Beam Normal Spin Asymmetry: Theory Trivia

Misha Gorshteyn - Institut für Kernphysik, Mainz U.

MITP Program "Neutron skins" - Mainz, May 17-28, 2016

Elastic e-p scattering with e polarized normal to the reaction plane

$T\left(S_{n}, \vec{k}, \vec{k}^{\prime}\right) \rightarrow \eta_{1} T^{*}\left(-S_{n},-\vec{k},-\vec{k}^{\prime}\right) \rightarrow \eta_{1} \eta_{2} T^{*}\left(-S_{n}, \vec{k}, \vec{k}^{\prime}\right)$

Mismatch between time-reversed states is due to imaginary part of the amplitude (in absence of CP- and CPT-violation)

Elastic e-p scattering in presence of two-photon exchange

$$
\begin{aligned}
& T_{e p}=T_{1 \gamma}+T_{2 \gamma}+\mathcal{O}\left(\alpha^{2}\right) \\
& T_{e p}\left(S_{n}=+1 / 2\right)=T_{1 \gamma}+T_{2 \gamma} \\
& T_{e p}\left(S_{n}=-1 / 2\right)=T_{1 \gamma}+T_{2 \gamma}^{*}
\end{aligned}
$$

Purely
real

Has
imaginary part

$$
B_{n}=\frac{\sigma\left(S_{n}=+1 / 2\right)-\sigma\left(S_{n}=-1 / 2\right)}{\sigma\left(S_{n}=+1 / 2\right)+\sigma\left(S_{n}=-1 / 2\right)}=\frac{2 \operatorname{Im}\left(T_{1 \gamma}^{*} T_{2 \gamma}\right)}{\left|T_{1 \gamma}\right|^{2}}
$$

$$
B_{n} \sim \alpha \frac{m}{E} \sim 10 \text { p.p.m. } \frac{500 \mathrm{MeV}}{E}
$$

Important background to PVES measurements (sub- to few p.p.m. asymmetries)

Theoretical understanding of the Bn

Im part of the TPE diagram: on-shell hadronic states only

- integral over data (kinda)

$$
\operatorname{Im} T_{2 \gamma}=e^{4} \int \frac{d^{3} \vec{k}_{1}}{2 E_{1}(2 \pi)^{3}} \frac{\bar{u}\left(k^{\prime}\right) \gamma_{\nu}\left(k_{1}+m_{e}\right) \gamma_{\mu} u(k)}{Q_{1}^{2} Q_{2}^{2}} \operatorname{Im} W^{\mu \nu}\left(W^{2}, Q_{1}^{2}, Q_{2}^{2}, t\right)
$$

$W^{\text {kv }}$ - spin-independent doubly virtual Compton tensor in the arbitrary kinematics;
In general unknown (depends on inclusive excited states); Study the integrals to see where the input is necessary.

Where is the input needed?

$$
d^{3} \vec{k}_{1} \rightarrow \int_{M^{2}}^{s} d W^{2} \int_{0}^{\left(Q_{1}^{2}\right)^{m a x}} d Q_{1}^{2} \int_{\left(Q_{2}^{2}\right)^{\text {min }}}^{\left(Q_{2}^{2}\right)^{\text {max }}} d Q_{2}^{2}
$$

Elastic (on-shell nucleon) - W=M Inelastic $-\left(\mathrm{M}+\mathrm{m}_{\pi}\right)^{2}<\mathrm{W}^{2}<\mathrm{s}$
Q^{2} min $<Q_{1,2^{2}}<Q^{2}$ max

For $s=W^{2}: Q_{1,2^{2}}=0$

Bn with elastic intermediate states

On-shell ground state inside the box
Im $W^{\mu \nu}$ - exactly calculable in terms
 of measured form factors G_{E}, G_{M}, F_{C}...

