

Kent Paschke University of Virginia

NSKINS-2016, MITP

What We Learned in PREX-I

What Worked:

New Septum

We now know how to tune it to optimize FOM

A_T false asymmetry

 A_T is small (<1 ppm Pb, <10 ppm C) and A_{false} will be small if P_T is minimized

HRS Tune

We have a tune and good first-guess optics matrix for a tune optimized for the small detectors

Fast Helicity Flipping

We know how to control false asymmetries and monitor performance

Lead Target

Survival > 1 wk, 15 C

Injector Spin Manipulation

Second Wein and solenoid are calibrated and used for helicity reversal. Important cancellation for systematic beam asymmetries from the polarized source.

New Detectors

Suitable energy resolution achieved for 1 GeV electrons. <5% precision loss.

Polarimetry at low energy Moller at 1.3%, Integrating Compton at 1.2%

Beam Modulation System

Fast beam kicks cancel low frequency noise and improve precision of beam position corrections

Ready for PREX-II, after resolving:

- Target Vacuum system
- Radiation Damage in Hall

2

PREX/CREX Summary

PREX-2: 25+10 days, 3% stat, 0.06 fm CREX: 35+10 days, 2% stat, 0.02fm

Achieved			
PREX-I E=1.1 GeV, 5° A=0.6 ppm			
Charge Normalization	0.2%		
Beam Asymmetries	1.1%		
Detector Non-linearity	1.2%		
Transverse Asym	0.2%		
Polarization	1.3%		
Target Backing	0.4%		
Inelastic Contribution	<0.1%		
Effective Q ²	0.5%		
Total Systematic	2.1%		
Total Statistical	9%		

PREX-II E=1.1 GeV, 5° A=0.6 ppm

Charge Normalization	0.1%
Beam Asymmetries	1.1%
Detector Non-linearity	1.0%
Transverse Asym	0.2%
Polarization	1.1%
Target Backing	0.4%
Inelastic Contribution	<0.1%
Effective Q ²	0.4%
Total Systematic	2%
Total Statistical	3%

CREX E=2.2 GeV, 4° A = 2 ppm

Charge Normalization	0.1%
Beam Asymmetries	0.3%
Detector Non-linearity	0.3%
Transverse Asym	0.1%
Polarization	0.8%
Target Contamination	0.2%
Inelastic Contribution	0.2%
Effective Q ²	0.8%
Total Systematic	1.2%
Total Statistical	2%

Conservative estimates: experience suggests these can be better

Integrating Detectors

• Thin fused silica: optimize RMS

- thick: higher photo-electron yield
- thin: smaller RMS degradation

Also under development: improved instrumentation to test linearity UNIVERSITY Kent Paschke

New PREX-II Design

Mainz 2015 (90 deg)

RMS/Mean ~ 18% (<2% penalty)

NSKINS2016, MITP

250

Helicty Correlated Beam Asymmetries

$$A_{corr} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$$

Helicty Correlated Beam Asymmetries

$$A_{corr} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$$

• Careful laser alignment

Helicty Correlated Beam Asymmetries

$$A_{corr} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$$

Careful laser alignment
 Uniformity of circular polarization: components, alignment techniques, diagnostics

5

Careful laser alignment
 Uniformity of circular polarization: components, alignment techniques, diagnostics

Helicty Correlated Beam Asymmetries $A_{corr} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$

Careful laser alignment
Active feedback of charge asymmetry

Helicty Correlated Beam Asymmetries $A_{corr} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$

Careful laser alignment
Active feedback of charge asymmetry

Helicty Correlated Beam Asymmetries $A_{corr} = A_{det} - A_Q + \alpha A_E + \Sigma \beta \Delta x_i$

- Careful laser alignment
- Active feedback of charge asymmetry
- Precision beam position monitoring
- Active calibration of detector slopes

7

Helicty Correlated Beam Asymmetries $A_{corr} = A_{det} - A_Q + \alpha A_E + \Sigma \beta \Delta x_i$

- Careful laser alignment
- Active feedback of charge asymmetry
- Precision beam position monitoring
- Active calibration of detector slopes

PREX-I used improved beam modulation system

Fast Reversal Asymmetry

PREX-I had a problem with excessive Pockels cell reversal time

- Slower than expected transition (slightly over 100 μ s)
- •ringing (out to very long timescales, ~18 μs period)
- asymmetric transition

Bandwidth for BCM and Detector didn't match

Electron beam test:

direct test of beam monitor (and detector) time constants

- 100 microsecond pulse
- short integrate gate with flexible delay

Together = False Asymmetry!

