nuclei
- Predictive power does not go together with large extrapolations
- Nuclear saturation may be viewed as an emergent property

Accurate nuclear binding energies and radii from a chiral interaction

<u>Solution</u>: Simultaneous optimization of NN and 3NFs Include charge radii and binding energies of ³H, ^{3,4}He, ¹⁴C, ¹⁶O in the optimization (NNLO_{sat})

A. Ekström *et al*, Phys. Rev. C **91**, 051301(R) (2015). G. Hagen et al, arXiv:1601.08203 (2016). Navratil et al (2007); Jurgenson et al (2011)

а

- b Binder et al (2014)
 - Epelbaum et al (2014)
- d Epelbaum et al (2012)
- e Maris et al (2014)
- f Wloch et al (2005)
- g Hagen et al (2014)
- h Bacca et al (2014)
 - Maris et al (2011)
 - Hergert et al (2014)
- k Soma et al (2014)

<u>Not new:</u> GFMC with AV18 and Illinois-7 are fit to 23 levels in nuclei with A <10

Charge density of ¹⁶O from NNLO_{sat}

A. Ekström, G. Jansen, K. Wendt et al, PRC 91, 051301 2015

Charge densities of ^{40,48}Ca from NNLO_{sat}

Nuclear matter from NNLOsat

A. Ekström, G. Jansen, K. Wendt et al, PRC 91, 051301 (2015)

- Interactions from Hebeler *et al* not constrained by heavier nuclei.
- They reproduce binding energy and radii of few-body systems
- Non-local regulators in the 3NF important for saturation

What is the neutron skin of ⁴⁸Ca

Neutron skin = Difference between radii of neutron and proton distributions

Relates atomic nuclei to neutron stars via neutron EOS

Correlated quantity: dipole polarizability

Model-independent measurement possible via parity-violating electron scattering (P-REX/C-REX at JLab)

Neutron skin and dipole polarizability of ⁴⁸Ca

J. Piekarewicz e al, PRC 85, 041302(R) (2012)

- Our knowledge about neutron skins is [★] so far mainly based on DFT models.
- What does ab-initio theory add to our knowledge of the neutron skin and size of nuclei?

- Impacts limits of stability and physics of neutron stars
- C-REX will measure the weak charge form
- Darmstadt-Osaka collaboration has measured α_D (Talk on Friday by Peter von Neumann-Cosel)

Neutron radius and skin of ⁴⁸Ca

G. Hagen *et al*, Nature Physics **12**, 186–190 (2016)

Uncertainty estimates from family of chiral interactions.

DFT:

SkM^{*}, SkP, Sly4, SV-min, UNEDF0, and UNEDF1

- Neutron skin significantly smaller than in DFT
- Neutron skin almost independent of the employed Hamiltonian
- Our predictions for ^{40,48}Ca are consistent with existing data

 \bar{p} atoms - Trzcinska π - Friedman π - Gibbs & Dedonder α -scattering - Gils Theory - Hagen

0.05 0.1 0.15 0.2 0.25 neutron skin [fm]

Weak charge form-factor of ⁴⁸Ca

Ab-initio predictions:

 $0.195 \le F_{\rm W}(q_c) \le 0.222$, $3.59 \le R_{\rm W} \le 3.71 \, {\rm fm}$, $0.12 \le R_{\rm skin} \le 0.15 \, {\rm fm}$

DFT predictions:

SV-min: $F_W(q_c) = 0.1986$ $R_{skin} = 0.1830 \text{ fm}$ FSUBJ: $F_W(q_c) = 0.205$ $R_{skin} = 0.1925 \text{ fm}$

Can we reliably extract the neutron skin from a single measurement?

Weak charge form-factor of ⁴⁸Ca

Dipole polarizability of ⁴⁸Ca

G. Hagen et al, Nature Physics 12, 186–190 (2016)

DFT results are consistent and within band of abinitio results

Data has been analyzed by Osaka-Darmstadt collaboration (Talk on Friday by Peter von Neumann-Cosel)

Ab-initio prediction: 2.19 $\lesssim \alpha_D \lesssim 2.60 \text{ fm}^3$

See talk by S. Bacca next week

Symmetry energy and L from chiral EFT

- S_v and L correlates with dipole polarizability and proton radius
- Ab-initio prediction for S_v and L from chiral EFT: 25.2 $\leq S_v \leq$ 30.4 MeV, 37.8 $\leq L \leq$ 47.7 MeV
- Consistent with Lattimer and Lim:
- 29 $\leq S_v \leq$ 32.7 MeV and 40.5 $\leq L \leq$ 61.9 MeV

