The Pion-Nucleon-Nucleon Coupling Constants

E. Ruiz Arriola

Universidad de Granada Atomic, Molecular and Nuclear Physics Department

Determination of the Fundamental Parameters in QCD Mainz Institute for Theoretical Physics Johannes Gutenberg University 7-11 March 2016

Rodrigo Navarro Pérez, José Enrique Amaro Soriano

Fundamental Forces

Cavendish (1798) "Experiments to determine the Density of the Earth" Coulomb (1785) "Premier mmoire sur llectricit et le magntisme"

Strong Forces

Yukawa (1935)

$$V(r) = -f^2 \frac{e^{-mr}}{r}$$

- Kemmer (1938) Isospin $\rightarrow \pi^0$
- Bethe (1940) $f^2 = 0.077 0.080$ (Deuteron)

Enrique Ruiz Arriola (UGR)

Fundamental Forces beween protons

References on Error Analysis of Nuclear Forces

- [1] Coarse graining Nuclear Interactions Prog. Part. Nucl. Phys. 67 (2012) 359
- [2] Phenomenological High Precision Neutron-Proton Delta-Shell Potential Phys.Lett. B724 (2013) 138-143.
- [3] Error estimates on Nuclear Binding Energies from Nucleon-Nucleon uncertainties arXiv:1202.6624 [nucl-th].
- [4] Nuclear Binding Energies and NN uncertainties PoS QNP 2012 (2012) 145
- [5] Effective interactions in the delta-shells potential Few Body Syst. 54 (2013) 1487-1490.
- [6] Nucleon-Nucleon Chiral Two Pion Exchange potential vs Coarse grained interactions PoS CD12 (2013) 104.
- [7] Partial Wave Analysis of Nucleon-Nucleon Scattering below pion production Phys.Rev. C88 (2013) 024002, Phys.Rev. C88 (2013) 6, 069902.
- [8] Coarse-grained potential analysis of neutron-proton and proton-proton scattering below the pion production threshold Phys.Rev. C88 (2013) 6, 064002, Phys.Rev. C91 (2015) 2, 029901.
- [9] Coarse grained NN potential with Chiral Two Pion Exchange Phys.Rev. C89 (2014) 2, 024004.
- [10] Error Analysis of Nuclear Matrix Elements Few Body Syst. 55 (2014) 977-981.
- [11] Partial Wave Analysis of Chiral NN Interactions Few Body Syst. 55 (2014) 983-987.

- [12] Statistical error analysis for phenomenological nucleon-nucleon potentials Phys.Rev. C89 (2014) 6, 064006.
- [13] Error analysis of nuclear forces and effective interactions J.Phys. G42 (2015) 3, 034013.
- [14] Bootstrapping the statistical uncertainties of NN scattering data Phys.Lett. B738 (2014) 155-159.
- [15] Triton binding energy with realistic statistical uncertainties Phys.Rev. C90 (2014) 4, 047001. (with E. Garrido)
- [16] The Low energy structure of the Nucleon-Nucleon interaction: Statistical vs Systematic Uncertainties arXiv:1410.8097 [nucl-th].
- [17] Low energy chiral two pion exchange potential with statistical uncertainties Phys.Rev. C91 (2015) 5, 054002.
- [18] Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances Phys.Rev. C91 (2015) 2, 024003. (with M. Piarulli, L. Girlanda, R. Schiavilla)
- [19] The Falsification of Nuclear Forces arXiv:1508.03271 [nucl-th].
- [20] Statistical error propagation in ab initio no-core full configuration calculations of light nuclei Phys.Rev. C92 (2015) 6, 064003 (with P- Maris, J. Vary)
- [21] Uncertainty quantification of effective nuclear interactions Int. J. Mod. Phys. E 0218-2013
- [22] Validation of NN forces in light nuclei (in preparation) (with A. Nogga)

THE PROBLEM IN NUCLEAR PHYSICS

- GOAL: Estimate uncertainties in Nuclear Physics from IGNORANCE of NN,3N,4N interaction Reduce computational cost
- Statistical Uncertainties: NN,3N,4N Data Data abundance bias
- Systematic Uncertainties: NN,3N,4N potential Many forms of potentials possible
- Confidence level of Imperfect theories vs Perfect experiments

OUR APPROACH

- Start with NN
- Fit data WITH ERRORS with a simple interaction
- Estimate uncertainties of Effective Interactions and Matrix elements

Fundamental approach: QCD

- Lattice form factor $g_{\pi NN} \sim 10 12$
- Lattice NN potential $g_{\pi NN}^2/(4\pi) = 12.1 \pm 2.7$
- QCD sum rules $g_{\pi NN} \sim 13(1)$

Long distances

Nucleons exchange JUST one pion

• Low energies (about pion production) 8000 pp + np scattering data (polarizations etc.)

