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imaginary part of the T matrix. Since the electromagnetic form
factors and the one-photon exchange amplitude are purely
real, Bn obtains its finite contribution to leading order in the
electromagnetic constant αem from an interference between
the Born amplitude and the imaginary part of the two-photon
exchange amplitude. In terms of the amplitudes of Eqs. (3) and
(4), the beam normal spin asymmetry is given by

Bn = − m

M

√
2ε(1 − ε)

√
1 + τ

(
τG2

M + εG2
E

)−1

·
[
τGM Im F̃3 + GE Im F̃4 + F1

ν

M
Im F̃5

]
. (8)

For completeness, we also give here the expression of target
normal spin asymmetry3 Tn in terms of invariant amplitudes:

Tn =
√

2ε(1 + ε)
√
τ
(
τG2

M + εG2
E

)−1

·
[
(1 + τ )

(
F1 Im F̃2 − F2 Im F̃1

)

+
(

2ε
1 + ε

GE − GM

)
ν

M
Im F̃3

]
. (9)

III. TWO-PHOTON EXCHANGE

The imaginary part of the two-photon exchange (TPE)
graph in Fig. 1 is given by

ImM2γ = e2
∫ |k⃗1|2d|k⃗1|d&k1

2E1(2π )3
ū′γν(k/1 + m)γµu

· 1
Q2

1Q
2
2

Wµν
(
w2,Q2

1,Q
2
2

)
, (10)

where Wµν(w2,Q2
1,Q

2
2) is the imaginary part of the doubly

virtual Compton scattering tensor. Q2
1 and Q2

2 denote the
virtualities of the exchanged photons in the TPE diagram, and
w is the invariant mass of the intermediate hadronic system.
We next study the kinematics of the exchanged photons.
Neglecting the small electron mass and using the c.m. frame
of the electron and proton, one has

Q2
1,2 = 2|k⃗||k⃗1|(1 − cos(1,2), (11)

with |k⃗| = (s − M2)/2
√

s ≡ k the three-momentum of the
incoming (and outgoing) eletron,

|k⃗1| =

√(
s − w2 + m2

2
√

s

)2

− m2

that of the intermediate electron, and cos(2 = cos( cos(1 +
sin( sin(1 cosφ. The kinematically allowed values of the
virtualities of the exchanged photons (the restriction is because
the intermediate electron is on-shell) are represented by the
internal area of the ellipses shown in Fig. 2.

The ellipses are drawn inside a square whose side is defined
through the external kinematics (k) and the invariant mass of
the intermediate hadronic state (w2 or k1), while the form is

3Also, An notation for target normal spin asymmetry exists in the
literature.

FIG. 1. Two-photon exchange diagram.

determined solely by the scattering angle. Choosing higher
values of the mass of the hadronic system w2 < s leads to
scaling the size of the ellipse by a factor of (s − w2)/s −
M2. In the limit w2 = (

√
s − m)2, the ellipses shrink to a

point at the origin, and both photons are nearly real. This
is not a soft photon (IR) singularity, however, since the real
photons’ energy remains large enough to provide the transition
from the nucleon with mass M to the intermediate state X
with mass w. Instead, the intermediate electron is soft, k

µ
1 ≈

(m, 0⃗), therefore this kind of kinematics does not lead to an IR
divergency, which can occur only if the intermediate hadronic
state is the nucleon itself. In the following we are going to
study this kinematic situation in more detail.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

2

4

6

8

10

12

14

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5

Q
22  

((
G

eV
/c

)2 )

Q1
2 ((GeV/c)2)

0

2

4

6

8

10

12

14

0 5 10 15

FIG. 2. Kinematically allowed values of the photon vitualities
Q2

1,2. Left, MAMI electron beam energy E = 0.855 GeV; right,
TJNAF (JLab) energy E = 6 GeV. Upper left, different kinematics
for the MAMI electron beam energy E = 0.855 GeV, for the
elastic (nucleon) intermediate state, and three different values
of the momentum transfer: t = −0.2 GeV2 (solid ellipse), t =
−0.5 GeV2 (dotted ellipse), and t = −0.9 GeV2 (dashed ellipse).
Lower left, same external kinematics but with the intermediate
hadronic state mass W = 1.232 GeV. Upper right, different kine-
matics for the JLab electron beam energy E = 6 GeV, for the
elastic (nucleon) intermediate state, and three different values of
the momentum transfer: t = −1 GeV2 (solid ellipse), t = −5 GeV2

(dotted ellipse), and t = −10 GeV2 (dashed ellipse). Lower right, the
same external kinematics as in the upper right panel, but with the
intermediate hadronic state mass W = 2.5 GeV.
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imaginary part of the T matrix. Since the electromagnetic form
factors and the one-photon exchange amplitude are purely
real, Bn obtains its finite contribution to leading order in the
electromagnetic constant αem from an interference between
the Born amplitude and the imaginary part of the two-photon
exchange amplitude. In terms of the amplitudes of Eqs. (3) and
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ū′γν(k/1 + m)γµu

· 1
Q2

1Q
2
2

Wµν
(
w2,Q2

1,Q
2
2

)
, (10)

where Wµν(w2,Q2
1,Q

2
2) is the imaginary part of the doubly
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1 and Q2

2 denote the
virtualities of the exchanged photons in the TPE diagram, and
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virtualities of the exchanged photons (the restriction is because
the intermediate electron is on-shell) are represented by the
internal area of the ellipses shown in Fig. 2.

The ellipses are drawn inside a square whose side is defined
through the external kinematics (k) and the invariant mass of
the intermediate hadronic state (w2 or k1), while the form is
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FIG. 1. Two-photon exchange diagram.

determined solely by the scattering angle. Choosing higher
values of the mass of the hadronic system w2 < s leads to
scaling the size of the ellipse by a factor of (s − w2)/s −
M2. In the limit w2 = (

√
s − m)2, the ellipses shrink to a

point at the origin, and both photons are nearly real. This
is not a soft photon (IR) singularity, however, since the real
photons’ energy remains large enough to provide the transition
from the nucleon with mass M to the intermediate state X
with mass w. Instead, the intermediate electron is soft, k

µ
1 ≈

(m, 0⃗), therefore this kind of kinematics does not lead to an IR
divergency, which can occur only if the intermediate hadronic
state is the nucleon itself. In the following we are going to
study this kinematic situation in more detail.
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FIG. 2. Kinematically allowed values of the photon vitualities
Q2

1,2. Left, MAMI electron beam energy E = 0.855 GeV; right,
TJNAF (JLab) energy E = 6 GeV. Upper left, different kinematics
for the MAMI electron beam energy E = 0.855 GeV, for the
elastic (nucleon) intermediate state, and three different values
of the momentum transfer: t = −0.2 GeV2 (solid ellipse), t =
−0.5 GeV2 (dotted ellipse), and t = −0.9 GeV2 (dashed ellipse).
Lower left, same external kinematics but with the intermediate
hadronic state mass W = 1.232 GeV. Upper right, different kine-
matics for the JLab electron beam energy E = 6 GeV, for the
elastic (nucleon) intermediate state, and three different values of
the momentum transfer: t = −1 GeV2 (solid ellipse), t = −5 GeV2

