Hadronic Cross Section Measurements with ISR and the Implications on $g_{\mu} - 2$

Konrad Griessinger on behalf of the BABAR Collaboration

Institut for Nuclear Physics Mainz University

Determination of Fundamental QCD Parameters, 09 March 2016

Outline

Introduction

- Theoretical relation $a_{\mu} \leftrightarrow \sigma_{had}$
- Experimental setup at BABAR

2 Recent Results • $e^+e^- \rightarrow K^+K^-$ • $e^+e^- \rightarrow K^0_S K^0_L$ • $e^+e^- \rightarrow K^0 K^0 \pi^+\pi^-$ and $e^+e^- \rightarrow K^0_S K^0_S K^+K^-$

- ∢ ∃ ▶

ELE SQC

$$ec{\mu} = g rac{e}{2m} ec{s}$$

 $(g_{\mu}-2)/2 =: a_{\mu} = 0$ (Dirac)

EL OQO

< ロ > < 同 > < 三 > < 三

$$ec{\mu} = g rac{e}{2m} ec{s}$$

 $(g_{\mu} - 2)/2 =: a_{\mu}^{ ext{SM}} = a_{\mu}^{ ext{QED}} + a_{\mu}^{ ext{weak}} + a_{\mu}^{ ext{hadronic}}$

EL OQO

< ロ > < 同 > < 三 > < 三

$$\vec{\mu} = g \frac{e}{2m} \vec{s}$$

$$(g_{\mu} - 2)/2 =: a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{hadronic}}$$

$$\vec{\gamma} \underbrace{q_{\mu}}^{\mu^{+}} \mu^{-}$$

$$q_{\text{ED}}$$

K. Griessinger (U Mainz)

EL OQO

< ロ > < 同 > < 三 > < 三

▶ < ∃ ▶ < ∃ ▶</p>

JIN NOR

ELE DOG

通 ト イヨト イヨト

$$ec{\mu} = g rac{e}{2m} ec{s}$$

 $(g_{\mu} - 2)/2 =: a_{\mu}^{\mathrm{SM}} = a_{\mu}^{\mathrm{QED}} + a_{\mu}^{\mathrm{weak}} + a_{\mu}^{\mathrm{hadronic}}$

Interaction	Contribution $[\cdot 10^{-11}]$	Uncertainty $[\cdot 10^{-11}]$
QED [1]	116 584 718.951	0.080
EW [5]	153.6	1
hadronic VP [4, 9]	6837	43
hadronic LbL [8, 3]	119	41
total theory	116 591 828	60
E821 experiment [13]	116 592 089	63
deviation exp-theo	261	87

ELE SOC

(日) (周) (三) (三)

Discrepancy between SM prediction and direct measurement from Eur.Phys.J., C71:1515, 2011 [4].

Just a fluctuation?

 3σ effect, thus reduction of uncertainties necessary!

K. Griessinger (U Mainz)

Hadronic Cross Section Measurements

09 March 2016 4 / 25

Connection between a_{μ} and σ_{had}

> < = > < = > = = < < < >

Connection between a_{μ} and σ_{had}

 $\sigma_{\rm had}$ (left) from Nuovo Cim., C034S1:31-40, 2011 [7] and relative contributions to a_{μ}^{had} (right).

= nar

The BABAR Experiment

Experimental specifications

 $\begin{array}{ll} \mbox{Energy: } \sqrt{s} \approx 10.58 \, \mbox{GeV} & (E_{e^-} \approx 9.0 \, \mbox{GeV}, E_{e^+} \approx 3.1 \, \mbox{GeV}), \\ \mbox{Luminosity: } \mathcal{L} \approx 454 \, \mbox{fb}^{-1} & (\varUpsilon(4S)) \end{array}$

Initial State Radiation (ISR) events at BABAR

ISR selection: large angle analyses

- Detected high energy photon: E_γ > 3GeV
 → defines E_{CM} & provides strong background rejection
- Event topology: *γ*_{ISR} back-to-back to hadrons
 → high acceptance
- Kinematic fit including γ_{ISR}
 - \rightarrow very good energy resolution (4 15MeV)
- e⁺e[−]-boost into the laboratory reference frame
 → high efficiency at production threshold of hadronic system
- Continuous measurement from threshold to ~5GeV
 → provides common, consistent systematic uncertainties