NN-OnLine http://nn-online.org 7 June 2013

NN-OnLine http://nn-online.org 7 June 2013

ANATOMY OF NUCLEAR FORCES

Nucleon-Nucleon Scattering

Scattering amplitude

$$\begin{split} M &= a + m(\sigma_1 \cdot \mathbf{n})(\sigma_2 \cdot \mathbf{n}) + (g - h)(\sigma_1 \cdot \mathbf{m})(\sigma_2 \cdot \mathbf{m}) \\ &+ (g + h)(\sigma_1 \cdot \mathbf{l})(\sigma_2 \cdot \mathbf{l}) + c(\sigma_1 + \sigma_2) \cdot \mathbf{n} \\ \mathbf{l} &= \frac{\mathbf{k}_f + \mathbf{k}_i}{|\mathbf{k}_f + \mathbf{k}_i|} \qquad \mathbf{m} = \frac{\mathbf{k}_f - \mathbf{k}_i}{|\mathbf{k}_f - \mathbf{k}_i|} \qquad \mathbf{n} = \frac{\mathbf{k}_f \wedge \mathbf{k}_i}{|\mathbf{k}_f \wedge \mathbf{k}_i|} \end{split}$$

• 5 complex amplitudes \rightarrow 24 measurable cross-sections and polarization asymmetries

Partial Wave Expansion

$$M^{s}_{m'_{s},m_{s}}(\theta) = \frac{1}{2ik} \sum_{J,l',l} \sqrt{4\pi(2l+1)} Y^{l'}_{m'_{s}-m_{s}}(\theta,0) \\ \times C^{l',s,J}_{m_{s}-m'_{s},m'_{s},m_{s}} i^{l-l'} (S^{J,s}_{l,l'} - \delta_{l',l}) C^{l,s,J}_{0,m_{s},m_{s}},$$
(1)

S-matrix

$$S^{J} = \begin{pmatrix} e^{2i\delta_{J-1}^{J,1}}\cos 2\epsilon_{J} & ie^{i(\delta_{J-1}^{J,1} + \delta_{J+1}^{J,1})}\sin 2\epsilon_{J} \\ ie^{i(\delta_{J-1}^{J,1} + \delta_{J+1}^{J,1})}\sin 2\epsilon_{J} & e^{2i\delta_{J+1}^{J,1}}\cos 2\epsilon_{J} \end{pmatrix},$$
 (2)

Analytical Structure

• $s = 4(M_N^2 + p^2) \to E_{\text{LAB}} = 2p^2/M_N$

 $\bullet\,$ Partial Wave Scattering Amplitude analytical for $|p| \leq m_\pi/2$

$$T_{ll'}^{J}(p) \equiv S_{ll'}^{J}(p) - \delta_{l,l'} = p^{l+l'} \sum_{n} C_{n,l,l'} p^{2n}$$

• Nucleons behave as elementary (AT WHAT SCALE ?)

● Nucleons are heavy → Local Potentials

$$V_{n\pi}(r) \sim \frac{g^{2n}}{r} e^{-nm_{\pi}r}$$

Enrique Ruiz Arriola (UGR)

$$\begin{split} V_{\text{OPE},pp}(r) &= f_{pp}^2 V_{m_{\pi^0},\text{OPE}}(r), \\ V_{\text{OPE},np}(r) &= -f_{nn}f_{pp}V_{m_{\pi^0},\text{OPE}}(r) + (-)^{(T+1)}2f_c^2 V_{m_{\pi^\pm},\text{OPE}}(r), \end{split}$$

where $V_{m,OPE}$ is given by

$$V_{m,OPE}(r) = \left(\frac{m}{m_{\pi^{\pm}}}\right)^2 \frac{1}{3}m \left[Y_m(r)\sigma_1 \cdot \sigma_2 + T_m(r)S_{1,2}\right],$$