(dotted ellipse), and t = −10 GeV2 (dashed ellipse). Lower right, the
same external kinematics as in the upper right panel, but with the
intermediate hadronic state mass W = 2.5 GeV.
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with Z being the nuclear charge. The unpolarized cross section
is given by

dσ

d"Lab
= F 2

N (Q2)
dσ0

d"Lab
, (5)

with the usual Rutherford cross section

dσ0

d"Lab
=

4α2Z2 cos2 $
2

Q4

E′3

E
, (6)

$ is the electron Lab scattering angle and E(E′) the incoming
(outgoing) electron Lab energy. The analyzing power, or beam
normal spin asymmetry, is defined as

An = σ↑ − σ↓

σ↑ + σ↓
, (7)

where σ↑ (σ↓) denotes the respective elastic cross section with
the incoming electrons polarized along the positive (negative)
normal vector Sγ ,

Sγ = εαβγ δP
αKβqδ. (8)

This observable requires a nonzero imaginary part of the
elastic amplitude; thus it is identically zero in the OPE
approximation. Including the exchange of two photons, we
obtain to leading order in αem

An = − me√
s

tan
(

θcm

2

)
ImA1

ZFN (Q2)
, (9)

with ImA1 ∼ O(αem).

III. IMAGINARY PART OF THE TPE AMPLTUDE

The imaginary part of the TPE amplitude is given by

ImT2γ = e4 1
(2π )3

∫
d3k⃗1

2E1

1
Q2

1Q
2
2

lµν · Wµν, (10)

where we explicitly set the intermediate electron on-shell,

E1 =
√

k⃗2
1 + m2

e . The leptonic tensor is given by

lµν = ū(k′)γν(k/1 + me)γµu(k). (11)

A. Elastic contribution

In the case of the elastic intermediate state (cf. Fig. 1), the
hadronic tensor is

Wµν = πδ((P + K − k1)2 − M2)(2p + q1)µ(2p′ + q2)ν

×Z2FN

(
Q2

1

)
FN

(
Q2

2

)
. (12)

Above, qµ
1 = k − k1 denote the incoming and q

µ
2 = k′ − k1

the outgoing photon momenta, and Q2
1,2 = −q2

1,2, respectively.

FIG. 1. The nucleus box-graph. The shaded blobs represent the
nuclear form factor.

Gauge invariance of the leptonic tensor leads to q
µ
1 lµν =

qν
2 lµν = 0. For the imaginary part, the form factors FN are

the on-shell form factors, and we use experimental fits for
them.

Evaluating the remaining δ function in the c.m. frame, we
are left with the integral over electron’s solid angle "1,

ImT el
2γ = Z2e4

8π2

E1√
s

∫
d"1

Q2
1Q

2
2

lµνp
µp′νFN

(
Q2

1

)
FN

(
Q2

2

)
, (13)

with the invariant s = (P + K)2 = M2 + 2Mν + Q2/2, and
E1 = s−w2

2
√

s
denoting the c.m. energy of the intermediate

electron. w2 stands for the invariant mass squared of the
intermediate hadronic state. It equals to M2 for the elastic,
and lies between the threshold for pion production (M + mπ )2

and the full energy s for inelastic intermediate states.
The integral over the intermediate electron’s solid angles

can be rewritten in terms of the exchanged photons’ virtualities
Q2

1,2:
∫

d"1 = 1
EE1

∫ 4EE1

0
dQ2

1

∫ Q+

Q−

dQ2
2√(

Q+ − Q2
2

)(
Q2

2 − Q−
) .

(14)

The limits of the integration Q± are given by

Q± = E1

E
Q2 + Q2

1 − Q2Q2
1

2E2

± 2
√

Q2Q2
1

√
E1

E

(
1 − Q2

4E2

)(
1 − Q2

1

4EE1

)
. (15)

Figure 2 displays the area of the accessible values of Q2
1,2 for

different kinematics and for the case of the nucleon target.
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FIG. 2. (Color online) Allowed values of the exchanged photon
virtualities Q2

1,2 are restricted to be inside the ellipses. The left
panels display the allowed range of the photon virtualities for ELab =
850 MeV, and the right panels show those for ELab = 3 GeV for
three different values of the c.m. scattering angle. The upper panels
in both cases correspond to the elastic intermediate state, w = M ,
while the lower panels show the case of inelastic intermediate states
with w > M .
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Bn with elastic intermediate states
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with Z being the nuclear charge. The unpolarized cross section
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Evaluating the remaining δ function in the c.m. frame, we
are left with the integral over electron’s solid angle "1,
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with the invariant s = (P + K)2 = M2 + 2Mν + Q2/2, and
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electron. w2 stands for the invariant mass squared of the
intermediate hadronic state. It equals to M2 for the elastic,
and lies between the threshold for pion production (M + mπ )2

and the full energy s for inelastic intermediate states.
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Figure 2 displays the area of the accessible values of Q2
1,2 for

different kinematics and for the case of the nucleon target.
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Bn with elastic intermediate states

For spin=0 target – overlap of two Coulomb densities separated 

by a distance fixed by the external kinematics

Bn ⇡ �
me

E

Z↵

⇡
tan3 ✓cm

2

Z Z
dQ2

1dQ2
2p

(Q+ �Q2
2)(Q2

2 �Q�)
Q2

1 + Q2
2 �Q2

2Q2
1Q

2
2

FC(Q2
1)FC(Q2

2)
FC(Q2)

Was done for Bn on He-4, Pb-208, … by Cooper, Horowitz, PRC 72 (2005)

- solve Schrödinger eq. with phenomenological charge densities

For highly–charged nuclei higher orders O(Z α)n need to be resumed

- Coulomb distortions



Leading order in α (two photon exchange) 

vs. Coulomb distortion effects 


(resummed infinite photon exchange)
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FIG. 6. (Color online) Elastic contribution to the analyzing power
on 4He at the electron beam energy of 3 GeV as a function of the c.m.
scattering angle in degrees. The leading order contribution (dashed
curve) is compared to the full result (solid curve) from Ref. [15].

comparing it to the full result of Ref. [15]. This comparison is
shown in Figs. 6 and 8 for 4He and 208Pb targets, respectively.
The expansion is performed in “small” parameter Zαem; thus
it is expected to work well for helium, but not for lead where
Zαem ≈ 0.6. Indeed, Figs. 6 and 7 demonstrate that for the
whole interval in the scattering angle, the agreement between
the two calculations is good, apart from the vicinity of the
diffraction minimum in the 4He elastic form factor that enters
the denominator of Eq. (16). The leading order form factor is
exactly zero in the diffraction minimum, while this minimum
is partially filled by including Coulomb distortion effects in
Ref. [15].

For lead, the agreement between the two calculations is
unsatisfactory, and the elastic contribution to the analyzing
power is relatively large, so it is necessary to include the higher
orders as well.

We quote some of our numerical results in the kinematics
of the HAPPEX and PREX experiments in Table I.