Initial State Radiation (ISR) events at BABAR

ISR selection: small angle analyses

- ISR photon $\gamma_{\rm ISR}$ not detected \rightarrow more statistics at high energies
- Event topology: γ_{ISR} back-to-back to hadrons \rightarrow high acceptance
- Kinematic fit not including γ_{ISR} \rightarrow energy resolution $\sim 10 - 15 \text{MeV}$
- e⁺e[−]-boost into the laboratory reference frame
 → high efficiency at production threshold of hadronic system
- Continuous measurement from threshold to ~8GeV
 → provides common, consistent systematic uncertainties

Most important channels

Cross Sections of the single channels measured at *BABAR* (from Nucl.Phys.Proc.Suppl., 207-208:133-136, 2010 [6]).

Most important channels

Right panel: Cross Sect. of single channels (from Nucl.Phys.Proc.Suppl., 207-208:133-136, 2010 [6]). Left panel: Relative contributions to a_{μ}^{had} (from Nuovo Cim., C034S1:31-40, 2011 [7]).

Most important channels

Right panel: Cross Sect. of single channels (from Nucl.Phys.Proc.Suppl., 207-208:133-136, 2010 [6]). Left panel: Relative contributions to δa_{μ}^{had} (from Nuovo Cim., C034S1:31-40, 2011 [7]).

$e^+e^- ightarrow K^+K^-$

Phys.Rev. D88 (2013) 3, 032013 [10] Phys.Rev. D92 (2015) 7, 072008 [12]

K. Griessinger (U Mainz)

(日本)

Cross section $\sigma(e^+e^- \rightarrow K^+K^-)$

A phenomenological fit to the form factor

-

The Φ parameters

 m_{Φ} and Γ_{Φ} obtained from the fit of the form factor

 BABAR
 $m_{\Phi} = 1019.51 \pm 0.02(\pm 0.11) \, \mathrm{MeV}$ $m_{\Phi} = 4.29 \pm 0.04(\pm 0.07) \, \mathrm{MeV}$

PDG $m_{\Phi} = 1019.455 \pm 0.020 \,\text{MeV}$ $\Gamma_{\Phi} = 4.26 \pm 0.04 \,\text{MeV}$

 \rightarrow good agreement

From integrated Φ peak: $\Gamma_{\Phi}^{ee} \times \mathcal{B}(\Phi \to K^+ K^-) = \frac{\alpha^2 \beta^3(s,m_K)}{324} \frac{m_{\Phi}^2}{\Gamma_{\Phi}} a_{\Phi}^2 C_{FS}$

BABAR:

 $\Gamma_{\Phi}^{ee} \times \mathcal{B}(\Phi \to K^+ K^-) = 0.6344 \pm 0.0059_{exp} \pm 0.0028_{fit} \pm 0.0015_{cal} \text{ keV}(1.1\%)$ CMD2:

 $\Gamma^{ee}_{\Phi} imes \mathcal{B}(\Phi
ightarrow K^+ K^-) = 0.605 \pm 0.002 \pm 0.013 \, \mathrm{keV}(2.1\%)$

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のなべ

$\rightarrow K^+K^-$

Charged kaon form factor at large Q^2

Predictions based on QCD in asymptotic regime (Chernyak, Brodsky-Lepage, Farrar-Jackson)

- Power law: $F_{\kappa} \sim \alpha_{s}(Q^{2})Q^{-n}$ with n=2 \rightarrow in good agreement with the data (2.5-5 GeV $n = 2.10 \pm 0.23$)
- HOWEVER: data on $|F_K|^2$ factor ~ 20 above prediction!
- No trend in data up to 5 GeV for approaching the asymp. QCD prediction

 $\rightarrow K^+K^-$

Small angle analysis \rightarrow even larger Q^2

- Small angle measurement reaches energies above 5 GeV
- Smooth decrease over full energy range

K. Griessinger (U Mainz)

Comparison between small and large angle analysis

Good agreement between measurements in overlapping region

Asymptotic behavior of the form factor at largest Q^2 ?

