

<u>of</u> Manitoba

CREX Ca Radius Experiment

Juliette Mammei

Which nuclei?

First excited state far from elastic peak 7=82 Target that won't melt ²⁰⁸Pb N=126 Neutron excess **Doubly-magic** ¹⁰⁰Sn ¹³²Sn Stable J = 82⁷⁸Ni ⁵⁶Ni ⁴⁸Ca ⁴⁰Ca N=28 1235 Average binding energy per nucleon (MeV, 16**0** $\frac{E}{A} \approx -a_{v} + a_{4} \left(\frac{N-Z}{A}\right)^{2} + a_{s} / A^{1/3} + \dots$ energy cost for unequal #p & #n 210 240 270 30 60 120 150 180 Number of nucleons in nucleus May 17-27, 2016 NSKINS 2

Choosing the angle

May 17-27, 2016

Why both?

²⁰⁸Pb more closely approximates infinite nuclear matter

The ⁴⁸Ca nucleus is smaller, so can be measured at a Q² where the figure of merit is higher

and are expected to be correlated, but the correlation depends on the correctness of the models

The structure of ⁴⁸Ca can be addressed in detailed microscopic models

Measure both and - test nuclear structure models over a large range of A

Neutron Stars

Measuring A_{PV} with ES

CREX

2.2 GeV electron beam, 50-70 μA high polarization, ~89%

helicity reversal at 120 Hz

~5 mm thick Ca target 4° scattered electrons $Q^2 = 0.022 \text{ GeV}^2/c^2$

thick and thin quartz detectors

Hall A High Resolution Spectrometers

Optics considerations

- Can refine optics find a tune for
 - Septum
 - Quads
 - Dipole
- Need to consider effect of higher order multipoles in septum
- May need to use shims for CREX (for field shaping)

The septum

HRS only goes down to 12.5°, need septum to "pre-bend"

- Need higher $\int \vec{B} \cdot d\vec{\ell}$
 - − Energy higher (1.06 \rightarrow 2.2 GeV)
 - − Lower lowest angle (4.6° → 3°) $\alpha[rad] = \frac{\int \vec{B} \cdot d\vec{\ell} \ [Tm]}{3.33E[GeV]}$
- Difficulties
 - Saturation in the yoke
 - Water cooling
- Consequences
 - Tune for CREX
 - magnetic shielding

TOSCA simulations

Septum Design

May 17-27, 2016

	PREX (2 coils)	CREX (3 coils)	PREX (3 coils)
J (A/cm ²)	(600) 1021	(858) 1455	(343) 584
A (cm ²)	323	564	564
NI (A)	193536	484217	193536
$\int \vec{B} \cdot d\vec{\ell}$	0.486	1.21	0.4855
I ₁ (A)	12096	17293	6912
I ₂ (A)	36288	51880	20736
I ₃ (A)	0 51880		20736
Total I (A)	193536	484217	193536
I _{PS} (A)	756	1081	432
V(V)	176	449	176
P(kW)	133	486	76
FR (gal/min)	25.17	45.99	14.37
<p> (psi)</p>	127.19	154.75	19.36
R/L (Ω/cm)	2.38E-06	2.44E-06	2.38E-06
ΔT (°C)	20	40	20

Current Tests

Collimator

The collimator is placed about 85 cm from the target and intercepts scattered electrons from 0.78° to 3.8°

- Water cooled Cu-W inner cylinder in a W box
- 2.1 kW power

Magnetic shielding

Target

- Isotopically pure ⁴⁸Ca target from Oak Ridge
- Clean
- Measure contamination
- Increase thickness

Contamination

- Oxides, nitrides, carbides...
- Preliminary tests with natural calcium
 - Can't measure hydrogen
 - Only "surface" carbon
 - No nitrogen
- Need more controlled tests with better precision
 - Preparing lumps
 - Oxidizing
 - Scraping
 - Measuring

Analytical Resolution VS Detection Limit

Running PREX/CREX

CREX Uncertainties

 $A_{PV} = 0.656 \ ppm \pm \ 0.060(stat) \pm 0.013(syst)$

$$R_n - R_p = 0.33^{+.16}_{-.18} \, fm$$

Systematic Error	PREX II (achieved in PREX I)	CREX	
	Relative (%)	Relative (%)	
Polarization (1)	1.3	0.8	PREX ~0.06 fn
Beam Asymmetries (2)	1.1	0.3	
Detector Linearity	1.2	0.3	CREX ~0.02 fn
Beam current normalization	0.2	0.1	
Transverse Polarization	0.2	0.1	
Q ² ⁽¹⁾	0.5	0.8	
Target Contamination/Backing	0.4	0.2	
Inelastic States	<0.1	0.2	
TOTAL	2.1	1.2	

(1) Normalization Correction applied

(2) Nonzero correction (the rest assumed zero)

May 17-27, 2016

NSKINS

 \rightarrow Statistics limited (9%)

→ Systematic error goal achieved ! ²³

Challenges unique to CREX

- Run CREX/PREX II together
 - Same collimator, septum, target ladder, shielding
- Septum
 - Higher current needed
 - Optics
 - Residual quadrupole field
- Target
 - oxidized
 - thermal considerations
- Radiation
 - compare to PREX

All under control

Extra Slides

Breakdown

- KK: Historical perspective, description of observable, experimental technique, PREX-I result
- Kent: Description of improvements, status of preparations, projected experimental statistical and systematic errors
- Juliette: Advantages of Ca-48, description of technical challenges, status of preparations, projected statistical and systematic errors.
- Bob: Possible ways to measure additional Q2 points for Ca-48, and (perhaps one additional Q2 point on Pb-208?)
- Paul: Discussion of how to go from Bob's investigations to realistic experimental designs?