TABLE I. Results for the analyzing power on 4He for 3 GeV
beam energy and on 208Pb for 855 MeV beam energy in forward
kinematics.

"c.m.(deg) An (ppm) "c.m.(deg) An (ppm)

4He 208Pb 4He 208Pb

0.5◦ −0.09
1.0◦ −0.72 −0.33 11.0◦ −10.13 −8.12
2.0◦ −1.68 −0.91 12.0◦ −10.68 −8.85
3.0◦ −2.71 −1.57 13.0◦ −11.11 −9.75
4.0◦ −3.77 −2.31 14.0◦ −11.41 −10.98
5.0◦ −4.83 −3.10 15.0◦ −11.58 −12.43
6.0◦ −5.87 −3.97 16.0◦ −11.61 −12.94
7.0◦ −6.88 −4.93 17.0◦ −11.50 −13.05
8.0◦ −7.82 −5.94 18.0◦ −11.28 −13.39
9.0◦ −8.69 −6.82 19.0◦ −11.06 −13.98
10.0◦ −9.46 −7.48 20.0◦ −10.73 −14.97
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FIG. 7. (Color online) Zoomed version of Fig. 6.

In summary, we considered elastic scattering of electrons
off the spin-0 nuclear target. The analyzing power for this
scattering process is related to the imaginary part of the
scattering amplitude, and thus requires an exchange of at
least two photons. On one hand, the elastic intermediate state
contribution is due to Coulomb distortion and can be calculated
to all orders in the electromagnetic coupling constant [15].
Another approach capitalizes on the fact that the imaginary
part of the forward Compton amplitude is related by the
optical theorem to the total photoabsorption cross section.
Photoabsorption was measured on many nuclear targets, and
we use it as input along with the t dependence of the differential
Compton cross section which is needed to depart from the exact
forward limit. We applied this approach to 4He and 208Pb nuclei
in the kinematics of present parity-violation experiments and
found that the analyzing power is negative in both cases and is
about −10 and −4 ppm, respectively. The analyzing power is
relatively large. Experimentalists should take care to ensure
that it does not contribute a large systematic error to the
extraction of parity-violating observables.

We showed that the account of Coulomb distortions to all
orders in Zαem modifies significantly the elastic contribution
to the analyzing power for 208Pb. At the moment, only the
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FIG. 8. (Color online) The same as in Fig. 6 for the case of 208Pb.
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FIG. 6. (Color online) Elastic contribution to the analyzing power
on 4He at the electron beam energy of 3 GeV as a function of the c.m.
scattering angle in degrees. The leading order contribution (dashed
curve) is compared to the full result (solid curve) from Ref. [15].

comparing it to the full result of Ref. [15]. This comparison is
shown in Figs. 6 and 8 for 4He and 208Pb targets, respectively.
The expansion is performed in “small” parameter Zαem; thus
it is expected to work well for helium, but not for lead where
Zαem ≈ 0.6. Indeed, Figs. 6 and 7 demonstrate that for the
whole interval in the scattering angle, the agreement between
the two calculations is good, apart from the vicinity of the
diffraction minimum in the 4He elastic form factor that enters
the denominator of Eq. (16). The leading order form factor is
exactly zero in the diffraction minimum, while this minimum
is partially filled by including Coulomb distortion effects in
Ref. [15].

For lead, the agreement between the two calculations is
unsatisfactory, and the elastic contribution to the analyzing
power is relatively large, so it is necessary to include the higher
orders as well.

We quote some of our numerical results in the kinematics
of the HAPPEX and PREX experiments in Table I.

TABLE I. Results for the analyzing power on 4He for 3 GeV
beam energy and on 208Pb for 855 MeV beam energy in forward
kinematics.

"c.m.(deg) An (ppm) "c.m.(deg) An (ppm)

4He 208Pb 4He 208Pb

0.5◦ −0.09
1.0◦ −0.72 −0.33 11.0◦ −10.13 −8.12
2.0◦ −1.68 −0.91 12.0◦ −10.68 −8.85
3.0◦ −2.71 −1.57 13.0◦ −11.11 −9.75
4.0◦ −3.77 −2.31 14.0◦ −11.41 −10.98
5.0◦ −4.83 −3.10 15.0◦ −11.58 −12.43
6.0◦ −5.87 −3.97 16.0◦ −11.61 −12.94
7.0◦ −6.88 −4.93 17.0◦ −11.50 −13.05
8.0◦ −7.82 −5.94 18.0◦ −11.28 −13.39
9.0◦ −8.69 −6.82 19.0◦ −11.06 −13.98
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In summary, we considered elastic scattering of electrons
off the spin-0 nuclear target. The analyzing power for this
scattering process is related to the imaginary part of the
scattering amplitude, and thus requires an exchange of at
least two photons. On one hand, the elastic intermediate state
contribution is due to Coulomb distortion and can be calculated
to all orders in the electromagnetic coupling constant [15].
Another approach capitalizes on the fact that the imaginary
part of the forward Compton amplitude is related by the
optical theorem to the total photoabsorption cross section.
Photoabsorption was measured on many nuclear targets, and
we use it as input along with the t dependence of the differential
Compton cross section which is needed to depart from the exact
forward limit. We applied this approach to 4He and 208Pb nuclei
in the kinematics of present parity-violation experiments and
found that the analyzing power is negative in both cases and is
about −10 and −4 ppm, respectively. The analyzing power is
relatively large. Experimentalists should take care to ensure
that it does not contribute a large systematic error to the
extraction of parity-violating observables.

We showed that the account of Coulomb distortions to all
orders in Zαem modifies significantly the elastic contribution
to the analyzing power for 208Pb. At the moment, only the
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FIG. 8. (Color online) The same as in Fig. 6 for the case of 208Pb.
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Bn (p.p.m.) for He-4, E = 3 GeV
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FIG. 6. (Color online) Elastic contribution to the analyzing power
on 4He at the electron beam energy of 3 GeV as a function of the c.m.
scattering angle in degrees. The leading order contribution (dashed
curve) is compared to the full result (solid curve) from Ref. [15].

comparing it to the full result of Ref. [15]. This comparison is
shown in Figs. 6 and 8 for 4He and 208Pb targets, respectively.
The expansion is performed in “small” parameter Zαem; thus
it is expected to work well for helium, but not for lead where
Zαem ≈ 0.6. Indeed, Figs. 6 and 7 demonstrate that for the
whole interval in the scattering angle, the agreement between
the two calculations is good, apart from the vicinity of the
diffraction minimum in the 4He elastic form factor that enters
the denominator of Eq. (16). The leading order form factor is
exactly zero in the diffraction minimum, while this minimum
is partially filled by including Coulomb distortion effects in
Ref. [15].

For lead, the agreement between the two calculations is
unsatisfactory, and the elastic contribution to the analyzing
power is relatively large, so it is necessary to include the higher
orders as well.

We quote some of our numerical results in the kinematics
of the HAPPEX and PREX experiments in Table I.

TABLE I. Results for the analyzing power on 4He for 3 GeV
beam energy and on 208Pb for 855 MeV beam energy in forward
kinematics.

