

The α_s analyses from hadronic τ decays from OPAL and ALEPH data

Diogo Boito

Instituto de Física de São Carlos Universidade de São Paulo

In coll. with O Catà, M Golterman, M Jamin, A Mahdavi, K Maltman, J Osborne, and S Peris

Main references:

- 1. Phys Rev D 91 (2015)
- 2. Phys Rev D 85 (2012)
- 3. Phys Rev D 84 (2011)

Det. of Fund. Params. in QCD @ Mainz, March 2016

Outline

Introduction

- Analysis with OPAL data
- Analysis with ALEPH data
- Averaged results, comparison, preliminary combined fits
- Final remarks and conclusion

The main subject of this talk

 Results from analyses based on OPAL and ALEPH data, robustness, averages, quality of fits, combinations etc

 $\alpha_s(m_{\tau}^2) = 0.303 \pm 0.009$ FOPT $\alpha_s(m_{\tau}^2) = 0.319 \pm 0.012$ CIPT

 $\alpha_s(m_Z^2) = 0.1165 \pm 0.0012$ FOPT $\alpha_s(m_Z^2) = 0.1185 \pm 0.0015$ CIPT

DB, Golterman, Maltman, Osborne, Peris 2015 Averaged values from analyses of ALEPH and OPAL data
$$\begin{split} R_{V+A;ud}^{\tau} &= N_c \, S_{\rm EW} \, |V_{ud}|^2 (1 + \delta_{\rm P} + \delta_{\rm NP}) \\ \delta_{\rm NP} &= 0.020 \pm 0.009 \quad {\rm FOPT} \\ \delta_{\rm NP} &= 0.016 \pm 0.010 \quad {\rm CIPT} \end{split}$$

ALEPH based analysis

The main subject of this talk

 Results from analyses based on OPAL and ALEPH data, robustness, averages, quality of fits, combinations etc

 $\alpha_s(m_{\tau}^2) = 0.303 \pm 0.009$ FOPT $\alpha_s(m_{\tau}^2) = 0.319 \pm 0.012$ CIPT

 $\alpha_s(m_Z^2) = 0.1165 \pm 0.0012$ FOPT $\alpha_s(m_Z^2) = 0.1185 \pm 0.0015$ CIPT

DB, Golterman, Maltman, Osborne, Peris 2015 Averaged values from analyses of ALEPH and OPAL data

$$R_{V+A;ud}^{\tau} = N_c \, S_{\rm EW} \, |V_{ud}|^2 (1 + \delta_{\rm P} + \delta_{\rm NP})$$

$$\delta_{\rm NP} = 0.020 \pm 0.009 \quad \text{FOPT}$$

 $\delta_{\rm NP} = 0.016 \pm 0.010 \quad {\rm CIPT}$

ALEPH based analysis

Framework

Uses three weight functions

$$w_1 = 1, \ w_2 = 1 - x^2, \ w_\tau = (1 - x)^2 (1 + 2x)$$

• Only two LO condensate contributions $C_{6,8}$. Good perturbative behaviour. Beneke, DB, Jamin, '13

- Employs a window of values $s_0^{\min} \leq s_0 \leq m_{ au}^2$, more data points.
- DV contribution. For $s \ge s_0^{\min}$

$$\rho_{V/A}^{\rm DV}(s) = \exp\left(-\delta_{V/A} - \gamma_{V/A}s\right)\sin(\alpha_{V/A} + \beta_{V/A}s)$$

- Analysis done in *V* and/or *A* (necessary)
- Fully self-consistent. No OPE or DV contribution is neglected.
 see Peris' talk
- DVs must be taken into account. (In order to achieve self-consistency)

Main message

Inclusion of DVs makes safer the use of lower s_0 and improves self-consistency

We **always** analyse **F**inite **E**nergy **S**um **R**ules of the type:

$$\int_{0}^{s_{0}} ds \, w\left(\frac{s}{s_{0}}\right) \frac{1}{\pi} \text{Im}\Pi(s) = \frac{-1}{2\pi i} \oint_{|z|=s_{0}} dz \, w\left(\frac{z}{s_{0}}\right) \Pi(z)$$

lm(s)

