

Peter Egelhof

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

Neutron Skins of Nuclei

MITP Mainz, Germany May 17 - 27, 2016

FAIR

I. Introduction

GSI

- Intermediate Energy Elastic Proton Scattering

 a Tool to Study the Radial Shape of Exotic Nuclei
- III. Results for Light Nuclei at Low Momentum Transfer q
- IV. Results for Light Nuclei at Higher q
- V. Results for Heavier Nuclei from Storage Ring Experiments
- VI. Which Accuracy on Neutron Skins can be Reached?

I. Introduction

Charged Electiles

Storage Ring

- and new phenomena
- \Rightarrow use new and powerful methods:

EXL: direct reactions at internal NESR target

⇒ high luminosity even for very low momentum transfer measurements

The <u>radial shape and size of nuclei</u> is a <u>basic nuclear property</u> ! \Rightarrow of high interest for nuclear structure and astrophysics

observables:

nuclear charge distribution: nuclear matter distribution:

 $\rho_{ch}(r), < r_{ch}^2 >^{1/2} \Rightarrow$ leptonic probes $\rho_m(r), < r_m^2 >^{1/2} \Rightarrow$ hadronic probes

standard methods: (see also C.J. Batty et al., Adv. in Nucl. Phys. 19 (1989) 1-188)

nuclear charge distribution:

electron scattering isotope shifts muonic atoms

nuclear matter distribution:

(p,p), (α,α), (π,π),

Definitions

- all nucleon distributions given are <u>point distributions</u> (distributions of point nucleons)
- nuclear matter distribution $\rho_m(r) \implies$ nuclear matter radius $R_m = \langle r_m^2 \rangle^{1/2}$ proton (charge) distribution $\rho_p(r) \implies$ proton (charge) radius $R_p = \langle r_p^2 \rangle^{1/2}$ neutron distribution $\rho_n(r) \implies$ neutron radius $R_n = \langle r_n^2 \rangle^{1/2}$
- $\rho_m(r) = \rho_p(r) + \rho_n(r)$, where ρ_p , ρ_n are normalized to number of protons, neutrons

 $\Rightarrow A R_m^2 = N_p R_p^2 + N_n R_n^2$

- neutron skin thickness: $\delta_{np} = R_n R_p$
- note that experimentally determined charge densities are folded with size of the proton!

Direct Reactions in Inverse Kinematics

classical method to observe spectroscopic information:

- \Rightarrow light ion induced <u>direct reactions</u>: (p,p), (p,p'), (d,p), ... (before RIB-facilities: limited to <u>stable nuclei</u>)
- aim: use radioactive beams from RIB-facilities for nuclear structure studies off stability

method: Inverse Kinematics

 \Rightarrow new phenomena of nuclear structure

Halo-Nuclei – a New Phenomenon of the Structure of Nuclei

Density Distribution of Nuclear Matter

extremely neutron-rich nuclei: neutron halo stable nuclei:

neutrons and protons equally distributed

II. Intermediate Energy Elastic Proton Scatteringa Tool to Study the Radial Shape of Exotic Nuclei

The <u>radial shape and size of nuclei</u> is a <u>basic nuclear property</u> ! \Rightarrow of high interest for nuclear structure and astrophysics

<u>observables:</u> nuclear charge distribution: $ρ_{ch}(r)$, $< r_{ch}^2 >^{1/2}$ ⇒ leptonic probes nuclear matter distribution: $ρ_m(r)$, $< r_m^2 >^{1/2}$ ⇒ hadronic probes

method: intermediate energy elastic proton scattering

- ⇒ well established method for determination of nuclear matter distributions (of stable nuclei)
- \Rightarrow what about exotic nuclei?