$$S_{1,2} = 3\sigma_1 \cdot \hat{r}\sigma_2 \cdot \hat{r} - \sigma_1 \cdot \sigma_2$$

$$Y_m(r) = \frac{e^{-mr}}{mr}$$

$$T_m(r) = \frac{e^{-mr}}{mr} \left[1 + \frac{3}{mr} + \frac{3}{(mr)^2}\right]$$

Small short range

OPE exchange

$$V_{1\pi}(r) = -f_{\pi NN}^2 \frac{e^{-m_{\eta}r}}{r}$$

TPE exchange

• η -exchange

Small but crucial long range

- Coulomb interaction (pp) e/r
- Magnetic moments $\sim \mu_p \mu_n / r^3$, $\mu_p \mu_p / r^3$, $\mu_n \mu_n / r^3$ Lowered $\chi^2 / \nu \sim 2 \rightarrow \chi^2 / \nu \sim 2 \rightarrow 1$ Summing 1000-2000 partial waves
- Vacuum polarization (Uehling potential,Lamb-shift)
- Relativistic corrections $1/r^2$

Effective Elementary

When are two protons interacting as point-like particles ?

• Electromagnetic Form factor

$$F_i(q) = \int d^3 r e^{iq \cdot r} \rho_i(r)$$

Electrostatic interaction

$$V_{pp}^{\rm el}(r) = e^2 \int d^3 r_1 d^3 r_2 \frac{\rho_p(r_1)\rho_p(r_2)}{|\vec{r_1} - \vec{r_2} - \vec{r}|} \to \frac{e^2}{r} \qquad r > r_e \sim 2 {\rm fm}$$

Enrique Ruiz Arriola (UGR)

Quark Cluster Dynamics (qcd)

- Atomic analogue. Neutral atoms
- Non-overlapping atoms exchange TWO photons (Van der Waals force)
- Overlapping atoms are not locally neutral; ONE photon exchange is possible (Chemical bonding)

Finite size effects

• NN potential in the Born-Oppenheimer approximation

Calle Cordon, RA, '12

$$\bar{V}_{NN,NN}^{1\pi+2\pi+\dots}(\mathbf{r}) = V_{NN,NN}^{1\pi}(\mathbf{r}) + 2 \; \frac{|V_{NN,N\Delta}^{1\pi}(\mathbf{r})|^2}{M_N - M_\Delta} + \frac{1}{2} \; \frac{|V_{NN,\Delta\Delta}^{1\pi}(\mathbf{r})|^2}{M_N - M_\Delta} + \mathcal{O}(V^3) \,,$$

- Bulk of TWO-Pion Exchange Chiral forces reproduced
- Finite size effects set in at $2 \text{fm} \rightarrow \text{exchange quark effects become explicit}$
- High quality potentials confirm these trends.

Enrique Ruiz Arriola (UGR)

COARSE GRAINING

The number of parameters (for $E_{\text{LAB}} \leq 350 \text{ MeV}$)

At what distance look nucleons point-like ?

 $r > 2 \mathrm{fm}$

When is OPE the ONLY contribution ?

 $r_c > 3 \mathrm{fm}$

What is the minimal resolution where interaction is elastic ?

$$p_{\rm max} \sim \sqrt{M_N m_\pi} \rightarrow \Delta r = 1/p_{\rm max} = 0.6 {\rm fm}$$

How many partial waves must be fitted ?

$$l_{\rm max} = p_{\rm max} r_c = r_c / \Delta r = 5$$

Minimal distance where centrifugal barrier dominates

$$\frac{l(l+1)}{r_{\min}^2} \le p^2$$

• How many parameters ? (¹ S_0 , ³ S_1), (¹ P_1 , ³ P_0 , ³ P_1 , ³ P_2), (¹ D_2 , ³ D_1 , ³ D_2 , ³ D_3), (¹ F_3 , ³ F_2 , ³ F_3 , ³ F_4)

$$2 \times 5 + 4 \times 4 + 4 \times 3 + 4 \times 2 + 4 \times 1 = 50$$

POINT-LIKE NUCLEON

Delta Shell Potential

A sum of delta functions

$$V(r) = \sum_{i} \frac{\lambda_i}{2\mu} \delta(r - r_i)$$

[Aviles, Phys.Rev. C6 (1972) 1467]