We **always** analyse Finite Energy Sum Rules of the type:

•
$$w_1 = 1, w_2 = 1 - x^2, w_\tau = (1 - x)^2 (1 + 2x)$$

Im(s)

•
$$w_1 = 1, w_2 = 1 - x^2, w_\tau = (1 - x)^2 (1 + 2x)$$

•
$$s_0^{\min} \le s_0 \le m_\tau^2$$

lm(s)

•
$$w_1 = 1, w_2 = 1 - x^2, w_\tau = (1 - x)^2 (1 + 2x)$$

•
$$s_0^{\min} \le s_0 \le m_\tau^2$$

Includes the DV contribution. Do not neglect any LO condensate contri.

→ see Peris' talk

Analysis done in V and/or A (necessary)

QCD parms. @ Mainz `16

4

Im(s)

Analysis with OPAL data

DB, M Golterman, M Jamin, A. Mahdavi, K Maltman, J Osborne, S Peris, Phys Rev D 85 (2012)

The OPAL data

- Why use OPAL data with larger errors than ALEPH's?
- Correlations due to unfolding not properly account for in the 05/08 ALEPH spec. functions. DB, Catà, Golterman, Jamin, Maltman, Osborne and Peris, '11

In 2012 this was the only reliable data set

Fits

Fits to updated OPAL data:

- V channel, $w_0 = 1$,
- V and A channel $w_0 = 1$,
- V channel $w_0 = 1$, $w_2 = 1 x^2$, $w_3 = (1 x)^2(1 + 2x)$,
- V and A channel $w_0 = 1$, $w_2 = 1 x^2$, $w_3 = (1 x)^2(1 + 2x)$, and other combinations, all with consistent results
- Weinberg sum rules satisfied for all (V and A) fits \rightarrow see Peris' talk
- Markov-chain Monte Carlo study of the chi^2 function
- Extracted values for α_s , OPE condensates, and DV params.
- Calculate from the results the total non-perturbative contribution to $R_{ au}$

Results for the strong coupling:

$$\begin{aligned} &\alpha_s(m_\tau^2) = 0.325 \pm 0.018 \ (\overline{\text{MS}}, n_f = 3, \text{FOPT}) \\ &\alpha_s(m_\tau^2) = 0.347 \pm 0.025 \ (\overline{\text{MS}}, n_f = 3, \text{CIPT}) \end{aligned}$$

McMC checks

Markov-chain Monte Carlo analysis of the χ^2 distribution.

- Tool to understand instabilities of the fits
- Projections from 5d to 2d plots
- χ^2 has two minima
- Physical solution: minimum with higher α_s (which is also the absolute minimum)

McMC checks

Markov-chain Monte Carlo analysis of the χ^2 distribution.

- Tool to understand instabilities of the fits
- Projections from 5d to 2d plots
- χ^2 has two minima
- Physical solution: minimum with higher α_s (which is also the absolute minimum)

Further fits and checks

Some consistency checks:

 $\begin{array}{c} 3.9 \\ 3.8 \\ 3.7 \\ 3.6 \\ 3.6 \\ 3.5 \\ 3.4 \\ 1.0 \\ 1.5 \\ 2.0 \\ s_0 \, (\text{GeV}^2) \end{array}$

First Weinberg sum rule

Final numbers based on OPAL data

Fits are good and stable within their somewhat large uncertainties

V-channel, w=1

 $\begin{aligned} &\alpha_s(m_Z^2) = 0.1191 \pm 0.0022 \ (\overline{\text{MS}}, n_f = 5, \text{FOPT}) \\ &\alpha_s(m_Z^2) = 0.1218 \pm 0.0027 \ (\overline{\text{MS}}, n_f = 5, \text{CIPT}) \end{aligned}$