Elastic Proton Scattering at Intermediate Energies around 1 GeV/u

well established method to investigate nuclear matter distributions of stable nuclei (see G. Alkhazov et al., Phys. Rep. 42 (1978) 89)

with radioactive beams \Rightarrow application to exotic nuclei

Proton Scattering from Stable Nuclei

PHYSICAL REVIEW C 82, 044611 (2010)

Neutron density distributions of 204,206,208 Pb deduced via proton elastic scattering at $E_{\rho} = 295$ MeV

J. Zenihiro,^{1,*} H. Sakaguchi,^{1,†} T. Murakami,¹ M. Yosoi,^{1,†} Y. Yasuda,^{1,†} S. Terashima,^{1,‡} Y. Iwao,¹ H. Takeda,² M. Itoh,^{3,5} H. P. Yoshida,^{3,5} and M. Uchida^{3,1}

> ¹Department of Physics, Kyoto University, Kyoto 606-8502, Japan
> ²RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
> ³Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan (Received 12 September 2010; published 22 October 2010)

Cross sections and analyzing powers for polarized proton elastic scattering from ³⁸Ni, and ^{204,206,208}Pb were measured at intermediate energy $E_p = 295$ MeV. An effective relativistic Love-Franey interaction is tuned to reproduce ³⁸Ni scattering data within the framework of the relativistic impulse approximation. The neutron densities of the lead isotopes are deduced using model-independent sum-of-Gaussians distributions. Their error envelopes are estimated by a new χ^2 criterion including uncertainties associated with the reaction model. The systematic behaviors of extracted error envelopes of the neutron density distributions in ^{204,206,208}Pb are presented. The extracted neutron and proton density distribution of ²⁰⁸Pb gives a neutron skin thickness of $\Delta r_{ap} = 0.211_{-0.054}^{+0.054}$ fm. Intermediate Energy Elastic Proton Scattering - a Tool to Study the Radial Shape of Halo Nuclei

aim: quantitative information on the nuclear matter distributions

<u>method:</u> intermediate energy (700 – 1000 MeV) elastic proton scattering

of special interest: light isotopes with halo-structure: ⁶He, ⁸He, ¹¹Li, ¹⁴Be, ⁸B, ¹⁷C

for low momentum transfer:

- high sensitivity on the halo structure
- \Rightarrow determination of matter radii
- ⇒ determination of the radial shape of the nuclear matter distribution

Sensitivity of Elastic Proton Scattering on the Radial Shape of the Nuclear Matter Distribution

assumed matter distribution:

10

12

10⁻⁷

0

2

4

6

r [fm]

8

slope of $d\sigma/dt$ \rightarrow matter radius R_m

curvature of log (do/dt) → halo structure

Elastic Proton Scattering at Low and Intermediate Energies

for intermediate energy proton scattering ($E_p \ge 700 - 1000 \text{ MeV}$):

reaction mechanism and effective nucleon-nucleon interaction well defined

 \Rightarrow Matter distribution $\rho(r)$ related to differential cross sections in straight forward way (Glauber theory)

for low energy proton scattering ($E_p = 20 - 100 \text{ MeV}$):

quantitative determination of $\rho(r)$ limited by:

- potential ambiguities
- uncertainties in effective pp, pn interaction

experimental conditions:

investigation of exotic nuclei
 ⇒ method of "Inverse Kinematics"

- high incident energies (E = 700 MeV/u)
 ⇒ produce beam of exotic nuclei by projectile fragmentation at GSI: Fragment Separator FRS
- low beam intensities: $10^2 10^4 \text{ sec}^{-1}$
- low recoil energies: $T_R \le 10 \text{ MeV}$
 - \Rightarrow needs thin target and large solid angle detector solution: recoil detector <u>"IKAR"</u> as <u>active target</u>

The Present GSI Accelerator Facilities

FRS: In-Flight Separator & High-Resolution Spectrometer

experimental conditions:

investigation of exotic nuclei
 ⇒ method of "Inverse Kinematics"

- high incident energies (E = 700 MeV/u)
 ⇒ produce beam of exotic nuclei by projectile fragmentation at GSI: Fragment Separator FRS
- low beam intensities: $10^2 10^4 \text{ sec}^{-1}$
- low recoil energies: $T_R \le 10 \text{ MeV}$
 - \Rightarrow needs thin target and large solid angle detector solution: recoil detector <u>"IKAR"</u> as <u>active target</u>

- \Rightarrow advantage:
 - low threshold
 - high detection efficiency (rel. thick target)