- Improved PC transition to ~80us, symmetric
- Increased gate period (~500 us)
- Improved detector response time to match BCM

8

Optics Calibration

4-momentum transfer $Q^2 = 4EE'\sin^2\frac{\theta}{2}$

Q² distribution obtained by low rate runs; trigger on quartz pulse-height

Optics Calibration

4-momentum transfer $Q^2 = 4EE'\sin^2\frac{\theta}{2}$

Q² distribution obtained by low rate runs; trigger on quartz pulse-height

calibration

E: calibrated dipole field in arc E': scattering reconstruction scattering angle: survey ~ 1 mr

Water cell target Absolute angle ¹H 1<u>6 O</u> calibration via 200 ¹⁶ O ₃₋ ⁵⁶ Fe nuclear recoil variation 150 100 **Recoil is large for** $\frac{\delta E}{E} \approx \frac{\theta^2}{2} \frac{E}{M_A}$ H, small for nuclei 50 2.98 3.02 Scattered Electron Energy (GeV) (3 GeV example - much harder at 1 GeV) NIVERSITY Kent Paschke

Optics Calibration

4-momentum transfer $Q^2 = 4EE'\sin^2\frac{\theta}{\gamma}$

Q² distribution obtained by low rate runs; trigger on quartz pulse-height

calibration

NIVERSITY

E: calibrated dipole field in arc E': scattering reconstruction scattering angle: survey ~ 1 mr

1% absolute calibration on Q^2 achieved: $\delta A_{pv} \sim 0.5\%$

PREX-2 will add:

- GEMs to help eliminate ratedependent distortion of distribution
- repeatable optics calibrations (separate watercell target mover)

Water cell target Absolute angle ¹H calibration via 200 ¹⁶ O ₃₋ ⁵⁶ Fe nuclear recoil variation 150 100 **Recoil is large for** $\frac{\delta E}{E} \approx \frac{\theta^2}{2} \frac{E}{M_A}$ H, small for nuclei 50 2.98 3.02 Scattered Electron Energy (GeV) (3 GeV example - much harder at 1 GeV)

Kent Paschke

NSKINS2016, MITP

Beam Polarization

Goal: 1% beam polarimetry

- · continuous measurement
- small asymmetry (~3%) but normalization well controlled
- GSO calorimeter to response low E photons
- laser polarization to 0.2%
- electron arm difficult to use at 1 GeV, possible at 2 GeV

Møller

- Coincidence detection in QQQQD spectrometer
- fast counting DAQ

JNIVERSITY

'IRGINIA

Pure Iron at High Field

- Magnetized perpendicular to foil
- 3-4 T applied field magnetization saturated
- Spin polarization, known to 0.25%
- · new high-field solenoid for saturated iron target
- 0.5% precision already claimed on Hall C polarimeter
- Spin polarization can not be independently verified
- Low-E spectrometer optics, distortion by holding field
- Low-current, invasive measurement

10

Kent Paschke

Lead / Diamond Target

Lead has low melting point, and low thermal conductivity

Diamond foils have excellent thermal conductivity

¹²C is isoscaler, spin-0 (and well-measured) so benign background!

Two questions:

- thermal contact?
- diamond lifetime?

PREX-I used three different diamond thickness,(4.5%-8%)

Target Thickness and Uniformity

Targets with thin diamond backing (4.5 % background) degraded fastest.

Thick diamond (8%) ran well and did not melt at 70 uA.

A larger ladder, with 10 targets, will give PREX-2 a large safety margin

Target Thickness and Uniformity

Target Uniformity

- Target uniformity degraded by beam damage.
- Created noise due to (fast) raster, as helicity windows measured over slightly different target regions.
- •Width start <200 ppm, grew >300 ppm
- Beat frequency between x/y chosen so that lissajous is periodic at 480 Hz, and synchronized to helicity flip frequency
- •With synchronized raster, recovered 200 ppm width

NSKINS2016, MITP

Vacuum Issues

NSKINS2016, MITP

PREX-I Radiation Issues

PREX-I Radiation Issues

Stopping PREX-I sources of radiation

Neutrons:

- elastics from the thick, high-Z target
- dominantly GDR excitation in the collimator or beampipe
- soft neutron spectrum (<10 MeV)