"c.m.(deg) An (ppm) "c.m.(deg) An (ppm)

4He 208Pb 4He 208Pb

0.5◦ −0.09
1.0◦ −0.72 −0.33 11.0◦ −10.13 −8.12
2.0◦ −1.68 −0.91 12.0◦ −10.68 −8.85
3.0◦ −2.71 −1.57 13.0◦ −11.11 −9.75
4.0◦ −3.77 −2.31 14.0◦ −11.41 −10.98
5.0◦ −4.83 −3.10 15.0◦ −11.58 −12.43
6.0◦ −5.87 −3.97 16.0◦ −11.61 −12.94
7.0◦ −6.88 −4.93 17.0◦ −11.50 −13.05
8.0◦ −7.82 −5.94 18.0◦ −11.28 −13.39
9.0◦ −8.69 −6.82 19.0◦ −11.06 −13.98
10.0◦ −9.46 −7.48 20.0◦ −10.73 −14.97
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In summary, we considered elastic scattering of electrons
off the spin-0 nuclear target. The analyzing power for this
scattering process is related to the imaginary part of the
scattering amplitude, and thus requires an exchange of at
least two photons. On one hand, the elastic intermediate state
contribution is due to Coulomb distortion and can be calculated
to all orders in the electromagnetic coupling constant [15].
Another approach capitalizes on the fact that the imaginary
part of the forward Compton amplitude is related by the
optical theorem to the total photoabsorption cross section.
Photoabsorption was measured on many nuclear targets, and
we use it as input along with the t dependence of the differential
Compton cross section which is needed to depart from the exact
forward limit. We applied this approach to 4He and 208Pb nuclei
in the kinematics of present parity-violation experiments and
found that the analyzing power is negative in both cases and is
about −10 and −4 ppm, respectively. The analyzing power is
relatively large. Experimentalists should take care to ensure
that it does not contribute a large systematic error to the
extraction of parity-violating observables.

We showed that the account of Coulomb distortions to all
orders in Zαem modifies significantly the elastic contribution
to the analyzing power for 208Pb. At the moment, only the
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FIG. 8. (Color online) The same as in Fig. 6 for the case of 208Pb.
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Bn (p.p.m.) for Lead, E = 855 MeV

Curves: Cooper, CJH, PRC 72 (2005); MG, CJH, PRC 77 (2008)



Inelastic states: forward angles

Forward spin-independent Compton tensor - from Optical Theorem: 
can use inelastic data as direct input

Bn features a large log(Q2/m²) - comes from small Q² but all W’s

Wµ⌫ = 2⇡
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Finite result protected by me and E - E1 > inelastic threshold
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Inelastic states: forward angles
Correct the input for (slightly) off-forward kinematics
Phenomenological input: Compton differential cross section 
d�
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Afanasev, Merenkov, PRD 70 (2004); PL B599 (2004);

MG, PRC 73 (2006); PL B644 (2007); 

MG, Horowitz PRC 77 (2008)

Real photoabsorption cross section per nucleon



Dominance of log(Q2/m2) is assumed – only real photoabsorption!

Finite virtualities in the loop - suppressed by an extra Q2

If hadronic contributions dominate - good for nuclei, too;

If low-lying nuclear states are important - inadequate

GORCHTEIN, HOBBS, LONDERGAN, AND SZCZEPANIAK PHYSICAL REVIEW C 84, 065202 (2011)

8

FIG. 1. The fixed-pole contribution to the Compton amplitude
may arise due to an effective local two-photon coupling to elementary
constituents within the proton.

QCD partons and we extract the α = 0 pole contribution to
scattering at asymptotic energies for various nuclear targets.
Our summary and conclusions are presented in Sec. IV.

II. NUCLEAR PHOTO-ABSORPTION AT LOW ENERGIES

The spin-averaged forward Compton scattering amplitude
T (ν) satisfies a once-subtracted dispersion relation where the
subtraction constant at ν = 0 is determined by the classical
Thomson limit,

ReT (ν) = −Z2

A2

α

MN

+ ν2

π

∫ ∞

0

dν ′2

ν ′2(ν ′2 − ν2)
ImT (ν ′),

(1)

where the integral in Eq. (1) is understood in terms of
its principal value. To facilitate easier comparison between
different nuclei we have normalized T (ν) by dividing it by A,
the number of nucleons. The nuclear Thomson term, i.e., the
constant on the r.h.s. of Eq. (1) is given in terms of the fine
structure constant α, the net charge Z of the target, and the
mass of the nucleus given by A times the nucleon mass, MN (in
the following we ignore isospin breaking terms). The optical
theorem relates the imaginary part of the Compton amplitude
to the total photoabsorption cross section per nucleon σ (ν),

ImT (ν) = ν

4π
σ (ν), (2)

so that the dispersion relation takes the form

ReT (ν) = −Z2

A2

α

MN

+ ν2

2π2

∫ ∞

0

dν ′

ν ′2 − ν2
σ (ν ′). (3)

To evaluate the dispersive integral, strictly speaking the
photoabsorption cross section should be included all the
way up to infinite energy; however, the scale separation
between the nuclear and hadronic domains allows us to
approximate the integral by using a limited range of nuclear
photoabsorption data. As shown in Fig. 2, for a typical target
nuclear resonances saturate the photoabsorption cross section
for energies below Emax ≈ 30 MeV. The dominant feature
of nuclear photoabsorption in the MeV range is the giant
dipole resonance (GDR) (cf. Ref. [24] for a comprehensive
review of GDR data and theory). As an example, the 207Pb
data in the nuclear range are plotted along with the higher
energy data in Fig. 2, in which the GDR is seen as a sharp
peak with width %GDR ≈ 7 MeV. We evaluate the dispersion
relation at νmax ! 100 MeV, which roughly demarcates the
scale of hadronic physics where single-nucleon resonances

FIG. 2. (Color online) Photoabsorption cross-section data for a
207Pb target. Data in the nuclear range ν " 27 MeV (crosses) are
from Ref. [19]; data in the hadronic and high-energy range 0.2
GeV" ν "100 GeV are from Refs. [20–23]. Nuclear deformations
are responsible for the giant resonance that saturates the cross section
for ν ! 100 MeV (region I). Excitations of individual nucleons are
responsible for the hadronic resonances (region II) in the energy
range between pion production threshold and O (2–3 GeV). Finally,
for energies above a few GeV (region III), the smooth cross section
is the result of partonic scattering via Regge exchanges.

begin contributing to the cross section,

ReT (νmax) ≈ −Z2

A2

α

MN

− 1
2π2

∫ Emax

0
dν ′σ (ν ′). (4)

For an energy that is low compared to the hadronic scale,
the scattering amplitude can be approximated by the sum of
contributions describing photon interactions with point-like
nucleons, i.e., it is given by a sum of Thomson terms on Z
protons,

ReT (νmax) ≈ −Z

A

α

MN

. (5)

Combining Eqs. (4) and (5) leads to the Thomas-Reiche-Kuhn
sum rule [1] (with α/MN ≈ 3.03 mb MeV),

∫ Emax

0
dνσ (ν) = 2π2 NZ

A2

α

MN

≈ 60
NZ

A2
mbMeV. (6)

