

Thomas Jefferson National Accelerator Facility

Extending C-REX to other kinematic points

- Using the HRS in Hall A
- Using a large-acceptance device

For inputs, I thank

Roger Carlini, Charles Horowitz, Krishna Kumar, Zidu Lin, Nicholas Saylor, Paul Souder, Bogdan Wojtsekhowski

Part I -- Considering the HRS in Hall A

The high-resolution spectrometers are well suited to suppress background and discriminate inelastic states.

Septum Magnet

• "Trombone" target, variable Z position to reach $4^0 < \theta < 7^0$

C-REX Setup

"The entire lab is the experiment"

High Resolution Spectrometers -- HRS

Nuclear Levels ⁴⁸ Ca								
	E (MeV)	JP	k					
	Gnd	0+						
	3.83	2+						
	4.28	0+						
	4.51							
	4.61							

1826 EISENSTEIN, MADSEN, THEISSEN, CARDMAN, AND BOCK

1824 EISENSTEIN, MADSEN, THEISSEN, CARDMAN, AND BOCKELMAN 188

has been corrected for background.

Electron scattering data and form factors for low-lying states of ⁴⁸Ca

q₁(F⁻¹)

Concept of a Septum Magnet

The HRS is limited to > 12.5^o To reach smaller scattering angle, which improves the FOM, we add a **septum magnet** (dipole) and move the target upstream by ~1.5m.

Trombone target for SuperCREX

Put ⁴⁸Ca target on a rail in a vacuum chamber.

Geant4 Simulation of HRS G4HRS

Nicholas Saylor Stonybrook University

Robert Michaels, Jefferson Lab, NSKINS16

Certification of G4HRS Monte Carlo Comparing PREX data (black) to Simulation (red) for various observed quantities.

Applications of G4HRS Monte Carlo

Acceptance study for new Q1

Design of acceptance-defining collimator

Inputs for optimizing figure-of-merit

Cross Section (E (MeV), θ (degrees)) in mb/sr

8-10000 7-8000 6 5 6000 4-4000 3-2-2000 1-0 0 4.8 4.6 4.4 4.2 4 3.8 3.6 3.4 3.2 3 600 800 10001200140016001800²000²200²400²600²800 ϵ (E (MeV), θ (degrees)) : (error in neutron radius) 0.16 0.24 0.22 0.14 0.2 0.12 0.18 0.1 0.16 0.08-0.14 0.06 0.12-0.04 0.1 0.08-0.02 0.06 0 -0.02 0.02 -0.04 0-4.8 4.6 4.4 4.2 4 3.8 3.6 3.4 3.2 3 600 800 10001200140016001800²000²200²400²600²800

Thanks C.J. Horowitz and Z. Lin ... but we'll need to extend the tables Asymmetry (E (MeV), θ (degrees)) in ppm

Figure of Merit (E (MeV), θ (degrees)) = XS * A² * ε^{2}

FSU-Gold* Weak Density

Nicholas Saylor

University

⁴⁸Ca

Suggested Kinematics in Z. Lin and C.J. Horowitz Phys. Rev. C92 014313 (2015)

E (GeV)	θ	q fm⁻¹	A (ppm)	T (days)	a _i	$\Delta a_i/a_i$
2.06	5	0.90	2.54	5	0.0468	5.9 %
3.09	5	1.35	8.31	7	-0.0438	7.6 %
4.0	5	1.80	9.92	10	-0.0147	27 %
4.0	6.3	2.24	22.5	15	0.0161	29 %
4.0	7.6	2.69	36.5	23	0.0066	90 %
		0.45			0.0752	1.1 %

Results confirmed by Nicholas Saylor and R.M.

⁴⁸Ca

Nicholas's Kinematics uses already-approved CREX-1 kinematics as one point.

E (GeV)	θ	q fm⁻¹	A (ppm)	T (days)	a_i	$\Delta a_i/a_i$
1.1	4	0.39	0.67	5?	0.0551	1.3 %
2.2 CREX-1	4 approved.	0.78	2.22	45	0.0646	0.77 %
2.2	6	1.17	4.82	7?	-0.0194	17 %
3.9	4.5	1.56	oress	10 ?	-0.0328	
4.0	5.5	1.95	in pros	15 ?	-0.0018	
4.0	6.5	2.34		23 ?	0.0200	

<u>Question:</u> What criteria do we use to optimize the experiment run time ?

Part II -- Considering a Future Large Solid Angle Spectrometer

SuperBigBite --- a large dipole

Custom Crescent-Shaped Dipole

Lacking in momentum resolution without sacrificing solid angle

Solenoid \longrightarrow Promising, but so far limited to $q < 1.8 \text{ fm}^{-1}$

Toroid

With Bogdan Wojtsekhowski

Using the SuperBigBite Spectrometer or a Crescent Spectrometer $d\Omega = 41 \, mstr$ B ⁴⁸Ca target The 3 MeV resolution could be achieved over a large distance (radius of Hall A) but only for a reduced solid angle, and requiring a big vacuum chamber. Beam \rightarrow Not really feasible. HRS is better. \rightarrow

Similar to Qweak

TOROID SPECTROMETER

Robert Michaels, Jefferson Lab, NSKINS16

SOLENOID SPECTROMETER

The CLEO-II magnet is being moved to Hall A for the SOLID spectrometer. Here, we try using it for superCREX.

Credit: Paul Souder

Using a Solenoid (like CLEO)

Robert Michaels, Jefferson Lab, NSKINS16

using CLEO magnet Feasible Angle (degrees) vs Energy (GeV)

Conclusion : Extending C-REX to other kinematic points

• Using the HRS in Hall A

an experiment can probably be designed which uses 60 days of beam for \sim 5 new Q² points

Using a large-acceptance device

 a solenoid seems to be the only option,
 and mostly suitable for low energy (<1 GeV).