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Complete experimental picture of proton and neutron 
properties in 40Ca and 48Ca and its theoretical 

interpretation 

•Motivation 

•Green’s functions method 

•ab initio 

• as a framework to analyze experimental data 
(and extrapolate and predict properties of 
exotic nuclei) 

--> dispersive optical model (DOM) 

• Focus on recent DOM —> DSM developments 

• Can do more than expected! 

• Conclusions
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Motivation
• Rare isotope physics requires a much stronger link between 

nuclear reactions and nuclear structure descriptions 

• We need an ab initio approach for optical potential —> optical 
potentials must therefore become nonlocal and dispersive 

• Current status to extract structure information from nuclear 
reactions involving strongly interacting probes unsatisfactory 

• Intermediate step: dispersive optical model as originally proposed 
by Claude Mahaux —> in need of extensions some discussed here
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Remarks

• Given a Hamiltonian, a perturbation expansion can be generated 
for the single-particle propagator or Green’s function  

• Dyson equation determines propagator in terms of nucleon self-
energy <—> also referred to as optical potential at positive energy 

• Self-energy is causal and obeys dispersion relations relating its 
real and imaginary part and must also be nonlocal (even in HF) 

• See e.g. —> 

• Data constrained self-energy acts as ideal interface between ab 
initio theory and experiment and allows unexpected predictions!
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Propagator / Green’s function
• Lehmann representation 

• Any other single-particle basis can be used 

• Overlap functions                    --> numerator  

• Corresponding eigenvalues       --> denominator 

• Spectral function 

• Spectral strength in the continuum 

• Discrete transitions 

• Positive energy —> see later
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Propagator from Dyson Equation and “experiment”
Equivalent to …

Self-energy: non-local, energy-dependent potential 
With energy dependence: spectroscopic factors < 1 
⇒ as extracted from (e,e’p) reaction

Schrödinger-like equation with:

Dyson equation also yields                                                    for positive energies

Elastic scattering wave function for protons or neutrons 
Dyson equation therefore provides: 
Link between scattering and structure data from dispersion relations

Spectroscopic factor
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Propagator in principle generates
• Elastic scattering cross sections for p and n 

• Including all polarization observables 

• Total cross sections for n 

• Reaction cross sections for p and n 

• Overlap functions for adding p or n to bound states in Z+1 or N+1 

• Plus normalization --> spectroscopic factor 

• Overlap function for removing p or n with normalization 

• Hole spectral function including high-momentum description 

• One-body density matrix; occupation numbers; natural orbits 

• Charge density 

• Neutron distribution 

• p and n distorted waves 

• Contribution to the energy of the ground state from VNN
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Dispersive Optical Model
• Claude Mahaux 1980s 

– connect traditional optical potential to bound-state potential 

– crucial idea: use the dispersion relation for the nucleon self-energy 

– smart implementation: use it in its subtracted form  

– applied successfully e.g. to 40Ca and 208Pb in a limited energy window 

– employed traditional volume and surface absorption potentials and a local 
energy-dependent Hartree-Fock-like potential 

– Reviewed in Adv. Nucl. Phys. 20, 1 (1991) 

• Radiochemistry group at Washington University in St. Louis: 
Charity and Sobotka propose to use the DOM for a sequence of 
Ca isotopes —> data-driven extrapolations to the drip line 
- First results PRL 97, 162503 (2006) 

- Subsequently —> attention to data below the Fermi energy related to 
ground-state properties —> Dispersive Self-energy Method (DSM)
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Optical potential <--> nucleon self-energy
• e.g. Bell and Squires --> elastic T-matrix = reducible self-energy 

• e.g. Mahaux and Sartor  
– relate dynamic (energy-dependent) real part to imaginary part 

– employ subtracted dispersion relation 

General dispersion relation for self-energy: 

Calculated at the Fermi energy 

Subtract 
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Elastic scattering data for protons and neutrons
• Local DOM implementation