At large energies, data tends to agree better with predictions

$$e^+e^-
ightarrow K^0_{
m S} K^0_{
m L}$$

Phys.Rev. D89 (2014) 9, 092002 [11]

K. Griessinger (U Mainz)

09 March 2016 18 / 25

-

▲ 同 ▶ → 三 ▶

三日 のへの

Detection of $K^0_S K^0_L$ $K^0_S \to \pi^+ \pi^-$ and K^0_L selected via recoil mass

ELE SOC

通 ト イヨト イヨト

$K^0_S K^0_L$ mass spectrum

Fit results $\sigma_{\phi} = 1409 \pm 33 \pm 42 \pm 15 \,\mathrm{nb}$ $m_{\phi} = 1019.462 \pm 0.042 \pm 0.050 \pm$ $0.025 \,\mathrm{MeV}/c^2$ $\Gamma_{\phi} =$ $4.205 \pm 0.103 \pm 0.050 \pm 0.045 \,\mathrm{MeV}$ $\Gamma^{ee}_{\Phi} imes \mathcal{B}(\Phi o K^0_{ m S} K^0_{ m L}) =$ $0.4200 \pm 0.0033 \pm 0.0122 \pm 0.0013 \,\mathrm{keV}$ \rightarrow consistent with world data

Cross section of $e^+e^- ightarrow K^0_{ m S} K^0_{ m L}$

三日 のへの

通 ト イヨ ト イヨト

Cross section of $e^+e^- o K^0_{ m S} K^0_{ m L}$

EL OQO

$$egin{aligned} e^+e^- &
ightarrow K^0_{
m S} K^0_{
m L} \pi^+\pi^- \ e^+e^- &
ightarrow K^0_{
m S} K^0_{
m S} \pi^+\pi^- \ e^+e^- &
ightarrow K^0_{
m S} K^0_{
m S} K^+K^- \end{aligned}$$

Phys.Rev. D89 (2014) 9, 092002 [11]

K. Griessinger (U Mainz)

A 🖓 h

31= 990

Recent Results $e^+e^- \rightarrow K^0 K^0 \pi^+\pi^-$ and $e^+e^- \rightarrow K^0_S K^0_S K^+ K^-$

Cross sections of $e^+e^- \rightarrow K^0_S K^0_L \pi^+\pi^-$ and $K^0_S K^0_S \pi^+\pi^-$

Cross section of $e^+e^- ightarrow K^0_{ m S} K^0_{ m S} K^+ K^-$

First cross section measurement J/ψ observed in mass distribution

Summary

- ISR physics has proven to be a very productive field even years after the end of data taking at the B-factories
- Precision measurements of hadronic cross sections have greatly improved aSM_u & more hadronic final states in preparation
- $g_{\mu}-2$ puzzle needs to be solved
 - $\star\,$ Data from new experiments (e.g. BES-III)
 - $\star\,$ Light-By-Light scattering needs to be studied
 - $\star~$ E989 at Fermilab and J-PARC g-2/EDM
- QCD predictions on form factors are tested experimentally

Thank you! Any questions?

三日 のへの

Backup slides

I ≡ ►

ELE OQO

References I

- T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio. Complete tenth-order qed contribution to the muon g - 2. *Phys. Rev. Lett.*, 109:111808, Sep 2012.
- G. Bennett et al.
 Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL.
 Phys.Rev., D73:072003, 2006.
- [3] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and P. Stoffer. Remarks on higher-order hadronic corrections to the muon g - 2. *Phys.Lett.*, B735:90–91, 2014.

伺 ト イヨト イヨト ヨヨ のくら

References II

- [4] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang. Reevaluation of the Hadronic Contributions to the Muon g – 2 and to α(M_Z). *Eur.Phys.J.*, C71:1515, 2011.
- [5] C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim. The electroweak contributions to (g – 2)_μ after the Higgs boson mass measurement. *Phys.Rev.*, D88(5):053005, 2013.
- [6] A. Hafner.

Exclusive hadronic cross sections measured via ISR from BaBar. *Nucl.Phys.Proc.Suppl.*, 207-208:133–136, 2010.

伺 ト イヨト イヨト ヨヨ のくら

References III

[7] F. Jegerlehner.

Electroweak effective couplings for future precision experiments. *Nuovo Cim.*, C034S1:31–40, 2011.

- [8] F. Jegerlehner and A. Nyffeler. The Muon g-2. *Phys.Rept.*, 477:1–110, 2009.
- [9] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser. Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order. *Phys.Lett.*, B734:144–147, 2014.

EL OQO

References IV

[10] J. P. Lees et al.

Precision measurement of the $e^+e^- \rightarrow K^+K^-(\gamma)$ cross section with the initial-state radiation method at BABAR. *Phys. Rev.*, D88(3):032013, 2013.

