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DD2 1.35-1.35 Msun, rest-mass density in the equatorial plane



h+ at 20 Mpc

inspiral

1.35-1.35 M_  Shen equation of state (EoS), 20 Mpc
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Accurately measured

Posterior Probability
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— Chirp mass determines M,
quite well

Bauswein et al. 2015

Minimum NS mass 1.1 - 1.2 Msun (e.g. Ertl et al. 2015)



* GWin
strong sig

(e.g. Read et al. 201 Hinderer 2008, Hinderer
et al. 2010, Damour et al. Pozzo et al 2013, Yagi & Yunes
2014, Wade et al. 2014, Agathos et al. , mderer et al. 2016, ... ) - accurate
templates not yet available

Note: actually tidal deformability is measured (scales tightly with Ns radius, also “TOV-
quantity”)

* Postmerger oscillations:

weak signal — robust strong EoS effect
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Thin line
postmerger only

* Up to three pronounced features in the postmerger spectrum
(+ structure at higher frequencies)

* Simulation: 1.35-1.35 Mg, DD2 Eo0S (table from Hempel et al.)

In the literature f,. is also called f,



Robust feature, wr s (which don't
collapse promptly to -

Fundamental quadrupolar fluid mode of the remnant

Re-excitation of f-mode (I=|m|=2) Mode analysis at f=f,¢.
in late-time remnant, Bauswein Stergioulas et al. 2011
et al. 2015




all 1.35-1.35 simulations

M1/M2 known fro

inspiral RS \.\
o NI
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characterize EoS by radius of
nonrotating NS with 1.35 M_

Pure TOV property => Radius measurement via fpeak

— Empirical relation between GW frequency and radius of non-rotating NS
Important: Simulations for the same binary mass, just with varied EoS

Triangles: strange quark matter; red: temperature dependent EoS; others: ideal-gas for thermal effects



all 1.35-1.35 simulations

x

R M./M_ known from

x L] [
X inspiral

characterize EoS by radius of
nonrotating NS with 1.6 M_

Pure TOV/EoS property => Radius measurement via f .,

Error: maximum scatter in empirical relation ~ 150 m

Note: R of 1.6 Msun NS scales with fpeak from 1.35-1.35 Msyn mergers (density regimes
comparable)



Final stra NEEREES

1.) measure binary |
2.) measure fpeak

M, . =1.1665M
chirp sun

asym. mergers blue -

Bauswein et al. 2015

Recall: chirp mass precisely measured — good proxy for total mass
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Triangle: strange quark
matter (distinguishable
by other observations)
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* Intrinsic rotation

* Simulations within conformal flatness but frequencies agree well with
results from Kyoto / Frankfurt / Caltech group (full GR); Hotokezaka et
al. 2013, Takami et al. 2014, Foucart et al. 2016, ...

* Dominant frequency detectable for near-by events e.g. via
morphology-independent burst analysis with ~10 Hz accuracy (Cark et
al. 2014) or Principal Component Analysis (PCA) at larger distances
with larger uncertainties (Clark et al. 2015)
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GW spectra shifted to reference frequency — Universality

Reason: spz'ra,l 2—0 X Jpea
— Very useful property for Principal Component Analysis for GW data
analysis (Clark et al. 2015) — low number of principal components suffices
— construction of templates seems possible
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Bauswein et al. 2015

f e from 1.5-1.5 M_ = simulations — constrainton M_



and the maximum nonrotating NSs



Prompt formation of
BH + torus

Reviews: Duez 2010,
Faber & Rasio 2012

dependent on
EoS, M

Rigidly rotating
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10-100 ms

Delayed collapse
to a BH + torus




Fractional increase of M__

Key quantity:
collapse
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* Radii from GW frequency



Bauswein et al. 2014

Dashed line: Universal relation between threshold mass and GW frequency

Advantage: we only need detections at lower/moderate binary masses (which are
expected to be more frequent)
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Similar frequency relations for maximum central density for same
detection scenario

Bauswein et al. 2014



R-process elements

» NS mergers and their ejecta: formation of heavy elements (rapid neutron-capture
elements)

» Note: astrophysical production site(s) currently unclear, (recent supernovae models not
overly encouraging)
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Abundance pattern from
simulations matches
observations (Goriely et al.
2011)
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Contribution from GWs

» Direct access to merger rate in local universe (including binary mass information)
» Quantify contribution/importance of mergers for overall abundance

» Note: merger rate (from theoretical grounds) not well known — order of magnitude
estimates welcome

Merger rate estimate

Age of the Galaxy

Total Galactic amount of (known)
heavy r-process elements Average ejecta
(known from observations) mass of NS merger

(known from
simulations)



Galactic 40 detections per yr (with Ad. LIGO-Virgo network)
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Bauswein et al. 2014

Pessimistic detection rate (only
if additional r-process source)



Ejecta mass - dependence on EoS

Bauswein et al. 2013



Pressure
Maximum mas

Maximum mass from fpeq

Maximum central density accessible
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