The TPC-Ionization Chamber IKAR as Active Target

(provided by PNPI St. Petersburg) detection principle: H₂-target = detector for recoil protons

entrance window: target thickness: 30 mg/cm² (6 independent sections) beam rate: $\leq 10^4/\text{sec}$

<u>but</u>: method limited to $Z \le 6!$

 H_2 -pressure:

The IKAR Experimental Setup

T_R (IKAR):

recoil-energy measured in the IKAR-detector

T_R (Tracking):

recoil-energy calculated from the measured scattering angle: $T_{\rm R}$ = $\theta_{\rm S}{}^2$ $p^2/2m_p$

S. R. Neumaier et al., Nucl. Phys. A 712 (2002) 247
G. D. Alkhazov et al., Nucl. Phys. A 712 (2002) 269
P. Egelhof et al., Eur. Phys. J. A 15 (2002) 27
A. Dobrovolsky et al., Nucl. Phys. A766 (2006) 1

all experimental data are well described by Glauber calculations

Concept of the Data Analysis

- Glauber multiple-scattering theory for calculation of cross sections:
 - use measured free pp, pn-cross sections as input (in medium effects negligible)
 - fold with nucleon density distribution
 - take into account multiple scattering (all terms!) (small for region of nuclear halo!)
- variation of the nucleon density distribution:
 - a) phenomenological parametrizations (point matter densities):
 - G: 1 Gaussian
 - SF: Symmetrized Fermi
 - GG: 2 Gaussians
 - GO: Gaussian + Harmonic Oscillator
 - b) "model independent" analysis:

SOG: Sum Of Gaussians

(standard method for electron scattering data:

I. Sick, Nucl. Phys. A 218 (1974) 509)

Free pp and pn Scattering

Fig. 2. (a) Energy dependence of the total cross sections σ_{pN} for free pp and pn scattering. The data are from Ref. [9] (dots and circles). The dashed curves result from a phase shift analysis [8]. The solid line is a smooth-function fit to the data from Ref. [10] (circles). (b) Energy dependence of the ratios ϵ_{pN} of the real to the imaginary part of the pp and pn scattering amplitudes (dots and circles, respectively) obtained with the help of dispersion relations [11]. The data for pn scattering are fitted by a smooth function (solid line). The dashed lines represent the results of a phase shift analysis [8].

Comparison of Matter Distribution and Charge Distribution of ⁶Li and ⁴He

for ⁶Li: charge distribution from (e,e) scattering (G.C. Li et al., Nucl. Phys. A 162 (1971) 583)

for ⁴He: charge radius from (e,e) scattering: R_{ch} =1.46 (6)(I.Sick et al., PRC77(2008)041302 matter radius from (p,p) scattering: R_m =1.49(3)

good agreement

 \Rightarrow confirmation of experimental method and concept of data analysis

III. Results on the Li Isotopes

Sensitivity to the Halo-Structure

- clear evidence of halo structure in ¹¹Li
- "normal" behaviour for ⁸Li and ⁹Li
- indication of possible halo-structure in ⁶Li (due to α+d cluster structure?)

Investigation of Nuclear Matter Density Distributions of Halo Nuclei by Elastic Proton Scattering at Low Momentum Transfer

nuclear matter distributions:

nuclear matter radii:

nucleus	R _{matter} , fm	R _{core} , fm	R _{halo} , fm
⁴ He	1.49 (3)		
⁸ He	2.53(8)	1.55 (15)	3.22 (14)
⁹ Li	2.44 (6)		
¹¹ Li	3.71 (20)	2.53 (3)	6.85 (58)

- extended neutron distribution in ⁸He and ¹¹Li obtained
- size of core, halo and total matter distribution determined with high accuracy
- the picture of a ⁹Li (⁴He) core + 2 (4) valence neutron-structure is confirmed for ¹¹Li and ⁸He

Elastic Proton Scattering from ¹⁴Be

differential cross section:

- ¹⁴Be exhibits a pronounced core-halo structure
- the picture of a ¹²Be-core + 2 valence neutron structure is confirmed
- the present data favour a relatively large s-wave component (see I. Thompson et. al, Phys. Rev. C53 (1996) 708)

Elastic Proton Scattering from ¹²Be

differential cross section:

deduced nuclear matter distribution:

- ¹²Be exhibits an extended matter distribution
- the contribution of (sd) intruder states is confirmed (see I. Thompson et al., Phys. Rev. C53 (1996) 703)

- needs input on proton (charge) distributions
 - \Rightarrow use data from laser spectroscopy (isotope shift measurements):
 - for ⁸He: Z.-T. Lu et al., Rev. Mod. Phys. 85 (2013) 1383
 - for ^{9,11}Li: W. Nörtershäuser et al., Phys. Rev. C 84 (2011) 024307
 - for ¹²Be: A. Krieger et al., Phys. Rev. Lett. 108 (2012) 142501
- neutron radius:

$$R_n^{2} = \frac{1}{N_n} * \left(A R_m^{2} - N_p R_p^{2} \right)$$

• neutron skin size:

$$\delta_{np} = R_n - R_p$$

Summary of all Data on Nuclear Radii

nucleus	R _m , fm	R _{core} , fm	R _{halo} , fm	R _p *, fm	R _n , fm	$\delta_{np}^{}, fm$
⁸ He	2.53 (8)	1.55 (15)	3.22 (14)	1.88 (2)	2.71 (10)	0.83 (10)
9Li	2.44 (6)			2.11 (5)	2.59 (10)	0.48 (11)
¹¹ Li	3.71 (20)	2.53 (3)	6.85 (58)	2.38 (5)	4.10 (26)	1.72 (26)
¹² Be	2.71 (6)	2.36 (6)	4.00 (28)	2.39(2)	2.86 (9)	0.47 (9)

* R_p from laser spectroscopy, unfolded from proton charge radius

The IKAR-Collaboration

F. Aksouh, G.D. Alkhazov, M.N. Andronenko, L. Chulkov, A.V. Dobrovolsky, P. Egelhof, H. Geissel, M. Gorska, S. Ilieva, A. Inglessi, A.V. Khanzadeev, O. Kiselev, G.A. Korolev, C. L. Le, Y. Litvinov, G. Münzenberg, M. Mutterer, S.R. Neumaier, C. Nociforo, C. Scheidenberger, L. Sergeev, D.M. Seliverstov, H. Simon, S. Tang, N.A. Timofeev, A.A. Vorobyov, V. Volkov, H. Weick, V.I. Yatsoura, A. Zhdanov

> Gesellschaft für Schwerionenforschung, Darmstadt, Germany Petersburg Nuclear Physics Institute, Gatchina, Russia Kurchatov Institute, Moscow, Russia Institut für Kernchemie, Universität Mainz, Germany Institut für Kernphysik, TU Darmstadt, Darmstadt, Germany

IV. The Structure of Halo Nuclei from Elastic Scattering at Higher Momentum Transfer

• LH_2 target used for first time in a scattering experiment with RIB's \Rightarrow allows for low background measurements with high luminosity

Experimental Cross Sections for p^{6,8}He Elastic Scattering

 $p(^{6}He, ^{6}He) = 717 \text{ MeV/u}$

 $p(^{8}He,^{8}He) = 671 \text{ MeV/u}$

IKAR experiment G. D. Alkhazov et al., Nucl. Phys. A712 (2002) 269

S174 experiment O. Kiselev et al., Nucl. Instr. Meth. A641 (2011) 72

Glauber calculation provides a good description in the whole t-range

Comparison of Results from IKAR and S174 Experiments

combined data (IKAR experiment and S174): recent analysis including spin-orbit interaction (X. L. Le et al., Phys. Rev. C92 (2015) 034608)

⇒ resulting matter distributions and matter radii fully consistent with results of previous IKAR experiment

only data at low momentum transfer (IKAR experiment):