V&A channels, w=1, w=1-x^2, w_tau

$$\begin{split} &\alpha_s(m_Z^2) = 0.1175 \pm 0.0017 ~(\overline{\text{MS}}, n_f = \texttt{5, FOPT}) \\ &\alpha_s(m_Z^2) = 0.1206 \pm 0.0020 ~(\overline{\text{MS}}, n_f = \texttt{5, CIPT}) \end{split}$$

Final numbers based on OPAL data

Fits are good and stable within their somewhat large uncertainties

V-channel, w=1

 $\begin{aligned} &\alpha_s(m_Z^2) = 0.1191 \pm 0.0022 \ (\overline{\text{MS}}, n_f = 5, \text{FOPT}) \\ &\alpha_s(m_Z^2) = 0.1218 \pm 0.0027 \ (\overline{\text{MS}}, n_f = 5, \text{CIPT}) \end{aligned}$

Both fits are stable against s_0 variations Choose the chi^2-type fit (McMC) V&A channels, w=1, w=1-x^2, w_tau

$$\begin{aligned} &\alpha_s(m_Z^2) = 0.1175 \pm 0.0017 \ (\overline{\text{MS}}, n_f = \text{5, FOPT}) \\ &\alpha_s(m_Z^2) = 0.1206 \pm 0.0020 \ (\overline{\text{MS}}, n_f = \text{5, CIPT}) \end{aligned}$$

Analysis with ALEPH data

D. Boito

DB, M Golterman, K Maltman, J Osborne, S Peris, Phys Rev D 91 (2015)

ALEPH data as of January 2014

New ALEPH spectral functions with new unfolding, new binning, and corrected correlations.

Best data set. Only available since January 2014.

Fits to revised ALEPH data:

- V channel, $w_0 = 1$,
- V and A channel $w_0 = 1$,
- V channel $w_0 = 1$, $w_2 = 1 x^2$, $w_3 = (1 x)^2(1 + 2x)$,
- V and A channel $w_0 = 1$, $w_2 = 1 x^2$, $w_3 = (1 x)^2(1 + 2x)$, and other combinations, all with consistent results
- Weinberg sum rules satisfied for all (V and A) fits \rightarrow see Peris' talk
- Markov-chain Monte Carlo study of the chi^2 function
- Extracted values for α_s , OPE condensates, and DV params.
- Calculate from the results the total non-perturbative contribution to $\,R_{ au}$

V channel, $w_1 = 1$

$$\chi^2 = 24.5/16, \ s_0^{\min} = 1.55 \ {
m GeV}$$

5 parms., 16 dof

McMC for ALEPH data

ALEPH data

QCD parms. @ Mainz `16

McMC for ALEPH data

OPAL data

ALEPH data

QCD parms. @ Mainz `16

V channel, $w_1=1$, $w_2=1-x^2$, $w_ au$

block – diagonal, $s_0^{\min} = 1.55$ GeV 7 parms., 61 dof

QCD parms. @ Mainz `16

15

V and A, $w_1=1$, $w_2=1-x^2$, $w_ au$

block – diagonal, $s_0^{\min} = 1.55 \text{ GeV}$

Consistency checks

QCD parms. @ Mainz `16

17

Final numbers based on ALEPH data

Fits are good, consistent, and stable, no sign of fake minima in the chi²

V-channel, w=1, s_0V channel, w=1, w=1-x^2, w_tau $\alpha_s(m_Z^2) = 0.1155 \pm 0.0015 (\overline{MS}, n_f = 5, FOPT)$ $\alpha_s(m_Z^2) = 0.1155 \pm 0.0014 (\overline{MS}, n_f = 5, FOPT)$ $\alpha_s(m_Z^2) = 0.1173 \pm 0.0018 (\overline{MS}, n_f = 5, CIPT)$ $\alpha_s(m_Z^2) = 0.1174 \pm 0.0019 (\overline{MS}, n_f = 5, CIPT)$

Final numbers based on ALEPH data

Fits are good, consistent, and stable, no sign of fake minima in the chi²

V-channel, w=1, s_0

 $\alpha_s(m_Z^2) = 0.1155 \pm 0.0015 (\overline{\text{MS}}, n_f = 5, \text{FOPT})$ $\alpha_s(m_Z^2) = 0.1173 \pm 0.0018 (\overline{\text{MS}}, n_f = 5, \text{CIPT})$ V channel, w=1, w=1-x^2, w_tau

