

Michaela Thiel

Institut für Kernphysik, Johannes Gutenberg-Universität Main

the stage

MESA

P2

5/15

the early days

MESA

beam energy: 200 MeV

max. beam current 150 μ A (EB mode)

experimental setup

ZEUS-like solenoid $\rightarrow B_{max}$ = 1.8 T

questions

resolve elastic? $\triangle E$ (208Pb) = 2.7 MeV

0.5% measurement?

Chuck Horowitz

 $\Delta \theta = 4^{\circ}$: expected rate = 9.75 GHz, $A_{PV} = 0.68$ ppm, P = 85%, Q \approx 86 MeV

1440h → $\delta R_n/R_n = 0.50\%$ (²⁰⁸Pb @ 200 MeV)

ray trace simulation

 $\Delta \theta = 4^{\circ}$: expected rate = 8.25 GHz, $A_{PV} = 0.66$ ppm, P = 85%, Q \approx 86 MeV

1440h → $\delta R_n/R_n = 0.52\%$ (²⁰⁸Pb @ 155 MeV)

 $\Delta \theta = 4^{\circ}$: expected rate = 0.87 GHz, $A_{PV} = 2.14$ ppm, P = 85%, Q \approx 143 MeV

1440h → $\delta R_n/R_n = 0.38\%$ (⁴⁸Ca @ 200 MeV)

what is the need?

1

- Is there a need for a systematic study over "many" nuclei? PREX, CREX, SREX, ZREX, ...
- Is there a need for more than one
 Q-square point?
 Radius and diffuseness ... the whole form factor?

Jorge Piekarewicz (concluding remarks, MITP 2015)

P.-G. Reinhard et al., Phys. Rev. C 88 (2013) 034325

	²⁰⁸ Pb @ MREX	⁴⁸ Ca @ MREX	PREX-II	CREX
E _{beam}	155 MeV / 105 MeV	155 MeV / 105 MeV	≈ 1 GeV	2.2 GeV
Q	86 MeV / 58 MeV 0.44 fm ⁻¹ / 0.29 fm ⁻¹	143 MeV / 75 MeV 0.73 fm ⁻¹ / 0.38 fm ⁻¹	86 MeV 0.44 fm ⁻¹	154 MeV 0.78 fm ⁻¹
δ Α_{ΡV}/Α_{ΡV}	1.3 %	1.3%	3.6%	2.4 %
δ R_n/R_n	0.52%	0.38%	1.0%	0.5%

12/15

what is the need?			MREX		
	Iow	1 0.8 0.6 ⊡ [©] 0.4 0.2 0 0	$\Delta F_{w} \times 10$ 208Pb D 0.4 0.4 0.8 1.48Ca -208Pb -20	-min UGold EX - - - - - - - - - - - - - - - - - -	
\	²⁰⁸ Pb @ MREX	PG. Rein ⁴⁸ Ca @ MREX	nhard et al Phvs. Rev. C 88 (PREX-II	2013) 034325 CREX	
E _{beam}	155 MeV / 105 MeV	155 MeV / 105 MeV	≈ 1 GeV	2.2 GeV	
Q	86 MeV / 58 MeV 0.44 fm ⁻¹ / 0.29 fm ⁻¹	143 MeV / 75 MeV 0.73 fm ⁻¹ / 0.38 fm ⁻¹	86 MeV 0.44 fm ⁻¹	154 MeV 0.78 fm ⁻¹	
δ Α_{ΡV}/Α_{ΡV}	1.3%	1.3%	3.6%	2.4%	
δ R_n/R_n	0.52%	0.38%	1.0%	0.5%	
				12/15	

remaining questions

MREX @ Q = 86 MeV (= PREX-value) assumption: F_w = const., extract radius from one Q-point measurement

benefit: more precise R_n determination precise calibration combined with CREX

MREX @ Q = 58 MeV check assumption: measure F_w at two Q-points, **benefit:** precise R_n det. at 2nd Q-point but NO ab-initio theory MREX @ Q = 143 MeV (= CREX-value) benefit: ?

```
MREX @ Q = 75 MeV
check assumption:
measure F<sub>w</sub> at two Q-points
benefit: precise R<sub>n</sub> det. at 2<sup>nd</sup> Q-point
theory 15/15
```