Furthermore, adopting a Breit-Wigner form for the GDR cross
section,

σ (ν) ≈ σGDR(ν) = M2
GDR%2

GDRσGDR
(
ν2 − M2

GDR

)2 + M2
GDR%2

GDR

, (7)

the integral over the resonance photoabsorption cross section
gives πσGDR%GDR/2, and the TRK sum rule leads to the
relation

σGDR%GDR ≈ 12π
NZ

A2
mb MeV. (8)

In Eq. (8), σGDR is the value of the photoabsorption cross
section at the peak of the GDR resonance, and %GDR is the
resonance half-width. This sum rule has been confronted with
experimental data on a vast number of nuclear targets and is
found to be satisfied to within ∼30%. This level of agreement

065202-2

Total photoabsorption by Pb-208 (per nucleon in μbarn)



If hadronic contributions dominate - good for nuclei, too;

If low-lying nuclear states are important - inadequate

Hadronic contributions enhanced due to energy weighting
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Check for PB-208HARVEY, CALDWELL, 8RAMBLETT, AND FULTZ

TmLE I. Integrated cross sections in MeV-b, up to 28 MeV, for Pb isotopes and Bi.

Isotope

Pb206
Pb207
Pb208
Bj209

28
o(p,rz) dE

2.22
2.05
1.96
2.17

28
o (y, 2zz) dI!

0.56
0.60
0.95
0.76

28
crd Jt

2.78%0.28
2.65%0.27
2.91&0.29
2.93+0.29

o.dE+W

3.07+0.36
2.95&0.30
3.21a0.32
3.25+0.33

0 0621/Z. /2

2.96
2.97
2.98
3.00

Tmz, E II. Lorentz line parameters and 0 2 values
for Pb isotopes and Bi.

Isotope
Pb206
Pb207
Pb208
Bg209

Peak
00
(mb)

525
485
495
520

Widthr
(Mev)
3.75
3.87
3.78
3.83

P0
(MeV)

13.7
13.6
13.6
13.5

&—2
(mb/Me V)

15.6a1.6
14.5w1.5
14.1a1.4
16.6%1.7

0.00225' 5~8
(mb/MeV)

16.2
16.3
16.4
16.6

MeV are included in the 6gures of the fifth column
of Table I. Migdal's sum" a. g, for Pb"' was found to
be 15.6+1.6mb/MeV. The level density parameter" for
the residual nucleus Pb"' was deduced from the ratio
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of o.(y, 2rt) to o[(y,rt).+ (y,rtp) $+o.(y,20) and was
found to be 6.6&0.8 MeV '. The threshold for o (y, 2n)
was found to be 14.87~0.15 MeV, which agrees with
the value of 14.89 MeV given in Nuclear Data Sheets. " Pb (y, 2n)82

Pb~oV

The Pb" sample consisted of a 2-in. -diam metal
disk weighing 98.95 g for which the isotopic enrichment
of Pb"' was 92.8%. The measurements for cr[(y,rt)
+ (p,np) j and o (y, 2rt) are given in Fig. 2. From this it
can be seen that the peak (y, rt) cross section is 475
mb occurring at 13.7 MeV while the peak (y, 2zt) cross
section is 80 mb at 17.0 MeV. Integrated cross sections
are given in Table I. The nuclear formation cross
section is also shown in Fig. 2, where it has been fitted
with a Lorentz line with parameters given in Table II.
The level density parameter for the residual nucleus
Pb" was found to be 13.5&1.4 MeV ' The (yI2zz)
threshold was found to be 14.44&0.43 MeV, which is
in fair agreement with the value 14.89 MeV, "obtained
by other methods.

pb208

Measurements were made of of (p, rt)+(7,rtP)] and
o(7,2zt) for a 128.41-g sample of metallic Pb"' enriched
"J. S. Levinger, fVzzcfear Plzotodisizztegratiorz (Oxford Uni-

versity Press, London, 1960).
'2 J. Blatt and V. F. Weisskopf, Theoretica/ Nuclear Physics

(John Wiley R Sons, Inc. , New York, 1952).
'8 Nuclear Data Sheets, compiled by K. Way et al, (Printing and

Publishing 0%ce, National Academy of Sciences—National Re-
search Council, Washington, D. C., 1961).
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FIG. 2. Top figure shows data points for IrL(v, zz)+ (r,rzp)] «rPb', obtained from single-neutron counting data. Center figure
shows data for 0.(y,2n) obtained from double-neutron counting
data. Data points for the compound nucleus formation cross sec-
tion of Pb"z, i,e., IrL(y, zz)+(y, zzp)]+a(y, 2zz) are shown in bottom
figure. Solid curve is a plot of a Lorentz line having the parameters
given in Table II. The data are uncertain below 8 MeV owing to
low beam intensities encountered.
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13.7
13.6
13.6
13.5

&—2
(mb/Me V)

15.6a1.6
14.5w1.5
14.1a1.4
16.6%1.7

0.00225' 5~8
(mb/MeV)

16.2
16.3
16.4
16.6

MeV are included in the 6gures of the fifth column
of Table I. Migdal's sum" a. g, for Pb"' was found to
be 15.6+1.6mb/MeV. The level density parameter" for
the residual nucleus Pb"' was deduced from the ratio
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of o.(y, 2rt) to o[(y,rt).+ (y,rtp) $+o.(y,20) and was
found to be 6.6&0.8 MeV '. The threshold for o (y, 2n)
was found to be 14.87~0.15 MeV, which agrees with
the value of 14.89 MeV given in Nuclear Data Sheets. " Pb (y, 2n)82

Pb~oV

The Pb" sample consisted of a 2-in. -diam metal
disk weighing 98.95 g for which the isotopic enrichment
of Pb"' was 92.8%. The measurements for cr[(y,rt)
+ (p,np) j and o (y, 2rt) are given in Fig. 2. From this it
can be seen that the peak (y, rt) cross section is 475
mb occurring at 13.7 MeV while the peak (y, 2zt) cross
section is 80 mb at 17.0 MeV. Integrated cross sections
are given in Table I. The nuclear formation cross
section is also shown in Fig. 2, where it has been fitted
with a Lorentz line with parameters given in Table II.
The level density parameter for the residual nucleus
Pb" was found to be 13.5&1.4 MeV ' The (yI2zz)
threshold was found to be 14.44&0.43 MeV, which is
in fair agreement with the value 14.89 MeV, "obtained
by other methods.

pb208

Measurements were made of of (p, rt)+(7,rtP)] and
o(7,2zt) for a 128.41-g sample of metallic Pb"' enriched
"J. S. Levinger, fVzzcfear Plzotodisizztegratiorz (Oxford Uni-

versity Press, London, 1960).
'2 J. Blatt and V. F. Weisskopf, Theoretica/ Nuclear Physics

(John Wiley R Sons, Inc. , New York, 1952).
'8 Nuclear Data Sheets, compiled by K. Way et al, (Printing and