- Optimal and minimal sampling of the nuclear interaction
- Pion production threshold $\Delta k \sim 2 \text{ fm}^{-1}$
- Optimal sampling, $\Delta r \sim 0.5 \text{fm}$

Coarse Graining the AV18 potential

Delta Shell Potential

- 3 well defined regions
- Innermost region $r \leq 0.5~{\rm fm}$
 - Short range interaction
 - No delta shell (No repulsive core)
- Intermediate region $0.5 \le r \le 3.0$ fm
 - Unknown interaction
 - λ_i parameters fitted to scattering data
- Outermost region $r \geq 3.0 \text{ fm}$
 - Long range interaction
 - Described by OPE and EM effects
 - Coulomb interaction V_{C1} and relativistic correction V_{C2} (pp)
 - Vacuum polarization V_{VP} (pp)
 - Magnetic moment V_{MM} (pp and np)

Fitting NN observables

🔀 🐻 🖬 🗇 🌍 👘 👬 🕅 🖅 9:29
Search
Search NN provider Start
Channel: pp
Observable: all
Energy (MeV): d < E < 350
Write to file: ppdata.txt
Output format: separate data
Order by: energy
Minclude star (*) data
Minclude excluded data

- Database of NN scattering data obtained till 2013
 - http://nn-online.org/
 - http://gwdac.phys.gwu.edu/
 - NN provider for Android
 - Google Play Store

[J.E. Amaro, R. Navarro-Perez, and E. Ruiz-Arriola]

- 2868 pp data and 4991 np data
- 3σ criterion by Nijmegen to remove possible outliers

Fitting NN observables

Delta shell potential in every partial wave

$$V_{l,l'}^{JS}(r) = \frac{1}{2\mu_{\alpha\beta}} \sum_{n=1}^{N} (\lambda_n)_{l,l'}^{JS} \delta(r - r_n) \qquad r \le r_c = 3.0 \text{fm}$$

- Strength coefficients λ_n as fit parameters
- Fixed and equidistant concentration radii $\Delta r = 0.6$ fm
- EM interaction is crucial for pp scattering amplitude

$$V_{C1}(r) = \frac{\alpha'}{r} ,$$

$$V_{C2}(r) \approx -\frac{\alpha \alpha'}{M_p r^2} ,$$

$$V_{VP}(r) = \frac{2\alpha \alpha'}{3\pi r} \int_1^\infty dx \ e^{-2m_e rx} \left[1 + \frac{1}{2x^2} \right] \frac{(x^2 - 1)^{1/2}}{x^2} ,$$

$$V_{MM}(r) = -\frac{\alpha}{4M_p^2 r^3} \left[\mu_p^2 S_{ij} + 2(4\mu_p - 1) \mathbf{L} \cdot \mathbf{S} \right]$$

STATISTICS

Self-consistent fits

• We test the assumption

$$O_i^{\exp} = O_i^{\operatorname{th}} + \xi_i \Delta O_i \qquad i = 1, \dots, N_{\operatorname{Data}} \qquad \xi_i \in N[0, 1]$$

• Least squares minimization $\mathbf{p} = (p_1, \ldots,)$

$$\chi^{2}(\mathbf{p}) = \sum_{i=1}^{N} \left(\frac{O_{i}^{\exp} - F_{i}(\mathbf{p})}{\Delta O_{i}^{\exp}} \right)^{2} \to \min_{\lambda_{i}} \chi^{2}(\mathbf{p}\chi^{2}(\mathbf{p}_{0})$$
(3)

• Are residuals Gaussian ?

$$R_i = \frac{O_i^{\text{exp}} - O_i^{\text{th}}}{\Delta O_i} \qquad O_i^{\text{th}} = F_i(\mathbf{p}_0) \qquad i = 1, \dots, N$$
(4)

- If $R_i \in N[0,1]$ self-consistent fit.
- Normality test for a finite sample with N elements \rightarrow Probability (Confidence level) p-value

$$\chi^{2}_{\min} = 1 \pm \sigma \sqrt{\frac{2}{\nu}}$$
 $\nu = N_{\text{Dat}} - N_{\text{Par}}$ $p = 1 - \int_{\sigma}^{\sigma} dt \frac{e^{-t^{2}}}{\sqrt{2\pi}}$