⁶He: R_m =2.45(10) fm ⁸He: R_m =2.53(8) fm

FAIR: Facility for Antiproton and Ion Research

FAIR: Facility Characteristics

Key Technical Features

•Cooled beams

•Rapidly cycling superconducting magnets

Primary Beams

- 10¹²/s; 1.5-2 GeV/u; ²³⁸U²⁸⁺
- Factor 100-1000 over present in intensity
- 2(4)x10¹³/s 30 GeV protons
- 10^{10} /s $^{238}U^{73+}$ up to 35 GeV/u
- up to 90 GeV protons

Secondary Beams

- •Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in intensity over present
- Antiprotons 3 30 GeV

Storage and Cooler Rings

- Radioactive beams
- •e A collider
- •10¹¹ stored and cooled 0.8 14.5 GeV antiprotons

Nuclear Physics with Radioactive Beams at FAIR: NUSTAR: NUclear STructure, Astrophysics and Reactions

I High intensity primary beams from SIS 100 (e.g. $10^{12} \, {}^{238}\text{U}$ / sec at 1 GeV/u)

The EXL Project: EXotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

Advantage of Storage Rings for Direct Reactions in Inverse Kinematics

- low threshold and high resolution due to: beam cooling, thin target (10¹⁴-10¹⁵ cm⁻²)
- gain of luminosity due to: continuous beam accumulation and recirculation
- low background due to: pure, windowless ^{1,2}H₂, ^{3,4}He, etc. targets
- experiments with isomeric beams

Experiments at very low momentum transfer can only be performed at EXL (except with active targets, but with substantial lower luminosity)

Sensitivity to the Nuclear Matter Radius

reaction: $p(^{132}Sn, p), E = 700 \text{ MeV/u}$ assumed intensity: 5 X 10³ sec⁻¹ assumed target: active target of 1m at 1 bar 10³ ¹⁰¹ ¹⁰¹ ¹⁰¹ ¹⁰¹ ¹⁰¹ ¹⁰¹ d_o/dt (mb/(GeV²/c²)) ¹²⁰Sn : R_m = 4.82 fm ¹³²Sn : R_m = 4.95 fm 10² 10¹ $E_p = 15 \text{ MeV}$ 10[°] 0.05 0.10 0.15 0.20 0.00 -t (GeV $^2/c^2$)

V. Proposal E105: Feasibility Studies and First Experiments with RIB's at the ESR Storage Ring

specially designed scattering chamber for the ESR:

reactions with ⁵⁸Ni:

proof of principles and feasibility studies:

- UHV capability of detector setup
- background conditions in ESR environment at the internal target
- Iow energy threshold
- beam and target performance

reactions with ⁵⁶Ni:

⁵⁶Ni: doubly magic nucleus!!

- (p,p) reactions: nuclear matter distribution
- (α,α`) reactions: giant resonances (GMR) EOS parameters (nucl. compressibility)
- (³He,t) reactions: Gamow-Teller matrix elements, important for astrophys.

Theorectical Predictions

needed: large solid angle detectors with low threshold and large dynamic range

Setup at the ESR Storage Ring

Experimental Concept for the E105 Experiment

Experimental Concept for the E105 Experiment

Auxilliary vacuum side

Ultra-high vacuum side

Experimental Setup at the ESR

Scattering Chamber mounted at the Internal Target of the ESR

challenge: UHV capable and bakeable DSSD and Si(Li) detectors

First Results with Radioactive Beam

25. 10. 2012: First Nuclear Reaction Experiment with Stored Radioactive Beam!!!!

M. von Schmid et al., ⁹ Phys. Scr. T166 (2015) 014005

P. Egelhof et al., JPS Conf. Proc. 6 (2015) 020049

First Results with Radioactive Beam

⁵⁶Ni(p,p`), E = 400 MeV/u Identification of Inelastic Scattering

⁵⁶Ni(p,p), E = 400 MeV/u Angular Distribution Cross Section fitted using the Glauber Theory

M. v. Schmid, PHD thesis 2015

Nuclear Matter Distribution of ⁵⁶Ni

M. v. Schmid, PHD thesis 2015

Nuclear Matter Radii in Ni Isotopes

[3] A.N. Antonov et al., Phys. Rev. C 72, 044307 (2005)