 [deg]cmθ
0 50 100 150

Ω
/d

σd

310

810

1310

1810

2310
Fe54n+

0 50 100 150

Ω
/d

σd

210

610

1010

1410

1810

2210

Ca40n+

0 50 100 150

Ca40n+

Ca48n+

 [deg]cmθ
0 50 100 150

1

210

410

610

810

1010

Mo92n+

0 50 100 150

210

510

810

1110

1410

1710

Ni58n+

0 50 100 150

Ni60n+

0 50 100 150

 
R

ut
h

σ/
σ

210

710

1210

1710

2210

2510

Ca40p+

0 50 100 150

Ca42p+

Ca44p+

0 50 100 150

Ca48p+

<10 MeVlabE

<20 MeVlab10<E

<40 MeVlab20<E
<100 MeVlab40<E

>100 MeVlabE

0 50 100 150
 

R
ut

h
σ/

σ

10

510

910

1310

1710

1910

Ni58p+

0 50 100 150

Ni60p+

0 50 100 150

Ni62p+

0 50 100 150

Ni64p+

<10 MeVlabE

<20 MeVlab10<E

<40 MeVlab20<E

<100 MeVlab40<E

0 50 100 150

 
R

ut
h

σ/
σ

1

310

610

910

1210

1510

Fe54p+

0 50 100 150

Cr52p+

Ti50p+

 [deg]CMθ
0 50 100 150

210

710

1210

1710

2210

2610

Zr90p+

0 50 100 150

Mo92p+

 [deg]cmθJ. Mueller et al. 
PRC83,064605 (2011), 1-32



reactions and structure

Recent local 
DOM analysis 
--> towards 

global
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Nonlocal DOM implementation PRL112,162503(2014)

• Particle number --> nonlocal imaginary part 
• Microscopic FRPA & SRC --> different nonlocal properties above 

and below the Fermi energy 

• Include charge density in fit 
• Describe high-momentum nucleons <--> (e,e’p) data from JLab 

Implications 

• Changes the description of hadronic reactions because interior 
nucleon wave functions depend on non-locality 

• Consistency test of the interpretation of (e,e’p) possible 
• Independent “experimental” statement on size of three-body 

contribution to the energy of the ground state--> two-body only: 
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Comparison with ab initio FRPA calculation
• Volume integrals of imaginary part of nonlocal ab initio (FRPA) 

self-energy compared with DOM result for 40Ca 

• Ab initio S. J. Waldecker, C. Barbieri and W. H. Dickhoff  
Microscopic self-energy calculations and dispersive-optical-model potentials.  
Phys. Rev. C84, 034616 (2011), 1-11.
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Differential cross sections and analyzing powers
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Reaction (p&n) and total (n) cross sections

 [MeV]LabE
0 50 100 150 200

 [m
b]

σ

0

1000

2000

3000

4000

Ca40n+

totσ
reactσ

 [m
b]

σ

0

500

1000

1500

Ca40p+

totσ



Local version                   Charge density 40Ca 
radius correct…                   Non-locality essential 
PRC82,054306(2010)                   PR   PRL 112,162503(2014) 

High-momentum nucleons —> JLab can also be described —> E/A
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Critical experimental data—> charge density
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Do elastic scattering data tell us about correlations? 
• Scattering T-matrix (neutrons) 

• Free propagator 

• Propagator 

• Spectral representation 

• Spectral density for E > 0 

• Coordinate space 

• Elastic scattering also explicitly available

⌃`j(k, k
0;E) = ⌃⇤

`j(k, k
0;E) +

Z
dqq2⌃⇤

`j(k, q;E)G(0)(q;E)⌃`j(q, k
0;E)

G(0)(q;E) =
1

E � ~2q2/2m+ i⌘

Gp
`j(k, k

0;E) =
X

n

�n+
`j (k)

h
�n+
`j (k0)

i⇤

E � E⇤A+1
n + i⌘

+
X

c

Z 1

Tc

dE0
�cE0

`j (k)
h
�cE0

`j (k0)
i⇤

E � E0 + i⌘

G`j(k, k
0;E) =

�(k � k0)

k2
G(0)(k;E) +G(0)(k;E)⌃`j(k, k

0;E)G(0)(k;E)

Sp
`j(r, r

0;E) =
X

c

�cE
`j (r)

⇥
�cE
`j (r

0)
⇤⇤

�elE
`j (r) =


2mk0
⇡~2

�1/2 ⇢
j`(k0r) +

Z
dkk2j`(kr)G

(0)(k;E)⌃`j(k, k0;E)

�

Sp
`j(k, k

0;E) =
i

2⇡

h
Gp

`j(k, k
0;E+)�Gp

`j(k, k
0;E�)

i
=

X

c

�cE
`j (k)

⇥
�cE
`j (k

0)
⇤⇤



0

50

100
0 1 2 3 4 5 6 7

0

0.05

0.1

0.15

0.2

0.25

r [fm]

E [MeV]

 S
 −

 |χ
 |2   [

M
eV

−1
 fm

−1
]

• Inelastically! 