Histograms, Moments, Kolmogorov-Smirnov, Tail Sentitive QQ-plots

Normality tests

Does the sequence

$$x_1^{\exp} \le x_2^{\exp} \le \dots \le x_N^{\exp} \in N[0,1]$$

• We compute the theoretical points

$$\frac{n}{N+1} = \int_{-\infty}^{x_n^{\text{th}}} dt \frac{e^{-t^2/2}}{\sqrt{2\pi}}$$

Enrique Ruiz Arriola (UGR)

Granada-2013 np+pp database

Selection criterium

- Mutually incompatible data. Which experiment is correct? Is any of the two correct?
- Maximization of experimental consensus
- Exclude data sets inconsistent with the rest of the database
 - Fit to all data $(\chi^2/\nu > 1)$
 - ② Remove data sets with improbably high or low χ^2 (3 σ criterion)
 - 8 Refit parameters
 - Se-apply 3σ criterion to all data
 - Sepeat until no more data is excluded or recovered

To believe or not to believe

$$\chi^2_{\rm min}/\nu = 1 \pm \sqrt{2/\nu}$$

- Charge dependence in OPE
- Magnetic-Moments, Vacuum polarization, ...

Enrique Ruiz Arriola (UGR)

Correlations

The strengths of the coarse grained potential are largely independent $!! \rightarrow$ Good Fitting Parameters

Phase shifts

- Phase shifts for every partial
- Statistical uncertainty propagated directly from covariance matrix

Enrique Ruiz Arriola (UGR)

- A complete parametrization of the on-shell scattering amplitudes
- Five independent complex quantities
- Function of Energy and Angle

$$\begin{aligned} M(\mathbf{k}_f, \mathbf{k}_i) &= a + m(\sigma_1, \mathbf{n})(\sigma_2, \mathbf{n}) + (g - h)(\sigma_1, \mathbf{m})(\sigma_2, \mathbf{m}) \\ &+ (g + h)(\sigma_1, \mathbf{l})(\sigma_2, \mathbf{l}) + c(\sigma_1 + \sigma_2, \mathbf{n}) \end{aligned}$$

• Scattering observables can be calculated from M

[Bystricky, J. et al, Jour. de Phys. 39.1 (1978) 1]

Wolfenstein Parameters

Enrique Ruiz Arriola (UGR)

Fit to from Granada-2013 np+pp database

To count or not to count

- We can fit CHIRAL forces to ANY energy and look if counterterms are compatible with zero within errors
- We find that if $E_{\text{LAB}} \leq 125 \text{MeV}$ Weinberg counting is INCOMPATIBLE with data.
- You have to promote D-wave counterterms. N2LO-Chiral TPE + N3LO-Counterterms → Residuals are normal Piarulli, Girlanda, Schiavilla, Navarro Pérez, Amaro, RA, PRC
- We find that if $E_{LAB} \leq 40 MeV$ TPE is INVISIBLE
- We find that peripheral waves predicted by 5th-order chiral perturbation theory ARE NOT consistent with data within uncertainties

$$|\delta^{\mathrm{Ch,N4LO}} - \delta^{\mathrm{PWA}}| > \Delta \delta^{\mathrm{PWA,stat}}$$

COUPLING CONSTANTS

Chronological recreation of pion-nucleon coupling constants

The pion-nucleon coupling constants f_p^2 , f_0^2 and f_c^2

Fits to the Granada-2013 database.									
f^2	f_{0}^{2}	f_c^2	CD-waves	χ^2_{pp}	χ^2_{np}	$N_{\rm Dat}$	N_{Par}	χ^2/ u	
0.075	idem	idem	${}^{1}S_{0}$	3051	3951	6713	46	1.051	
0.0761(3)	idem	idem	${}^{1}S_{0}$	3051	3951	6713	46+1	1.051	
-	-	-	${}^{1}S_{0}, P$	2999	3951.40	6713	46+3	1.043	
0.0759(4)	0.079(1)	0.0763(6)	${}^{1}S_{0}, P$	3045	3870	6713	46+3+9	1.039	

The πNN vertices

CONCLUSIONS

Neutron-Neutron vs Proton-Proton (Polarized)

nn interaction is more intense than pp interaction