Publishing 0%ce, National Academy of Sciences—National Re-
search Council, Washington, D. C., 1961).
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FIG. 2. Top figure shows data points for IrL(v, zz)+ (r,rzp)] «rPb', obtained from single-neutron counting data. Center figure
shows data for 0.(y,2n) obtained from double-neutron counting
data. Data points for the compound nucleus formation cross sec-
tion of Pb"z, i,e., IrL(y, zz)+(y, zzp)]+a(y, 2zz) are shown in bottom
figure. Solid curve is a plot of a Lorentz line having the parameters
given in Table II. The data are uncertain below 8 MeV owing to
low beam intensities encountered.
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FIG. 3. (Color online) High energy photoabsorption cross sections per nucleon for six nuclear targets compared to the fit results (solid
lines) using the Breit-Wigner resonance plus background pametrization of Eq. (19). Data are from Ref. [26] for the proton and the deuteron,
and from Refs. [21–23] for heavier nuclei. The Regge plus Pomeron curves are shown by dashed lines. The background fit parameters are
given in Table I.

this relies on a mean-field approach to the target, which we
would expect to become more accurate as the number of
target nucleons increases. For the α = 0 pole contribution,
our new result for the proton is significantly different from
the Thomson term, which is at variance with the original
result of Damashek and Gilman [5]. This discrepancy is
due to our use of the very high energy photoabsorption
data that has become available only recently [27]. As a
result, instead of the high-energy parametrization used in
Ref. [5],

σR+P (ν) ≈
(

96.6 + 70.2

√
1 GeV

ν

)

µb, (23)

we find

σR+P (ν) ≈
[

68.0
( ν

1 GeV

)0.097
+ 99.0

√
1 GeV

ν

]

µb. (24)

At an energy ν = 1 GeV, both formulas give almost identical
results, but at high energies they differ dramatically. At the

same time, the data in the resonance region have not changed
much, so this leads to our new value for the α = 0 contribution
to photoabsorption on the proton.

For heavier nuclei, however, the bottom panel of Fig. 4
and the final row of Table II show that the α = 0 contribution
appears to be consistent with the Thomson term. This result is
due to an interplay of various nuclear effects in the resonance
region that affect the value of the integrated photoabsorption
cross section and also shadowing at medium-to-high energies.
Shadowing at energies below ν = 200 GeV causes the value
of cP to decrease from 68 µb for the proton to approximately
43 µb for lead, respectively. On the other hand, the Pomeron
is a QCD phenomenon that is due to the interaction of
quarks and gluons and should be the leading mechanism of
photoabsorption at extremely high energies. It can be expected
that at asymptotic energies nuclear effects should be negligible,
and the strength of the Pomeron should be the same for
both the proton and heavier nuclei. If in the future nuclear
photoabsorption data above ν = 200 GeV becomes available,
they could shed more light on the asymptotic behavior of

TABLE I. Reggeon and Pomeron parameters in µb

Proton Deuteron 12
6 C 27

13Al 65
29Cu 207

82 Pb

cP (µb) 68.0 ± 0.2 70.08 ± 1.26 57.24 ± 1.13 62.70 ± 6.0 45.88 ± 0.57 42.08 ± 1.96
cR (µb) 99.0 ± 1.15 80.50 ± 2.27 76.49 ± 4.40 53.53 ± 11.6 76.95 ± 3.60 91.43 ± 9.14
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TABLE II. Contributions to the finite energy sum rule for selected targets in units of GeV·µb. The entries in the second row are taken from
a review on nuclear data in Ref. [24].

Proton Deuteron 12
6 C 27

13Al 65
29Cu 207

82 Pb

1
2π2A

σ had
int 18.60 ± 0.31 17.46 ± 0.51 16.80 ± 0.62 16.54 ± 1.50 16.16 ± 0.57 16.57 ± 1.02

1
2π2A

σ nucl
int – – 0.197 0.30 0.480 0.69

1
2π2 cR

(E/GeV )1/2

1/2 14.19 ± 0.16 11.54 ± 0.39 10.96 ± 0.63 7.67 ± 1.66 11.03 ± 0.52 13.10 ± 1.31

r.h.s. of Eq. (17) −4.21 ± 0.35 −5.92 ± 0.65 −6.04 ± 0.88 −9.17 ± 2.24 −5.61 ± 0.77 −4.16 ± 1.66
−

(
2 + ZN

A2

)
α
M

−6.06 −6.82 −6.82 −6.82 −6.81 −6.78
1

2π2 cP (E/GeV ) 6.72 ± 0.02 6.92 ± 0.12 5.65 ± 0.11 6.19 ± 0.59 4.53 ± 0.06 4.16 ± 0.25

−Z2

A2
α
M

−3.03 −0.76 −0.76 −0.70 −0.60 −0.48
ReT α=0 −0.72 ± 0.35 0.25 ± 0.65 −1.14 ± 0.89 −3.68 ± 2.31 −1.71 ± 0.77 −0.48 ± 1.68

the forward nuclear Compton amplitude and could remove
uncertainties regarding the strength of the Pomeron, Reggeon,
and α = 0 pole contributions.

Finally, in addition to the paper by Damashek and Gilman
[5], there have been other evaluations of the α = 0 pole for
forward Compton scattering. Dominguez, Ferro Fontan, and
Suaya [11] and Shibasaki, Minamikawa, and Watanabe [12]
used a similar approach to that of Ref. [5] and independently
arrived at a qualitatively similar result,

ReT α=0
p = (−3 ± 2)µb GeV, (25)

FIG. 4. (Color online) Upper panel: the fraction of the TRK sum
rule for nuclear targets 12C, 27Al, 65Cu, and 207Pb; middle panel:
experimental values (data points) vs. theoretical expectation (dotted
line) for our new constituent quark model (CQM) sum rule for the
proton, deuteron, 12C, 27Al, 65Cu, and 207Pb, in units of µb; lower
panel: results for the α = 0 pole for all targets considered, in µb.

where the uncertainty is dominated by the parameters of the
high-energy fit, reflecting the limited range of high-energy data
available at that time.

In Ref. [15], Dominguez, Gunion, and Suaya extended this
analysis by including the deuteron photoabsorption data. They
employed a model for nuclear effects to extract parameters
of the neutron from deuteron and proton data and evaluated
the finite energy sum rules (FESR) for both nucleons. Their
conclusions were that the α = 0 pole is consistent with the
respective Thomson term for both,

ReT α=0
n = (0 ± 1.5)µb GeV,

(26)
ReT α=0

p = (−3 ± 0.8)µb GeV,

where ReT α=0
p(n) refers to the proton (neutron), respectively.

Tait and White in Ref. [14] re-analyzed the FESR using a
more recent data set and obtained a much more conservative
estimate:

ReT α=0
p =

(
− 3+4

−5

)
µb GeV. (27)

Based on the recent proton data on photoabsorption at very
high energies [27] and the analysis of Tait and White [14],
we conclude that the errors in Eq. (26) were significantly
underestimated.