Bn @ SAMPLE: H-target, $E=200 \mathrm{MeV}, \theta=150 \mathrm{deg}$.
Exp. point: S. Wells et al, PRC 63 (2001) 064001 Curves (proton): A. Afanasev et al, hep-ph/0208260

- IR-finite
- 1/E behavior
- larger at backward angles

Bn with elastic intermediate states

For spin=0 target - overlap of two Coulomb densities separated by a distance fixed by the external kinematics
$B_{n} \approx-\frac{m_{e}}{E} \frac{Z \alpha}{\pi} \tan ^{3} \frac{\theta_{c m}}{2} \iint \frac{d Q_{1}^{2} d Q_{2}^{2}}{\sqrt{\left(Q_{+}-Q_{2}^{2}\right)\left(Q_{2}^{2}-Q_{-}\right)}} \frac{Q_{1}^{2}+Q_{2}^{2}-Q^{2}}{2 Q_{1}^{2} Q_{2}^{2}} \frac{F_{C}\left(Q_{1}^{2}\right) F_{C}\left(Q_{2}^{2}\right)}{F_{C}\left(Q^{2}\right)}$

For highly-charged nuclei higher orders $O(Z \alpha)^{n}$ need to be resumed

- Coulomb distortions

Was done for Bn on $\mathrm{He}-4, \mathrm{~Pb}-208$, ... by Cooper, Horowitz, PRC 72 (2005)

- solve Schrödinger eq. with phenomenological charge densities

Leading order in α (two photon exchange) vs. Coulomb distortion effects (resummed infinite photon exchange)

Bn (p.p.m.) for $\mathrm{He}-4, \mathrm{E}=3 \mathrm{GeV}$

Bn (p.p.m.) for Lead, $\mathrm{E}=855 \mathrm{MeV}$

Curves: Cooper, CJH, PRC 72 (2005) MG, CJH, PRC 77 (2008)

Inelastic states: forward angles

Forward spin-independent Compton tensor - from Optical Theorem: can use inelastic data as direct input

$$
W^{\mu \nu}=2 \pi\left[-g^{\mu \nu} F_{1}^{\gamma \gamma}+\frac{P^{\mu} P^{\nu}}{\left(P \cdot q_{1}\right)} F_{2}^{\gamma \gamma}\right]
$$

Bn features a large $\log \left(Q^{2} / m^{2}\right)$ - comes from small Q^{2} but all W's

$$
I=\int \frac{d \Omega_{1}}{Q_{1}^{2} Q_{2}^{2}}=\frac{2 \pi}{Q k_{1} \sqrt{Q^{2} k_{1}^{2}+4 m_{e}^{2}\left(E-E_{1}\right)^{2}}} \ln \frac{\sqrt{ } Q^{2} k_{1}^{2}+4 m_{e}^{2}\left(E-E_{1}\right)^{2}+Q k_{1}}{\sqrt{Q^{2} k_{1}^{2}+4 m_{e}^{2}\left(E-E_{1}\right)^{2}}-Q k_{1}}
$$

Finite result protected by m_{e} and $E-E_{1}>$ inelastic threshold

$$
\begin{aligned}
& I\left(Q^{2} \gg m_{e}^{2}\right)=\frac{2 \pi}{Q^{2} k_{1}^{2}} \ln \frac{Q^{2} k_{1}^{2}}{m_{e}^{2}\left(E-E_{1}\right)^{2}} \\
& I\left(Q^{2} \ll m_{e}^{2}\right)=\frac{\pi}{m_{e}^{2}\left(E-E_{1}\right)^{2}} \quad I\left(k_{1} \rightarrow 0\right)=\frac{\pi}{m_{e}^{2} E^{2}}
\end{aligned}
$$

Inelastic states: forward angles

Correct the input for (slightly) off-forward kinematics
Phenomenological input: Compton differential cross section

$$
\left.\frac{d \sigma^{\gamma p \rightarrow \gamma p}}{d t} \approx \frac{d \sigma^{\gamma p \rightarrow \gamma p}}{d t}\right|_{t=0} \times \exp [B t] \quad t=-Q^{2}
$$

$$
\left.\frac{d \sigma^{\gamma p \rightarrow \gamma p}}{d t}\right|_{t=0} \sim\left|T_{\gamma p \rightarrow \gamma p}(t=0)\right|^{2} \longrightarrow \sigma_{\gamma p \rightarrow X} \rightarrow \sigma_{\gamma p \rightarrow X} \times \exp [B t / 2]
$$

$$
\sigma_{\gamma p \rightarrow X} \sim \operatorname{Im} T_{\gamma p \rightarrow \gamma p}(t=0)
$$

