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Motivation

• Task: compute scattering amplitudes as a Laurent expansion in the
dimensional regulator 𝜖, through differential equations

• Strategy: Use properties of scattering amplitudes (e.g. logarithmic
singularities, iterated integrals) to organize the computation in a clever way!

→ canonical basis, that admits canonical differential equations:

• 𝜖-factorized
• only simple poles
• independent differential forms, no hidden relations

Goal: study this for QED self-energies
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The (𝑔 − 2) and the Self-Energies in QED

• Calabi-Yau constants known to appear in the (g-2) of the electron:
[Laporta, Remiddi, 1996] [Laporta, 2017]

• related to the electron self-energy (1-particle-irreducible 2-point function)

→ Calabi-Yau geometries
→ two-point function ⇒ only one variable 𝑥 ≡ 𝑝2/𝑚2 ⇒ higher loop orders
→ compute full correlation functions in a ”real” theory (simplifications?)
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Loop Expansion
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Note: can only cut odd (even) numbers of massive lines for electron (photon) 3



Banana Integrals

• Calabi-Yau geometries will appear (at least) through banana integrals
• equal-mass 𝑙-loop banana integral ↔ (𝑙 − 1)-dimensional Calabi-Yau

• adding massless lines does not change the geometry

• banana with 𝑛 lines of equal mass and arbitrarily many massless lines
↔ (𝑛 − 2)-dimensional Calabi-Yau

→ odd-dimensional CYs for the electron
→ even-dimensional CYs for the photon
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QED Self-Energies – An Overview

electron self-energy photon self-energy
1 loop trivial trivial

2 loop
elliptic [Sabry, 1962] [Hönemann, Tem-

pest, Weinzierl, 2018]
trivial

3 loop elliptic [Duhr et al., 2024] K3 [Forner, Nega, Tancredi, 2025]

4 loop CY3 and elliptic (+...?) K3 (+...?)
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(Canonical) Differential Equations



Scalar Feynman Integrals

Scattering amplitudes are in general tensorial objects, but can be written as

M = ∑(tensorial coefficients) × (scalar Feynman integrals)

→ Ultimately, need to compute only scalar Feynman integrals (typically 𝑑 = 4 − 2𝜖)

I𝜈1,…,𝜈𝑚
= ∫ (

𝑙
∏
𝑗=1

d𝑑𝑘𝑗

𝑖𝜋𝑑/2 ) 1
𝐷𝜈1

1 ⋯ 𝐷𝜈𝑚𝑚

with inverse propagators of the form 𝐷𝑗 = 𝑞2
𝑗 − 𝑚2

𝑗
→ for a given set of propagators, the set of integrals I𝜈1,…,𝜈𝑚

forms an
integral family
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Master Integrals

• integration by parts identities (IBPs):

∫ d𝑑𝑘
𝑖𝜋𝑑/2

𝜕
𝜕𝑘𝜇

(
𝑣𝜇

𝐷𝜈1
1 ⋯ 𝐷𝜈𝑚𝑚

) = 0, 𝑣𝜇 = 𝑎𝑘𝜇 + 𝑐𝜇.

→ generate large number of equations among members of an integral family
→ reduce the set of scalar integrals to a minimal set of master integrals ⃗I

• integrals containing the same denominators form a sector
• e.g., I1,1,0,0, I2,1,0,0, I1,1,−1,0 belong to the same sector, while I1,1,1,1 does not
• the sector containing I1,1,0,0, I2,1,0,0, I1,1,−1,0 is a subsector of I1,1,1,1
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The ”Tree” of Master Integrals
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Differential Equations for Feynman Integrals

• then, use IBPs to derive differential equations for master integrals:
[Kotikov, 1993] [Remiddi, 1997] [Gehrmann, Remiddi, 2000]

d ⃗I
d𝑠𝑖

= 𝐴 ( 𝜖 ; {𝑠𝑗} ) ⃗I

𝑥=𝑠/𝑚2

−−−−−→ d ⃗I
d𝑥

= 𝐴(𝜖; 𝑥) ⃗I

• matrix with rational entries
• dimensional regulator; 𝑑 = 𝑑0 − 2𝜖
• kinematic invariants; here: 𝑝2 =∶ 𝑠 and 𝑚2

• in our case, 𝑑0 = 4 or 2 (→ dimensional shift relations)
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Differential Equations for Feynman Integrals

A =
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maximal cuts solve the homogeneous differential equation [Primo, Tancredi, 2017]
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Canonical Bases and 𝜖-Factorization

