

Measurement of the Transverse Asymmetry of ¹²C

Precision Physics, Fundamental Interactions and Structure of Matter

- Beam normal (single spin) asymmetry:
 - Count rate asymmetry in elastic e⁻ scattering for transverse polarisation (normal to scattering plane)
 - No Parity Violation effect, but:
 - Helicity-correlated background contribution in PV experiments
 - Caused by transversal polarisation component
 - Necessary to measure for all targets used in PV experiment

• Interference Term amongst one- and multi-photon exchange

Mainz Measurement

Measurement at PREX

kinematic range of the measurement in Mainz

- Measurement in Mainz
 - Target: ¹²C
 - E_{Beam} = 570 MeV
 - Scattering angle = 15° 26°
 - $Q^2 = 0.02 0.05 \text{ GeV}^2/c^2$
 - (Q = 0.14 0.22 GeV/c)

- Requirements:
 - High quality transversely polarised electron beam of known polarisation
 - High rate capable detector system

MAMI Accelerator

- No polarimeter for direct vertical transversal polarisation measurement available
 - Mott: horizontal transversal @ source
 - Compton: longitudinal @ source
 - Møller: Iongitudinal @ target
- Polarimetry:
 - Maximise and measure longitudinal polarisation at target
 - Maximise transversal horizontal component at source
 - Minimise longitudinal and horizontal component at source and target

Absolute Degree of Polarisation

- Spin Rotation due to anomalous magnetic Moment
 - 55° at 570 MeV
 - -134° at 600 MeV
- Premise: Spin rotation does not change degree of polarisation
 - Horizontal depolarisation $\sim 10^{-4}$
- Measurement of total polarisation:
 - Wien-filter angle scan
 - Mott & Møller polarimeter

Vertical Transverse Polarisation

- Maximising horizontal transverse component at source
 - Wien-filter scan & Mott measurement
- Minimising remaining horizontal components:
 - Solenoid current scan
 - Mott, Compton & Møller measurement
 - Møller measurement at different energy
 - → Combination of results

Experimental Set-up

- Electron Beam:
 - E = 570 MeV
 - I = 20 μA
- Target:
 - 10 mm ¹²C
- Magnetic Spectrometers:
 - Define angular acceptance (angles 15.11° - 25.9°)
 - Select elastic events
- Detectors:
 - Quartz-Cherenkov radiator
 - PMTs with reduced amplification
 → High rate capability

Benefits of the Spectrometers

Low rate particle tracking mode:

Precise positioning of detectors & magnetic field setting

 $\rightarrow\,$ Only elastic line in detector acceptance

• Data Acquisition:

IOHANNES GUTEN

- Usage of established electronics from A4 PV experiment
- 50 Hz spin flip at source
 - Synchronised with Power grid frequency
 - $\rightarrow\,$ Intrinsic suppression of ground noise
- Integrating detector signals over 20 ms gates
- Acquisition of beam parameters in the same way
 → Current, energy, position, angle
- Various stages of absolute sign inversion on different time scales
 - Identification & elimination of most sources of false asymmetries
- Data analysis:
 - Cut out events with large variations of beam parameters
 - Corrections for polarity correlated variations
 - Gate length fluctuations (power grid frequency)
 - Beam variations
 - Calculation of asymmetry in detectors

Beam Stability

Active beam stabilisations:

- Current (AC / DC)
- Position (AC / DC)
- Energy

Position stabilisation disabled

Correlation of asymmetries in both spectrometers

Current stabilisation disabled

• Correction of raw asymmetries by beam parameters:

$$A = \frac{N^{+} - N^{-}}{N^{+} + N^{-}} - \frac{I^{+} - I^{-}}{I^{+} + I^{-}}$$
$$- (\Delta x \cdot \frac{dA}{dx}) - (\Delta y \cdot \frac{dA}{dy}) - (\Delta \phi \cdot \frac{dA}{d\phi}) - (\Delta \theta \cdot \frac{dA}{d\theta}) - (\Delta E \cdot \frac{dA}{dE})$$

- Determination of Parameters:
 - High beam stability \rightarrow Multidimensional linear regression is impossible
 - Determination by Calculation:
 - Energy, Angle: Deviation of cross-section parametrisation
 - Determination by Simulation:
 - Beam Positions: Usage of Spectrometer simulation
 - Comparison of calculated parameters with data acquired with unstabilised beam

Raw Asymmetries

- No significant deviation from gaussian shape in any channel
- Width 800 4000 ppm rms (depending on Spectrometer angle)
- 6 hours 6 days of data taking to obtain statistical uncertainty of < 1 ppm

Results

Results

Statistical Uncertainty of the order of 1 ppm

		Correction [ppm] *)	Error of correction [ppm]
Beam Current	A	-0.83	0.01
Beam Energy	ΔE	-0.0090	0.0004
Horizontal position	Δx	0.10	0.02
Vertical position	Δу	-0.00082	0.00004
Horizontal angle	ΔΘ	0.010	0.003
Vertical angle	ΔΦ	0.00	0.00
Linearity		Work in progress	
Polarisation related:			
Degree of polarisation	Р	-4.18	0.04
Longitudinal polaristaion	P	0.03	0.03
Sum		-5.11	0.10

*) The Set-up with the highest correction respectively was chosen

Results

Implications

- Observations
 - Data points don't agree with theory
 - Data shows different slope
- Theory limitations
 - Only 2 photon exchange
 - No coulomb distortion effects included
 - Nuclear structure for heavy nuclei similar to hydrogen
 - Scattering angle: $\Theta \approx 0$

=> Theory present in many physical measurements Room for improvement, feedback welcome

- Beam-normal asymmetry:
 - Important background of PV electron scattering
 - Direct probe for two-photon exchange
- Experiment:
 - Vertically polarised electron beam & Elaborate polarisation measurement
 - Spectrometers to select elastic events &
 - Quartz-Cherenkov detectors
 - Suppression & Correction for false asymmetries
- Disagreement between theoretical prediction and measurement
- Continuation of program:
 - Energy dependence:
 - Similar Q² values accessable for ${}^{12}C$ at 210 & 855 MeV
 - Z-depencence
 - Possible targets with intermediate masses: 28Si, 40Ca

Backup

- Commissioning beam-times, longitudinally polarised beam:
 - July 2014: Detector commissioning (1 week)
 - September 2014: Test and improvement of beam stabilisation (1 week)
- Production beam-times, transversely polarised beam:
 - September 2015: Measurement of transverse polarisation (1 week)
 - November 2015: Measurement of transverse asymmetry (3 weeks)
 - April 2016: Continuation of Program (1 week, shortened due to spectrometer failure)

Minimising False Asymmetries

counts

Beam related sources:

- beam current, energy, position, angle
- => beam stabilisation

- Remaining asymmetry: beam current: ~ 1 ppm other parameters: < 0.1 ppm
 - => Correction in offline analysis

Non beam related sources:

- Ground noise,
- Gate length fluctuations,
- Electrical cross talk
- Hardware suppression
 - Synchronised with power grid
 - Random polarity sequence
 - Inversions of general sign

Polarity Correlated Beam Variations