 $\alpha_s(m_Z^2) = 0.1155 \pm 0.0014 \quad (\overline{\text{MS}}, n_f = 5, \text{FOPT})$ $\alpha_s(m_Z^2) = 0.1174 \pm 0.0019 \quad (\overline{\text{MS}}, n_f = 5, \text{CIPT})$

Improved stability against s_0 variations

$$\begin{split} R_{V+A;ud}^{\tau} &= N_c \, S_{\rm EW} \, |V_{ud}|^2 (1+\delta_{\rm P}+\delta_{\rm NP}) \\ \delta_{\rm NP} &= 0.020 \pm 0.009 \ \ \text{FOPT} \\ \delta_{\rm NP} &= 0.016 \pm 0.010 \ \ \text{CIPT} \end{split}$$

Analysis at a single point $s_0 = m_{\tau}^2$, neglecting higher C_D s, assuming no DVs Davier, Höcker, Malaescu, Yuan, Zhang, '14 $\alpha_s : (+10\% \text{ larger}) \pm (\text{half errors})$

 $\delta_{\rm NP}^{\rm [Davier \ et \ al]} = -0.0064(13)$

Averaged results, comparison, preliminary combined fits

Comparison and averaged results

Values extracted from the revised ALEPH data (V fit with three weight functions)

 $\alpha_s(m_Z^2) = 0.1155 \pm 0.0014 \quad (\overline{\text{MS}}, n_f = 5, \text{ FOPT})$ $\alpha_s(m_Z^2) = 0.1174 \pm 0.0019 \quad (\overline{\text{MS}}, n_f = 5, \text{ CIPT})$ Values extracted from the **updated OPAL data** (*V* fit with w=1)

 $\alpha_s(m_Z^2) = 0.1191 \pm 0.0022 \text{ (}\overline{\text{MS}}, n_f = 5, \text{FOPT)}$ $\alpha_s(m_Z^2) = 0.1218 \pm 0.0027 \text{ (}\overline{\text{MS}}, n_f = 5, \text{CIPT)}$

Weighted **average** between **ALEPH- and OPAL**-based analyses

 $\alpha_s(m_Z^2) = 0.1165 \pm 0.0012 \quad (\overline{\text{MS}}, n_f = 5, \text{FOPT})$ $\alpha_s(m_Z^2) = 0.1185 \pm 0.0015 \quad (\overline{\text{MS}}, n_f = 5, \text{CIPT})$

Comparison and averaged results

20

Preliminary results of a combined analysis

Preliminary combined analysis of w(x) = 1 moments

Assuming ALEPH and OPAL to be uncorrelated

 $\chi^2 = \chi^2_{\rm ALEPH} + \chi^2_{\rm OPAL}$

An exercise: a fit to the spectral function

Can one drop the FESR and fit only the spectral function?

- As an exercise, one can try to drop the use of FESR and simply fit the spectral functions
- Question: is this equivalent to fit the FESR with w(x) = 1? (The answer is **NO**)

22

Can one drop the FESR and fit only the spectral function?

- As an exercise, one can try to drop the use of FESR and simply fit the spectral functions
- Question: is this equivalent to fit the FESR with w(x) = 1? (The answer is NO)

Fit to ALEPH spectral function

Sample of results:

$s_0 \; ({\rm GeV^2})$	dof	$\chi^2/{\rm dof}$	$\alpha_s(m_\tau)$	δ_V	• • •
1.525	17	1.72	0.382(86)	3.9(1.8)	• • •
1.550	16	1.80	0.35(22)	3.5(1.9)	• • •
1.575	15	1.62	0.3(2.3)	3.5(2.6)	• • •

Sample of correlations:

Imple of correlations:

$$\delta_V$$
 γ_V
 $\alpha_s \mid 0.96$
 -0.95
 \cdot

Huge uncertainties (~50%), huge correlations (almost ~100%), very unstable results.