• Zero when there is no absorption!
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Adding an s1/2 neutron to 40Ca

Multiplied by r2
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d3/2

• One node now
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No nodes
• Asymptotically determined by inelasticity
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Determine location of bound-state strength
• Fold spectral function with bound state wave function 

• —> Addition probability of bound orbit 

• Also removal probability 

• Overlap function 

• Sum rule
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Spectral function for bound states
• [0,200] MeV —> constrained by elastic scattering data
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• Orbit closer to the continuum —> more strength in the continuum  

• Note “particle” orbits 

• Drip-line nuclei have valence orbits very near the continuum

reactions and structure

Quantitatively

Table 1: Occupation and depletion numbers for bound orbits in 40Ca.
dnlj [0, 200] depletion numbers have been integrated from 0 to 200 MeV. The
fraction of the sum rule that is exhausted, is illustrated by nn`j + dn`j ["F , 200].
Last column dnlj [0, 200] depletion numbers for the CDBonn calculation.

orbit nn`j dn`j [0, 200] nn`j + dn`j ["F , 200] dn`j [0, 200]
DOM DOM DOM CDBonn

0s1/2 0.926 0.032 0.958 0.035
0p3/2 0.914 0.047 0.961 0.036
1p1/2 0.906 0.051 0.957 0.038
0d5/2 0.883 0.081 0.964 0.040
1s1/2 0.871 0.091 0.962 0.038
0d3/2 0.859 0.097 0.966 0.041
0f7/2 0.046 0.202 0.970 0.034
0f5/2 0.036 0.320 0.947 0.036

PRC90,  061603(R) (2014)
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New DOM results for 48Ca

• Change of proton properties when 8 neutrons are added to 40Ca? 

• Change of neutron properties? 

• Can hard to measure quantities be indirectly constrained?
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What about neutrons?
• 48Ca —> charge density has been measured 

• Recent neutron elastic scattering data —> PRC83,064605(2011) 
• Local DOM  OLD                               Nonlocal DOM NEW
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Results 48Ca
• Density distributions 

• DOM —> neutron distribution —> Rn-Rp 

r [fm]



--> drip line

Comparison of neutron skin with other calculations 
and future experiments…

• Figure adapted from  
    C.J. Horowitz, K.S. Kumar, and R. Michaels, Eur. Phys. J. A (2014)  

• ”Ab initio”:
    G. Hagen et al., Nature Phys. 12, 186 (2016) 



--> drip line

Volume integrals for 40-48Ca
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Quantitative comparison of 40Ca and 48Ca

Spectroscopic 
factors

40Ca p 48Ca n 48Ca

0d3/2 0.76 0.65 ↓ 0.80 ↑

1s1/2 0.78 0.71 ↓ 0.83 ↑

0f7/2 0.73 0.59 ↓ 0.84 ↑
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Why are protons in 48Ca more correlated 
than in 40Ca?

Loss of flux in the elastic channel

Answer: data require more surface absorption 
in 48Ca than in 40Ca
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Very recent analysis (preliminary)
• NIKHEF (e,e’p) data with only DOM input (Atkinson in progress)

d3/2
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Conclusions
• It is possible to link nuclear reactions and nuclear structure  

• Vehicle: nonlocal version of Dispersive Optical Model (Green’s 
function method) as developed by Mahaux —> DSM 

• Can be used as input for analyzing nuclear reactions 
• Can predict properties of exotic nuclei 

• “Benchmark” for ab initio calculations: e.g. VNNN —> binding 
• Can describe ground-state properties  

– charge density & momentum distribution 

– spectral properties including high-momentum Jefferson Lab data 

• Elastic scattering determines depletion of bound orbitals 

• Outlook: reanalyze many reactions with nonlocal potentials... 
• For N ≷ Z sensitive to properties of neutrons —> weak charge 

prediction, large neutron skin, perhaps more…