Plan: Use a single collimator to stop everything that misses the dump. Then shield around that collimator

Stopping PREX-I sources of radiation

Neutrons:

- elastics from the thick, high-Z target
- dominantly GDR excitation in the collimator or beampipe
- soft neutron spectrum (<10 MeV)

Plan: Use a single collimator to stop everything that misses the dump. Then shield around that collimator

Origin of photons hitting a "plane" detector downstream of the septum

Stopping PREX-I sources of radiation

Neutrons:

- elastics from the thick, high-Z target
- dominantly GDR excitation in the collimator or beampipe
- soft neutron spectrum (<10 MeV)

Plan: Use a single collimator to stop everything that misses the dump. Then shield around that collimator

Origin of photons hitting a "plane" detector downstream of the septum

IRGINIA

PREX-II collimator

Collimator front face 85cm from target, intercepts electrons >0.78°

- Inner cylinder 30% Cu-70% W
- Water-cooled slug with Cu sleeve brazed, similar to Qweak collimator
- Outer box Tungsten
- Power deposited: 2.1k@ at 70 μ A

PREX-I collimator: >1.27°, ~700W@70 μA, 1850W in Hall

PREX-II: Shielding Strategy

Tungsten collimator down to 0.8° so whatever gets past the **plug** gets to the **dump**

Maximize **solid angle** coverage of collimator by HDPE

Also need improved shielding of septum fringe field at the beampipe

Radiation: similar to HAPPEX-II

"FULL HALL DETECTOR"	PREX-I	PREX-II	PREX-II / PREX-I	
Neutron E <0.1MeV	3.4E+10 1.0E+10		29%	
Neutron 1 MeV < E < 10 MeV	1.4E+10	1.9E+09	13%	
Neutron E>10MeV		4.4E+07	19%	

Overall, dangerous neutron flux is down by order of magnitude

At HRS power supplies, flux density is similar to HAPPEX-II

HRS Power Supplies	PREX-II	PREX-I	HAPPEX-II	PREX-II / HAPPEX-II
EM E > 10 MeV	2.5E+07	2.8E+08	2.5E+07	100%
Neutron 1 MeV < E < 10 MeV	1.8E+06	8.9E+06	1.4E+06	130%

Site Boundary

CEBAF Area Map

Estimate: PREX-2 will exceed JLab administrative limits by 50%

RBM-3

Activation

Simulation to guide de-installation planning (Lorenzo Zana)

Sieve Box + collimator (1 month decay, 28 days at 70 uA)

Design to minimize exposure in de-installation

Shielded housing for collimator:

- hot bore is covered
- quick removal

Schedule

Startup after the upgrade has been difficult to produce physics

- various maintenance, hardware issues
- cryogenic plant problems
- some challenges with the new C100 cavities

The order of experiments remains the same, but until recently nothing was completed

Next opening, expected to be Spring 2018.

- Requires a fast installation, over winter break.
- One possibility low-energy experiments sometimes run alone in summer

Readiness Review, June 1-2

- design concept
- may require follow-up reviews

snippet from slide (M.Poelker @ APS)

 PREx-II and its cousin, CREx, have requirements similar to QWeak-I. CEBAF can support these experiments without modification.

Summary

Neutron skin studies at JLab will provide a crucial benchmark for the understanding of nuclear structure

Many experimental questions have been answered in the first run

- · Lead sandwich target
- Precision polarimetry at 1 GeV
- HRS optics optimization
- Source performance
- Detectors
- Beam Corrections
- Transverse Asymmetry
 Primary technical issues for a full run have been addressed

Kent Paschke

Accelerator upgrade is nearly (officially) complete, physics has returned to JLab, and the lab is moving forward with Spring 2018 now considered likely

Hall A - 12 GeV Upgrade Summary

Transverse Asymmetry

• Asymmetries are highly suppressed, few ppm for $Q^2 \sim 10^{-2}~{
m GeV^2}$

- Dispersion calculations: agreement with low Z nuclei
- ²⁰⁸Pb is significantly off Coulomb distortions?

Optics

Pointing Calibration

- Water Cell
 - 1% relative measurement of Q²
 - H peak on O radiative tail

Separate target mover for repeated measurement

GEMs / High-rate tracking

reuse previous mounting concept? chambers, readout...

Spectrometer Optics Configuration

Non-standard optics. Previous PREX optics, but need simulation / analysis ability to tweak