 $\int_{0}^{s_{0}} ds \, w(s) \, \frac{1}{\pi} \mathrm{Im}\tilde{\Pi}(s) = \frac{-1}{2\pi i} \oint_{|z|=s_{0}} dz \, w(z) \, \tilde{\Pi}(z)$ Fit to V-channel, w(x)=1, ALEPH data

Sample of results:

s_{\min} (GeV ²)	χ^2/dof	α_s	δ_V	••	•
1.525	29.0/17	0.302(11)	3.37(43)		•
1.550 1.575	24.5/16 23.5/15	0.295(10) 0.298(11)	3.50(50) 3.50(47)	• •	•

Sample of correlations:

$$\frac{\delta_V}{\alpha_s} \frac{\gamma_V}{0.600} - 0.606}$$

Much smaller uncertainties (~7%), smaller correlations (~65%), stable results.

Conclusions

Conclusions

- We presented a consistent analysis.
- Results based on fits that are sound (good statistics), and that pass theory tests (WSRs, energy variation, etc)
- Corrected ALEPH data resolved the issues present in the OPAL analysis.
- Further progress will require better understanding of DVs.
- CIPT or FOPT?
 - → see Jamin's talk
- Better data (Belle?) would also be instrumental.

 $\alpha_s(m_Z^2) = 0.1165 \pm 0.0012$ FOPT $\alpha_s(m_Z^2) = 0.1185 \pm 0.0015$ CIPT

avrg. between ALEPH & OPAL

 $R_{V+A;ud}^{\tau} = N_c S_{\rm EW} |V_{ud}|^2 (1 + \delta_{\rm P} + \delta_{\rm NP})$

 $\delta_{\rm NP} = 0.020 \pm 0.009 \ {\rm fopt}$

 $\delta_{\rm NP}=0.016\pm0.010~{\rm CIPT}$

```
ALEPH based analysis
```


The speaker's attendance at this conference was sponsored by the Alexander von Humboldt Foundation.

http://www.humboldt-foundation.de

Back-up material

Statistics: two types of fits

- All fits have strong correlations.
- Fits using a single weight function are standard chi^2 fits:

$$\chi^2(\boldsymbol{\theta}) = (\boldsymbol{y} - \boldsymbol{\mu}(\boldsymbol{\theta}))^T C^{-1} (\boldsymbol{y} - \boldsymbol{\mu}(\boldsymbol{\theta}))$$

- Markov-Chain MC scan of the chi^2
- Combining weight functions in a fit introduces strong correlations (tiny eigenvalues in the covariance matrix)

Common difficulty with strong correlations

Solution:

$$Q^2(\boldsymbol{\theta}) = (\boldsymbol{y} - \boldsymbol{\mu}(\boldsymbol{\theta}))^T \tilde{C}^{-1}(\boldsymbol{y} - \boldsymbol{\mu}(\boldsymbol{\theta}))$$

- $\bullet\ C$ is a **block-diagonal** matrix: includes correlations between a single weight function but does not include correlations between moments of two different weights
- The full covariance matrix is used in the error propagations

Rescaled OPAL data

- Update of OPAL spectral functions
 - The '98 OPAL spectral functions are constructed as sums over exclusive modes.
 - Normalizations fixed to the 1998 PDG values.
 - We have rescaled the distributions to build updated spectral functions (we employ recent unitarity-constrained HFAG values)

An illustration of the problem with the correlations in the 2005/08 ALEPH spectral functions

2005/08

2013/14

Inclusion of condensates with D > 8 is crucial in obtaining this agreement.

 $w_{12} = (1-x)^3 (1+2x) x^2$ w₁₂ OPE, spectral integrals old strategy ł 0.0018 2.5 2 3 s_{-} [GeV²] 0.001 $w_{13} = (1-x)^3 (1+2x) x^{3}$ w₁₃ OPE, spectral integrals old strategy 0.0009 ĖŦŦŦŦŦŦŦŦ ¥ 0.0008 2 2.5 3 $s_0 [GeV^2]$

0.002