Afanasev, Merenkov, PRD 70 (2004); PL B599 (2004);
MG, PRC 73 (2006); PL B644 (2007);
MG, Horowitz PRC 77 (2008)

$$
B_{n}^{\text {inel }} \approx-\frac{1}{4 \pi^{2}} \frac{m_{e} Q}{E^{2}} \frac{A}{Z} \int_{\omega_{\pi}}^{E} d \omega \omega \sigma_{\gamma N}(\omega) \ln \left(\frac{Q^{2}}{m_{e}^{2}} \frac{(E-\omega)^{2}}{\omega^{2}}\right) \frac{e^{-B Q^{2} / 2}}{F_{C}\left(Q^{2}\right)}
$$

Real photoabsorption cross section per nucleon

Dominance of $\log \left(Q^{2} / m^{2}\right)$ is assumed - only real photoabsorption! Finite virtualities in the loop - suppressed by an extra Q^{2}

If hadronic contributions dominate - good for nuclei, too; If low-lying nuclear states are important - inadequate

Total photoabsorption by $\mathrm{Pb}-208$ (per nucleon in μ barn)

If hadronic contributions dominate - good for nuclei, too; If low-lying nuclear states are important - inadequate
$B_{n}^{i n e l} \approx-\frac{1}{4 \pi^{2}} \frac{m_{e} Q}{E^{2}} \frac{A}{Z} \int_{\omega_{\pi}}^{E} d \omega \omega \sigma_{\gamma N}(\omega) \ln \left(\frac{Q^{2}}{m_{e}^{2}} \frac{(E-\omega)^{2}}{\omega^{2}}\right) \frac{e^{-B Q^{2} / 2}}{F_{C}\left(Q^{2}\right)}$
Hadronic contributions enhanced due to energy weighting
Check for PB-208
Tables from Harvey et al., PR 136 (1964)

Nuclear photoabsorption in the hadronic range

Energies up to 1 GeV : integrated cross section scales as A;

Nuclear shadowing stronger above that energy

TABLE II. Contributions to the finite energy sum rule for selected targets in units of $\mathrm{GeV} \cdot \mu \mathrm{b}$. The entries in the second row are taken from a review on nuclear data in Ref. [24].

	Proton	Deuteron	${ }_{6}^{12} \mathrm{C}$			
$\frac{1}{2 \pi^{2} A} \sigma_{\text {int }}^{\text {had }}$	18.60 ± 0.31	17.46 ± 0.51	16.80 ± 0.62	16.54 ± 1.50	16.16 ± 0.57	16.57 ± 1.02
$\frac{1}{2 \pi^{2} A} \sigma_{\text {int }}^{\text {nucl }}$	-	-	0.197	0.30	0.480	0.69
$\frac{1}{2 \pi^{2}} c_{R} \frac{(E / \mathrm{GeV})^{1 / 2}}{1 / 2}$	14.19 ± 0.16	11.54 ± 0.39	10.96 ± 0.63	7.67 ± 1.66	11.03 ± 0.52	13.10 ± 1.31
r.h.s. of Eq. (17)	-4.21 ± 0.35	-5.92 ± 0.65	-6.04 ± 0.88	-9.17 ± 2.24	-5.61 ± 0.77	-4.16 ± 1.66
$-\left(2+\frac{Z N}{A^{2}}\right) \frac{\alpha}{M}$	-6.06	-6.82	-6.82	-6.82	-6.81	-6.78
$\frac{1}{2 \pi^{2}} c_{P}(E / G e V)$	6.72 ± 0.02	6.92 ± 0.12	5.65 ± 0.11	6.19 ± 0.59	4.53 ± 0.06	4.16 ± 0.25
$-\frac{Z^{2}}{A^{2}} \frac{\alpha}{M}$	-3.03	-0.76	-0.76	-0.70	-0.60	-0.48
$\operatorname{Re} T^{\alpha=0}$	-0.72 ± 0.35	0.25 ± 0.65	-1.14 ± 0.89	-3.68 ± 2.31	-1.71 ± 0.77	-0.48 ± 1.68