• goal: solve for ⃗I as expansion in 𝜖
• change of basis: ⃗J = 𝑇 ⃗I satisfies

d ⃗J
d𝑥

= 𝐵(𝜖; 𝑥) ⃗J , 𝐵 = 𝑇 𝐴𝑇 −1 + d𝑇
d𝑥

𝑇 −1

• strategy: find 𝜖-factorized (canonical) basis: [Henn, 2013]

d ⃗I𝐶
d𝑥

= 𝜖𝐴𝐶(𝑥) ⃗I𝐶,

• yields formal solution at every order 𝜖𝑛 in terms of iterated integrals,

d ⃗I(𝑛)
𝐶

d𝑥
= 𝐴𝐶

⃗I(𝑛−1)
𝐶 ,

up to boundary constants
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Canonical Bases in the Polylogarithmic Case

Canonical integrals: iterated integrals over logarithmic differential forms (”dlog”),
with a constant prefactor (”leading singularity”)

(→ they have uniform transcendental weight and are pure functions)
[Arkani-Hamed, Bourjaily, Cachazo, Trnka, 2012] [Kotikov, 2013]

E.g. consider the bubble for 𝜖 = 0 (in Baikov representation):

I1,1 ∼ ∫ d𝑧1 ∧ d𝑧2
1

𝑧1𝑧2√𝑥2 − 2𝑥(𝑧1 + 𝑧2 + 2) + (𝑧1 − 𝑧2)2

= ∫ d log(𝑓(𝑧1, 𝑧2)) ∧ d𝑧2
1

2𝑧2√𝑥2 − 2𝑥(𝑧2 + 2) + 𝑧2
2

= − 1
4√𝑥(𝑥 − 4)

∫ d log(𝑓(𝑧1, 𝑧2)) ∧ d log(𝑔(𝑧2))
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QED Self-Energies at Higher Loop Orders



Feynman Diagrams and Master Integrals

Feynman diagrams Master integrals Sectors
electron photon electron photon electron photon

1 loop 1 1 2 2 2 2
2 loop 3 3 8 5 6 4
3 loop 20 20 51 36 31 21
4 loop 189 189 ∼1000 ∼500
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Electron Self-Energy at Two Loops

Can map all scalar integrals to one family,

I𝜈1,…,𝜈5
= ∫ d𝑑𝑘1

𝑖𝜋𝑑/2 ∫ d𝑑𝑘2
𝑖𝜋𝑑/2

1
𝐷𝜈1

1 𝐷𝜈2
2 𝐷𝜈3

3 𝐷𝜈4
4 𝐷𝜈5

5

I0,1,1,0,0, I1,1,0,1,0

I0,1,1,1,0, I1,0,1,0,1
I0,2,1,1,0, I1,0,1,−1,1

I1,1,0,1,1, I1,1,1,1,1
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Electron Self-Energy at Two Loops – The Sunrise Graph

The maximal cut (homogeneous solution) of the sunrise graph is elliptic:

MC (I𝑑=2
0,1,1,1,0) ∼ ∫ d𝑧1 ∧ d𝑧2

1
2 (𝑥2 − 𝑥(𝑧1𝑧2 + 2) + 𝑧2

1𝑧2 + 𝑧1(𝑧2 − 3)𝑧2 + 1)

∼ ∫ d𝑧2
1

√𝑧2(𝑧2 − 4)(𝑧2 − (
√

𝑥 − 1)2)(𝑧2 − (
√

𝑥 + 1)2)
log(𝑓(𝑧1, 𝑧2))

square root of 4th-order polynomial → elliptic curve 𝑦2 = 𝑃 (4)
Sun(𝑧2; 𝑥)

new differential forms
d𝑧

√𝑃 (4)
Sun(𝑧; 𝑥)

, 𝑧2d𝑧

√𝑃 (4)
Sun(𝑧; 𝑥)

(derivative)
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Wronskian Splitting

• even if we have the differential forms under control, we cannot get rid of the
double poles

• starting from the derivative basis, we need a further basis rotation to reach
𝜖-factorisation

• crucial step: split the Wronskian matrix, [Görges, Nega, Tancredi, Wagner, 2023]

[Duhr et al., 2025]

( 𝜔0 𝜔1
𝜕𝑥𝜔0 𝜕𝑥𝜔1

)
⏟⏟⏟⏟⏟⏟⏟

𝑊

= (
𝜔0 0

𝜕𝑥𝜔0
Δ
𝜔0

)
⏟⏟⏟⏟⏟⏟⏟

𝑊ss

⋅ (
1 𝜔1

𝜔0

0 1
)

⏟⏟⏟⏟⏟
𝑊u

,

and rotate with 𝑊 −1
ss

• In a limit where the geometry degenerates to a sphere, this construction
gives a canonical basis in the polylogarithmic sense!
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Photon Self-Energy at Three Loops