IV. SUMMARY AND CONCLUSIONS

In summary, we revisited the finite energy sum rules for
forward real Compton scattering on the proton and heavier
nuclei. As the photon energy increases and its wavelength
decreases, the Compton amplitude becomes sensitive to
progressively smaller features of a nuclear target. At the lowest
energies, the Compton amplitude is determined by scattering
on the target as a whole, whereas in the high-energy limit it is
expected to be determined by scattering on elementary target
constituents.

Finite energy sum rules provide a qualitative comparison
between the high-energy and low-energy limits of the scat-
tering amplitude. For nuclei, the Thomas-Reiche-Kuhn sum
rule relates the strength of the giant dipole resonance to
the difference between the nuclear Thomson term and the
incoherent sum of Thomson terms of protons residing in the
nucleus. In a similar fashion, we have proposed a new sum rule
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Energies up to 1 GeV: 

integrated cross section scales as A;

!
Nuclear shadowing stronger above 

that energy
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Compton slope parameter B

d�

�p!�p

dt

⇡ d�

�p!�p

dt

����
t=0

⇥ exp[Bt]

Known for proton and He-4

B(A = 1) = (7± 1) GeV �2

B(A = 4) = (32± 2) GeV �2

Bauer et al, Rev.Mod.Phys. 50 (1978)

Alexanian et al, Sov. J. Nucl.Phys. 45 (1987)

Exp[�BQ

2
/2]

F (Q2)
= Exp[�(3.5± 0.5)(Q2

/GeV

2)] (1 + (Q2
/0.71 GeV

2))2Proton:

Helium-4:

The ratio was taken roughly the same for all nuclei;

Numerically is irrelevant at low Q2

Exp[�BQ

2
/2]

F (Q2)
=

Exp[�(16± 1)(Q2
/GeV

2)]
Exp[�11.74(Q2

/GeV

2)](1� [2.573Q

2
/GeV

2]6)

What matters is Compton to elastic form factor ratio!
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FIG. 3: (Color online) Results for An as a function of
center-of-mass scattering angle, along with calculations
from Refs. [8, 10, 11] (see text for explanation).

DOE (USA), NSERC (Canada), and NSF (USA). We
thank A. V. Afanasev, M. Gorchtein, B. Pasquini, and
M. Vanderhaeghen for their calculations and useful dis-
cussions.

∗ Deceased.
[1] I. A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005).
[2] V. Punjabi et al., Phys. Rev. C71, 055202 (2005),

[Erratum-ibid. C 71, 069902 (2005)].
[3] P. A. M. Guichon and M. Vanderhaeghen, Phys. Rev.

Lett. 91, 142303 (2003).
[4] A. V. Afanasev and C. E. Carlson, Phys. Rev. Lett.

94, 212301 (2005).
[5] W. J. Marciano and A. Sirlin, Phys. Rev. D29, 75

(1984), [Erratum-ibid. D 31, 213 (1985)].
[6] A. De Rujula, J. M. Kaplan, and E. De Rafael, Nucl.

Phys. B35, 365 (1971).
[7] M. L. Goldberger, Y. Nambu, and R. Oehme, Annals

of Physics 2, 226 (1957).
[8] B. Pasquini and M. Vanderhaeghen, Phys. Rev. C70,

045206 (2004).
[9] M. Gorchtein, P. A. M. Guichon, and M. Vander-

haeghen, Nucl. Phys. A741, 234 (2004).
[10] A. V. Afanasev and N. P. Merenkov, Phys. Lett. B599,

48 (2004), Erratum in hep-ph/0407167 v2.
[11] M. Gorchtein, Phys. Lett. B644, 322 (2007).
[12] C. E. Carlson and M. Vanderhaeghen (2007), hep-

ph/0701272.
[13] S. P. Wells et al. (SAMPLE Collaboration), Phys. Rev.

C63, 064001 (2001); E. J. Beise, M. L. Pitt, and D. T.
Spayde, Prog. Part. Nucl. Phys. 54, 289 (2005).

[14] F. E. Maas et al. (A4 Collaboration), Phys. Rev. Lett.
94, 082001 (2005).

[15] L. Capozza (A4 Collaboration), PAVI06 proceed-
ings, pending; L. Kaufman (HAPPEX Collaboration),
PAVI06 proceedings, pending.

[16] M. Gorchtein, Phys. Rev. C73, 035213 (2006).
[17] D. S. Armstrong et al. (G0 Collaboration), Phys. Rev.

Lett. 95, 092001 (2005).
[18] D. S. Armstrong et al. (G0 Collaboration), (in prepa-

ration).
[19] S. D. Covrig et al., Nucl. Instrum. Meth. A551, 218

(2005).
[20] D. Marchand et al., nucl-ex/0703026 [Submitted to

Nucl. Instrum. Meth. Phys. Res.].
[21] C. K. Sinclair et al., Phys. Rev. ST Accel. Beams 10,

023501 (2007).
[22] M. Hauger et al., Nucl. Instrum. Meth. A462, 382

(2001).
[23] The correction is being investigated by A. V. Afanasev

and N. P. Merenkov (private communication).

Armstrong et al [G0], ‘05
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X=πN

Optical theorem

Excellent description for light nuclei and very forward angles;

Somewhat worse for larger angles (G0) - Q2 not small 
anymore, include corrections 

Fails completely for lead - realistic nuclear calculation needed
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Bn at forward angles



Bn Summary
 Bn measures the Im part of TPE amplitude;


 few to few 10’s p.p.m. effect - background for PVES;


 forward: unitarity model - great job except Pb;


 Compton slope - the only free parameter;


 Carbon news: theory below data at 570 MeV, 20 deg.


 Needed: beyond two-photon exchange and beyond the 

standard (ground state) Coulomb distortion



Bn at backward angles
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FIG. 2. (color online) World data on the BNSSA at backward
angles for different center-of-mass angles as a function of beam
energy. Theory curves include both the elastic and πN inter-
mediate state contributions to the asymmetry [5]. For com-
parison, the purely elastic contributions are also shown (over-
lapping curves at approximately zero for the entire range).

TABLE III. Estimate of the proton and neutron cross sections
and asymmetries for each energy, assuming a 5% uncertainty
on the cross-sections. The theory prediction [5] is given in
the last column, where for the neutron it is a calculation at
the exact kinematics; for the proton it is an estimate based
on the curves shown in Figure 2.