MG, Hobbs, Londergan, Szczepaniak, PRC 84 (2011)

Nuclear photoabsorption in the hadronic range

$$
\begin{aligned}
& \frac{1}{2 \pi^{2} A} \int_{\omega_{\pi}}^{1 \mathrm{GeV}} d \omega \omega \sigma(\omega) \approx 0.012 \\
& \frac{1}{2 \pi^{2} A} \int_{0}^{28 \mathrm{MeV}} d \omega \omega \sigma(\omega) \approx 3 \times 10^{-5}
\end{aligned}
$$

Assumptions seem to be OK

Compton slope parameter B

$$
\left.\frac{d \sigma^{\gamma p \rightarrow \gamma p}}{d t} \approx \frac{d \sigma^{\gamma p \rightarrow \gamma p}}{d t}\right|_{t=0} \times \exp [B t]
$$

Known for proton and He-4

$$
\begin{array}{ll}
B(A=1)=(7 \pm 1) \mathrm{GeV}^{-2} & \text { Bauer et al, Rev.Mod.Phys. } 50 \text { (1978) } \\
B(A=4)=(32 \pm 2) \mathrm{GeV}^{-2} & \text { Alexanian et al, Sov. J. Nucl.Phys. } 45
\end{array}
$$

What matters is Compton to elastic form factor ratio!
Proton: $\quad \frac{E x p\left[-B Q^{2} / 2\right]}{F\left(Q^{2}\right)}=\operatorname{Exp}\left[-(3.5 \pm 0.5)\left(Q^{2} / \mathrm{GeV}^{2}\right)\right]\left(1+\left(Q^{2} / 0.71 \mathrm{GeV}^{2}\right)\right)^{2}$
Helium-4: $\quad \frac{E x p\left[-B Q^{2} / 2\right]}{F\left(Q^{2}\right)}=\frac{E x p\left[-(16 \pm 1)\left(Q^{2} / \mathrm{GeV}^{2}\right)\right]}{E x p\left[-11.74\left(Q^{2} / \mathrm{GeV}^{2}\right)\right]\left(1-\left[2.573 Q^{2} / \mathrm{GeV}^{2}\right]^{6}\right)}$
The ratio was taken roughly the same for all nuclei; Numerically is irrelevant at low Q^{2}

Bn at forward angles

Armstrong et al [GO], '05

Abrahamyan et al. [HAPPEX and PREX], 12

Excellent description for light nuclei and very forward angles; Somewhat worse for larger angles (GO) - Q^{2} not small anymore, include corrections Fails completely for lead - realistic nuclear calculation needed

Bn Summary

- Bn measures the Im part of TPE amplitude;
- few to few 10's p.p.m. effect - background for PVES;
- forward: unitarity model - great job except Pb ;
- Compton slope - the only free parameter;
- Carbon news: theory below data at $570 \mathrm{MeV}, 20$ deg.
- Needed: beyond two-photon exchange and beyond the standard (ground state) Coulomb distortion

Bn at backward angles

Equivalent photon kinematics

$B_{n}^{\text {inel }} \sim-\frac{1}{32 \pi^{2}} \frac{m}{E} \tan (\theta / 2) \frac{G_{E} g_{\mu \nu} W_{R C S}^{\mu \nu}(s, t)}{\epsilon G_{E}^{2}+\tau G_{M}^{2}} \ln ^{2} \frac{-t}{m^{2}}$

Double log enhancement
Data from: Maas et al, '05 + Wells et al, '00

Reasonable description except for SAMPLE point

* Theory: Pasquini, Vanderhaeghen '04; MG `06

