

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Ab initio computations of the electric dipole polarizability

Sonia Bacca | Theory Department | TRIUMF

NSKIN2016 Workshop, Mainz, May 23 2016

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Nuclear Chart

"Ab-initio" methods

- Start from neutrons and protons as building blocks (centre of mass coordinates, spins, isospins)
- Solve the non-relativistic quantum mechanical problem of A-interacting nucleons

 $H|\psi_i\rangle = E_i|\psi_i\rangle$

 $H = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

• Find numerical solutions with no approximations or controllable approximations (error bars)

 Calculate low-energy observables and compare with experiment to test nuclear forces and provide predictions for future experiments or quantity that cannot be measured

May 23 2016

RTRIUMF

Observables

Sonia Bacca

3

RIUMF

Observables

May 23 2016

Sonia Bacca

Polarizability

Why is it important to NSKIN2016?

+ It has been shown to correlate with neutron skin thickness in Density Functional Theory

★ Learn about equation of state of asymmetric nuclear matter

What can we tell from ab-initio calculations?

May 23 2016

Sonia Bacca

Tuesday, 24 May, 16

5

Experimental status

Stable Nuclei

Unstable Nuclei

Do we see the emergence of collective motions from first principle calculations?

May 23 2016

Sonia Bacca

Coupled-cluster theory

Many-body method that can extend the frontiers of ab-initio calculations to heavier and neutron nuclei

CCSDT

CCSD

Work by ORNL group, TUD group. Mature theory for bound states, but what about break-up reactions?

May 23 2016

Sonia Bacca

The problem of the continuum

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Depending on $\omega,$ many channels may be involved

May 23 2016

Sonia Bacca

Lorentz Integral Transform

Efros et al., Nucl.Part.Phys. 34 (2007) R459

RIUMF

Response in the continuum
$$R(\omega) = \oint_{f} \left| \left\langle \psi_{f} \left| \Theta_{l} \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

$$L(\sigma,\Gamma) = \int d\omega \frac{R(\omega)}{(\omega-\sigma)^2 + \Gamma^2} = \langle \tilde{\psi} | \tilde{\psi} \rangle$$

$$(H - E_0 - \boldsymbol{\sigma} + i\boldsymbol{\Gamma}) \mid \tilde{\psi} \rangle = \Theta \mid \psi_0 \rangle$$

- Due to imaginary part Γ the solution $| \psi
 angle$ is unique
- Since the r.h.s. is finite, then $|\psi
 angle$ has bound state asymptotic behaviour

You can use any good bound state method! e.g. Hyperspherical Harmonics,
No Core Shell Model,
Coupled Cluster Theory
$$L(\sigma, \Gamma) \xrightarrow{\text{inversion}} R(\omega) \text{ with all channels and final state interaction}$$

May 23 2016

LIT with Coupled Cluster Theory

Reduce the continuum problem to a bound-state problem

$$L(\sigma,\Gamma) = \int d\omega \frac{R(\omega)}{(\omega-\sigma)^2 + \Gamma^2} = \left\langle \tilde{\psi} | \tilde{\psi} \right\rangle < \infty$$

$$(H - E_0 - \boldsymbol{\sigma} + i\boldsymbol{\Gamma})|\tilde{\Psi}\rangle = \Theta|\Psi_0\rangle$$

Merging the Lorentz integral transform method with coupled-cluster theory : New many-body method to extend *ab initio* calculations of em reactions to medium-mass-nuclei

S.B. et al., Phys. Rev. Lett. 111, 122502 (2013)

$$(\bar{H} - E_0 - \sigma + i\Gamma) |\tilde{\Psi}_R\rangle = \bar{\Theta} |\Phi_0\rangle$$

$$\bar{H} = e^{-T} H e^{T}$$
$$\bar{\Theta} = e^{-T} \Theta e^{T}$$
$$|\tilde{\Psi}_R\rangle = \hat{R} |\Phi_0\rangle$$

Presently implemented at CCSD level

May 23 2016

Validation for ⁴He

LIT with Coupled Cluster Theory

• If one can invert the LIT, one can integrate the response function $\alpha_D = 2\alpha \int_{\omega_{th}}^{\varepsilon} d\omega \frac{R(\omega)}{\omega}$

Results

With Mirko Miorelli, PhD student at UBC

Sonia Bacca

13

Addressing neutron-rich nuclei

PRC 90, 064619 (2014)

Sonia Bacca

RIUMF

Extension to heavier nuclei

PRC 90, 064619 (2014)

May 23 2016

Sonia Bacca

Study of Correlations

Medium-mass nuclei with NN interactions

arXiv:1604.05381

Strong correlations of polarizability with charge radii Underestimating both radii and polarizability

Including three-nucleon forces

We need accurate interactions able to reproduce both energies and radii

Including three-nucleon forces

We need accurate interactions able to reproduce both energies and radii

Include radii in the fit of LEC for the three-body force

Study of Correlations

Medium-mass nuclei with NN + 3NF interactions

arXiv:1604.05381

May 23 2016

Study of Correlations

Medium-mass nuclei with NN + 3NF interactions

arXiv:1604.05381

Much better agreement with experimental data Variation of Hamiltonian can be used to assess the theoretical error bar

May 23 2016

Sonia Bacca

Results for ⁴⁸Ca

Nature Physics 12, 186-190 (2016)

May 23 2016

Tuesday, 24 May, 16

Results for ⁴⁸Ca

 $\chi {\rm EFT}$ band includes various interactions with 3NF

(p,p') experiments

Sonia Bacca

22

Dipole Strength of ¹⁶O

Pushing the mass limits...

Sonia Bacca

24

Outlook

- Ab-initio theory is able to provide predictions for neutron-skin and other observables strongly correlated to it
- Improvements of the theory include addressing the role of triples in CC and further investigating the dependence on the Hamiltonians

Thanks to my collaborators

Thank you for your attention!