Energy Cross Section Bn,p
n Bn,p

n,theory

(MeV) (µb/sr) (ppm) (ppm)

362
n 8 86.6 ± 41 72

p 23 -176.5 ± 9.4 -158

687
n 1.1 -138 ± 268 20

p 2.6 -21.0 ± 24 -35

(real photon) effects [18].
Our two measurements of the BNSSA for scattering

from the proton are shown on a plot with the prelimi-
nary PVA4 [10, 11] and the SAMPLE [12] backward an-
gle measurements (see Figure 2). The data are shown
in comparison to the theoretical prediction [5]. For the
first time we have extracted values for the BNSSA of the
neutron. In the static approximation, the asymmetry for
deuterium is simply the cross-section-weighted average
asymmetry for the proton and the neutron

Bd
n =

σpBp
n + σnBn

n

σp + σn
(3)

where σp,n is the proton (p) or neutron (n) cross-section,
and Bn,p,d

n is the measured BNSSA for a neutron (n),
proton (p) or deuteron (d) target. Estimates of the pro-
ton and neutron cross-sections and the extracted BNSSA

for the neutron are given in Table III and compared to
the theory [19]. The cross-sections were calculated using
estimates of the nucleon EM form factors with a relative
uncertainty of 5%.
The estimate for the neutron asymmetry for each en-

ergy is made by solving for Bn
n in Eq. 3. The estimate

of the neutron BNSSA at 687 MeV has very large uncer-
tainties which prevent us from drawing any conclusions.
At 362 MeV, the resulting neutron asymmetry is smaller
in magnitude than the proton asymmetry and opposite
in sign (positive). In the resonance region the elastic
contribution is calculated using the electromagnetic form
factors at the vertices, while the contribution from πN in-
termediate states depends on both resonant and nonres-
onant invariant amplitudes for πN intermediate states,
which are taken from phenomenological analysis fitted
to available experimental data [5, 20]. The asymmetry
at the measured values of Q2 is dominated by the term
proportional to GM which changes sign between proton
and neutron. Furthermore the larger magnitude of the
neutron asymmetry for smaller energies follows from the
dominance of the quasi-real Compton contribution. It
corresponds to the two exchanged photons being quasi-
real and the invariant mass of the hadronic intermediate
state approaching the value of the e-N center of mass
energy. In Fig. 2, the behavior of the proton asymmetry
is driven by the increasing contribution of the quasi-real
Compton scattering up to energy Ee ≈ 0.360 GeV. At
higher energy the resonant structure of the pion electro-
production amplitudes comes into play with a contribu-
tion of opposite sign, which leads to a smaller asymmetry
in absolute value. In order to make a better estimate of
the neutron asymmetry it will be necessary to use a more
sophisticated deuterium model, similar to the calculation
of Schiavilla [21, 22] for the estimate of the longitudinal
asymmetries.
Measurements of the BNSSA in the resonance region

are valuable tests of the theoretical framework which cal-
culates the radiative corrections for precision electron
scattering experiments. This work doubles the world
dataset for the BNSSA in elastic electron-proton scat-
tering at backward angles. More importantly, the addi-
tion of these data allows us to span the range of energies
up to 1 GeV, including the value at 362 MeV which is
at the estimated peak of the theoretical prediction. In
addition, asymmetries from quasi-elastic deuteron scat-
tering have been used to provide the first estimate of the
BNSSA for the neutron, which is in agreement with the
predicted value at 362 MeV. The agreement between the
theoretical predictions and the measured values clearly
shows that it is necessary to take into account the πN
intermediate state contributions in the calculation of the
hadronic intermediate state when estimating the effects
of the TPE contributions.
We gratefully acknowledge the strong technical contri-

butions to this experiment from many groups: Caltech,
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imaginary part of the T matrix. Since the electromagnetic form
factors and the one-photon exchange amplitude are purely
real, Bn obtains its finite contribution to leading order in the
electromagnetic constant αem from an interference between
the Born amplitude and the imaginary part of the two-photon
exchange amplitude. In terms of the amplitudes of Eqs. (3) and
(4), the beam normal spin asymmetry is given by

Bn = − m

M

√
2ε(1 − ε)

√
1 + τ

(
τG2

M + εG2
E

)−1

·
[
τGM Im F̃3 + GE Im F̃4 + F1

ν

M
Im F̃5

]
. (8)

For completeness, we also give here the expression of target
normal spin asymmetry3 Tn in terms of invariant amplitudes:

Tn =
√

2ε(1 + ε)
√
τ
(
τG2

M + εG2
E

)−1

·
[
(1 + τ )

(
F1 Im F̃2 − F2 Im F̃1

)

+
(

2ε
1 + ε

GE − GM

)
ν

M
Im F̃3

]
. (9)

III. TWO-PHOTON EXCHANGE

The imaginary part of the two-photon exchange (TPE)
graph in Fig. 1 is given by

ImM2γ = e2
∫ |k⃗1|2d|k⃗1|d&k1

2E1(2π )3
ū′γν(k/1 + m)γµu

· 1
Q2

1Q
2
2

Wµν
(
w2,Q2

1,Q
2
2

)
, (10)

where Wµν(w2,Q2
1,Q

2
2) is the imaginary part of the doubly

virtual Compton scattering tensor. Q2
1 and Q2

2 denote the
virtualities of the exchanged photons in the TPE diagram, and
w is the invariant mass of the intermediate hadronic system.
We next study the kinematics of the exchanged photons.
Neglecting the small electron mass and using the c.m. frame
of the electron and proton, one has

Q2
1,2 = 2|k⃗||k⃗1|(1 − cos(1,2), (11)

with |k⃗| = (s − M2)/2
√

s ≡ k the three-momentum of the
incoming (and outgoing) eletron,

|k⃗1| =

√(
s − w2 + m2

2
√

s

)2

− m2

that of the intermediate electron, and cos(2 = cos( cos(1 +
sin( sin(1 cosφ. The kinematically allowed values of the
virtualities of the exchanged photons (the restriction is because
the intermediate electron is on-shell) are represented by the
internal area of the ellipses shown in Fig. 2.

The ellipses are drawn inside a square whose side is defined
through the external kinematics (k) and the invariant mass of
the intermediate hadronic state (w2 or k1), while the form is

3Also, An notation for target normal spin asymmetry exists in the
literature.

FIG. 1. Two-photon exchange diagram.

determined solely by the scattering angle. Choosing higher
values of the mass of the hadronic system w2 < s leads to
scaling the size of the ellipse by a factor of (s − w2)/s −
M2. In the limit w2 = (

√
s − m)2, the ellipses shrink to a

point at the origin, and both photons are nearly real. This
is not a soft photon (IR) singularity, however, since the real
photons’ energy remains large enough to provide the transition
from the nucleon with mass M to the intermediate state X
with mass w. Instead, the intermediate electron is soft, k

µ
1 ≈

(m, 0⃗), therefore this kind of kinematics does not lead to an IR
divergency, which can occur only if the intermediate hadronic
state is the nucleon itself. In the following we are going to
study this kinematic situation in more detail.
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1,2. Left, MAMI electron beam energy E = 0.855 GeV; right,
TJNAF (JLab) energy E = 6 GeV. Upper left, different kinematics
for the MAMI electron beam energy E = 0.855 GeV, for the
elastic (nucleon) intermediate state, and three different values
of the momentum transfer: t = −0.2 GeV2 (solid ellipse), t =
−0.5 GeV2 (dotted ellipse), and t = −0.9 GeV2 (dashed ellipse).
Lower left, same external kinematics but with the intermediate
hadronic state mass W = 1.232 GeV. Upper right, different kine-
matics for the JLab electron beam energy E = 6 GeV, for the
elastic (nucleon) intermediate state, and three different values of
the momentum transfer: t = −1 GeV2 (solid ellipse), t = −5 GeV2

(dotted ellipse), and t = −10 GeV2 (dashed ellipse). Lower right, the
same external kinematics as in the upper right panel, but with the
intermediate hadronic state mass W = 2.5 GeV.
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