The radius of a $1.4 M_{\odot}$ neutron star

- Empirical power law relates neutronstar radii to the pressure *P* at nuclear saturation density.
- *P* is strongly connected to S_v and *L*
- We correlate *P* with the charge radius of ⁴⁸Ca and get at an estimate:
 2.3 ≤ *P* ≤ 2.6 MeV fm⁻³
- Ab-initio prediction consistent with Lattimer and Lim $10.7 \leq R_{1.4M^{\circ}} \leq 13.1$

Lattimer and Lim Ap J. 771, 51 (2013)

Large charge radii questions magicity of ⁵²Ca

R. F. Garcia Ruiz *et al*, Nature Physics (2016) doi:10.1038/nphys3645

Image: COLLAPS Collaboration/Ronald Fernando Garcia Ruiz.

- Charge radii of ^{49,51,52}Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN
- Unexpected large charge radius questions the magicity of ⁵²Ca
- Theoretical models all underestimate the charge radius
- Ab-initio calculations reproduce the trend of charge radii

A "giant" pygmy resonance in ⁸He

gives a neutron skin R_{skin} = 0.8 fm

• R_{skin} of ⁸He is 2-4 times larger than the R_{skin} of ²⁰⁸Pb

M. Miorelli et al, in preparation (2016)

16

14

18

 $\hbar\Omega$ [MeV]

20

22

12

A "giant" pygmy resonance in ⁸He

M. Miorelli et al, in preparation (2016)

Results for ⁶⁸Ni and ⁹⁰Zr

5.0Results for ⁶⁸Ni and ⁹⁰Zr are ⁶⁸Ni 4.5consistent with data and DFT Results are not yet converged 4.0 **GSI** data $\alpha_D \, [\mathrm{fm}^3]$ with respect to model-space size 3.5What about 3p3h excitations? 3.0 M. Miorelli et al, in preparation (2016) $R_{ch}(^{64}Ni) = 3.8572 \text{ fm}$ 8.0 3.43.53.6 3.8 3.9 4.0 4.1 4.2 ⁹⁰Zr 3.73 7.0 R_{ch} [fm] X. Roca-Maza, et al PRC 92 (2015) 6.0 $\alpha_D \, [\mathrm{fm}^3]$ 6.8 (b) 5.0 $(\operatorname{uf}_{\varepsilon})^{(12)}$ $(\operatorname{uf}_{06})^{(12)}$ $(\operatorname{uf}_{06})^{(12)}$ 4.03.02.05. 4.0 4.1 4.24.4 3.9 4.3 RCN 3.8r = 0.919 2021 23 R_{ch} [fm] 18 22 $\alpha_{\rm D} ({}^{208}{\rm Pb}) ({\rm fm}^3)$

Structure of ⁷⁸Ni from first principles

- From an observed correlation we predict the 2⁺ excited state in ⁷⁸Ni using the experimental data for the 2⁺ state in ⁴⁸Ca
- Similar correlations have been observed in other nuclei, e.g. Tjon line in light nuclei

G. Hagen, G. R. Jansen, and T. Papenbrock arXiv (2016)

A high 2⁺ energy in ⁷⁸Ni indicates that this nucleus is doubly magic

A measurement of this state has been made at RIBF, RIKEN

R. Taniuchi et al., in preparation

Consistent with recent shell-model studies F. Nowacki *et al.,* arXiv:1605.05103 (2016)

Excited states in ⁷⁸Ni and its neighbors

- Exciting times in nuclear theory:
 - explosion of many-body solvers
 - many new developments regarding interactions and currents
- Neutron skin, dipole polarizability in ⁴⁸Ca, and charge radii of neutron-rich calciums
- Neutron skin and dipole polarizability of neutron-rich ⁸He
- Towards heavy nuclei with ab-initio methods:
 - Dipole polarizability of ⁶⁸Ni and ⁹⁰Zr
 - Structure of neutron-rich ⁷⁸Ni suggest it is doubly magic
- How to address the problem of finetuned interactions, regulator dependencies and saturation in nuclei?
- Propagation of uncertainties from the interaction to the nuclear many-body problem on the horizon
- Quantifying systematic uncertainties associated with truncations in ab-initio methods is still a challenge