• 2 integral families, 36 master integras, 21 sectors
• top sectors

• again, there is only one sector which is not polylogarithmic on the maximal
cut: the equal-mass banana sector

→ first, consider only its maximal cut

17



The Equal-Mass Three-Loop Banana Graph

On the maximal cut we find the form:
d𝑧1d𝑧2

√𝑃 (4)(𝑧1, 𝑧2; 𝑥)

→ K3 surface → differential forms
d𝑧1d𝑧2

√𝑃 (4)(𝑧1, 𝑧2; 𝑥)
and derivatives
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Canonical Differential Equations for the Three-Loop Banana

Follow same procedure as before:

• transform to the derivative basis
• split up the Wronskian matrix,

𝑊 = 𝑊𝑠𝑠 ⋅
⎛⎜⎜⎜
⎝

1 𝜛1
𝜛0

𝜛2
𝜛0

0 1 𝜛1
𝜛0

0 0 1

⎞⎟⎟⎟
⎠

,

and rotate with 𝑊 −1
𝑠𝑠

• use Griffiths transversality to obtain the quadratic relation

𝜛″
0 (𝑥) = 1

2
(− (𝑥 − 8)

(𝑥 − 16)(𝑥 − 4)𝑥
𝜛0(𝑥) −

4 (𝑥2 − 15𝑥 + 32)
(𝑥 − 16)(𝑥 − 4)𝑥

𝜛′
0(𝑥) + 𝜛′

0(𝑥)2

𝜛0(𝑥)
) ,

to eliminate 𝜛″
0 (𝑥)
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Additional Functions

To reach 𝜖-factorization, we need a further rotation with two new functions

𝐺1(𝑥) = −
𝑥

∫
0

d𝑢(𝑢 − 8)(𝑢 + 8)3𝜛0(𝑢)2

32(𝑢 − 16)2(𝑢 − 4)2 = 𝑥
32

+ 𝑥2

64
+ 93𝑥3

16384
+ 𝑂(𝑥4) ,

𝐺2(𝑥) =
𝑥

∫
0

d𝑢 8𝐺1(𝑢)
√(4 − 𝑢)(16 − 𝑢)𝑢𝜛0(𝑢)

= 𝑥
32

+ 19𝑥2

2048
+ 167𝑥3

65536
+ 𝑂(𝑥4)
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A Look at The Full Differential Equation

Couplings of higher sectors require also

𝐺3(𝑥) =
𝑥

∫
0

d𝑢(𝑢 + 2)𝜛0(𝑢)
(4 − 𝑢)3/2√

𝑢

=
√

𝑥
2

+ 5𝑥3/2

32
+ 75𝑥5/2

2048
+ 𝑂(𝑥7/2)

1 10 20 30 36

1

10

20

30

36

1 10 20 30 36

1

10

20

30

36
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Electron Self-Energy at Four Loops: ”Ladder” Family

Consider the integral family with top sector

• 160 master integrals, 72 sectors
• contains the equal-mass banana as a subsector → periods of a CY threefold

holomorphic form

d𝑧1d𝑧2d𝑧3

√𝑃4(𝑧1, 𝑧2, 𝑧3; 𝑥)

+ tower of derivatives
→ Wronskian splitting
→ but we also encounter many elliptic sectors (on the maximal cut!) 22



Sectors With Non-Trivial Geometries

Photon

• K3 at 3 loops (equal-mass banana)

Electron

• 2 loop: sunrise (electron)
• 3 loop: four elliptic sectors [Duhr et al., 2024]:

Elliptic curves all given by 𝑦2 = 𝑃 (4)
Sun(𝑧2; 𝑥)

• 4 loop ladder family of the electron self-energy: CY3 (equal-mass banana),
but there are also 13 elliptic maximal cuts 23



Elliptic Sectors of the 4-Loop Ladder Family

These are obviously related to the sunrise!

24



Elliptic Sectors of the 4-Loop Ladder Family

But also these all relate back to the elliptic curve of the sunrise! (on the max cut)

Many of them couple to the CY3!
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Summary and Outlook

• Calabi-Yau varieties play a fundamental role in perturbative QFT
• today we saw this explicitly in QED
• organize differential equations in a convenient way with canonical basis
• Many open challenges (which become especially relevant at 4 loops):

• integrand analysis: how to find the right forms and the right parametrizations?
• couplings between non-trivial geometries
• new ”G”-functions: independence and geometric interpretation?
• Why do all elliptic curves map to the sunrise?

⋮

Thank you! ©
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