The E105 Collaboration

S. Bagachi¹, S. Bönig², M. Castlós³, I. Dillmann⁴, C. Dimopoulou⁴, P. Egelhof⁴, V. Eremin⁵,
H. Geissel⁴, R. Gernhäuser⁶, M.N. Harakeh¹, A.-L. Hartig², S. Ilieva², N. Kalantar-Nayestanaki¹,
O. Kiselev⁴, H. Kollmus⁴, C. Kozhuharov⁴, A. Krasznahorkay³, T. Kröll², M. Kuilman¹, S. Litvinov⁴,
Yu.A. Litvinov⁴, M. Mahjour-Shafiei¹, M. Mutterer⁴, D. Nagae⁸, M.A. Najafi¹, C. Nociforo⁴,
F. Nolden⁴, U. Popp⁴, C. Rigollet¹, S. Roy¹, C. Scheidenberger⁴, M. von Schmid², M. Steck⁴,
B. Streicher^{2,4}, L. Stuhl³, M. Takechi⁴, M. Thürauf², T. Uesaka⁹, H. Weick⁴, J.S. Winfield⁴,
D. Winters⁴, P.J. Woods¹⁰, T. Yamaguchi¹¹, K. Yue^{4,7}, J.C. Zamora², J. Zenihiro⁹

¹ KVI, Groningen

- ² Technische Universität Darmstadt
- ³ ATOMKI, Debrecen
- ⁴ GSI, Darmstadt
- ⁵ loffe Physico-Technical Institute, St.Petersburg
- ⁶ Technische Universität München

- ⁷ Institute of Modern Physics, Lanzhou
- ⁸ University of Tsukuba
- ⁹ RIKEN Nishina Center
- ¹⁰ The University of Edinburgh
- ¹¹ Saitama University

Statistical and Systematical Uncertainties on the Matter Radius R_m

example: ⁸He (from: G. D. Alkhazov et al., Nucl. Phys. A712 (2002) 269)

Nucleus		Total Error			contributions to $R_{\rm m}$ from different sources, fm			
	R _m (fm)	errors (fm)	Stat. errors	Model uncertainties ^a	σ_{pN}	ϵ_{pN}	β_{pN}	t-scale
⁸ He	2.45	0.07	0.04	0.02	0.01	0.02	0.03	0.02

^a Deviations from the average values of the matter radii $R_{\rm m}$ deduced with the four model densities individually.

systematical uncertainties on R_m : $\Delta R_m \sim 0.04$ fm

VI. Which Accuracy on the Neutron Skin can be finally reached?

systematical uncertainties on R_m : $\Delta R_m \sim 0.04$ fm systematical uncertainties on R_p : $\Delta R_p \sim 0.02$ fm (from Laser Spectroscopy, SCRIT, ELISE...)

 $\Rightarrow \Delta \, \delta_{np} \sim 0.05 \; \text{fm}$

additional contributions:

- statistical uncertainty
- approximations (Eikonal, Adiabatic, ...)
- nucleon correlations

important ingredients:

- calibration to neutron skin measurements with other methods (stable isotopes)
- resolve inelastic from elastic scattering (storage ring experiments)
- discriminate isomeric contributions in exotic beams (storage ring experiments)
- good statistics (FAIR intensities)

Summary and Conclusions

- elastic proton scattering at intermediate energies is a powerful tool to study nuclear matter distributions of exotic nuclei
 ⇒ the active target IKAR was successfully applied for low q measurements
 ⇒ data on ^{6,8}He^{, 6,8,9,11}Li , ^{12,14}Be, ⁸B and ¹⁷C were obtained (in a direct way)
- the absolute differential cross sections allow to deduce:
 ⇒ precise "model independent" nuclear matter radii
 ⇒ the radial shape of nuclear matter distributions
- a combination with data from elastic electron scattering allows to determine the radial shape neutron skins
- in future powerfull experimental methods (EXL, ACTAR, ELISe at FAIR, SCRIT at RIKEN) will allow to reach high accuracy (Δ (R_n − R_p) ≤ 0.05 fm) data on neutron skins