[11] J. P. Lees et al.

Cross sections for the reactions $e^+e^- \rightarrow K_S^0 K_L^0$, $K_S^0 K_L^0 \pi^+ \pi^-$, $K_S^0 K_S^0 \pi^+ \pi^-$, and $K_S^0 K_S^0 K^+ K^-$ from events with initial-state radiation.

Phys. Rev., D89(9):092002, 2014.

[12] J. P. Lees et al.

Study of the $e^+e^- \to K^+K^-$ reaction in the energy range from 2.6 to 8.0 GeV.

Phys. Rev., D92(7):072008, 2015.

< 回 > < 三 > < 三 > 三 三 < つ Q (P)

References V

[13] K. Olive et al. Review of Particle Physics. Chin.Phys., C38:090001, 2014.

[14] N. Saito.

A novel precision measurement of muon g-2 and EDM at J-PARC. *AIP Conf.Proc.*, 1467:45–56, 2012.

EL OQO

Breit-Wigner fit function

$$F_{\mathcal{K}}(s) = (a_{\phi} \cdot BW_{\phi}(s) + a_{\phi'} \cdot BW_{\phi'}(s) + a_{\phi''} \cdot BW_{\phi''}(s))/3$$

$$+ (a_{\rho} \cdot BW_{\rho}(s) + a_{\rho'} \cdot BW_{\rho'}(s) + a_{\rho''} \cdot BW_{\rho''}(s) + a_{\rho'''} \cdot BW_{\rho'''}(s))/2$$

$$+ (a_{\omega} \cdot BW_{\omega}(s) + a_{\omega'} \cdot BW_{\omega'}(s) + a_{\omega''} \cdot BW_{\omega''}(s) + a_{\omega'''} \cdot BW_{\omega'''}(s))/6$$
with
$$a_{\phi} + a_{\phi'} + a_{\phi''} = 1$$

$$a_{\rho} + a_{\rho'} + a_{\rho''} + a_{\rho'''} = 1$$

$$a_{\omega} + a_{\omega'} + a_{\omega''} + a_{\omega'''} = 1$$

-

$K_{\rm S}K_{\rm S}K^+K^-$ mass spectrum

315

Basic method

Definition of g:

$$ec{\mu}=grac{e}{2m}ec{s}$$
 .

Motion in magnetic field:

$$\vec{\omega}_{c} = \frac{e\vec{B}}{m\gamma},$$

$$\vec{\omega}_{I} = \frac{e\vec{B}}{m\gamma} + a\frac{e\vec{B}}{m},$$

$$\Rightarrow \vec{\omega}_{a} = a\frac{e\vec{B}}{m}.$$

$$(a = (g-2)/2)$$

09 March 2016 35 / 25

Realization in detail

From π^+ production to μ^+ decay. [7]

Electric field necessary for focussing: BMT equation

$$ec{\omega}_{a}=rac{e}{m_{\mu}}\left(a_{\mu}ec{B}-\left[a_{\mu}-rac{1}{\gamma^{2}-1}
ight]ec{v} imesec{E}
ight)\;.$$

$$\vec{\omega}_a$$
 is independent of \vec{E} for $\gamma = 29.3 \Leftrightarrow E_{\mu} = \gamma m_{\mu} = 3.1 \,\text{GeV}$

09 March 2016 36 / 25

Direct Measurement of $(g_{\mu}-2)$

Experiment E821 at Brookhaven National Laboratory

The result [2]:

$$a_{\mu} = (116\,592\,089\pm54_{\it stat}\pm33_{\it syst})\cdot10^{-11}$$

K. Griessinger (U Mainz)

ELE DOG

イロト イポト イヨト イヨト

New Direct Measurement of $(g_{\mu} - 2)$ Experiment E989 at Fermilab

The goal:

Reduce uncertainty by factor 4 (!)

K. Griessinger (U Mainz)

New Direct Measurement of $(g_{\mu} - 2)$ Experiment E989 at Fermilab

lain Injecto p Targel Station Debuncher & Accumulator Rin **p** Source

K. Griessinger (U Mainz)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへで

Result

Ultra-cold muon experiment at J-PARC MLF from [14]

The goal:

Uncertainty of $\sim 10 \cdot 10^{-11}$ (!)

K. Griessinger (U Mainz)

09 March 2016 40 / 25

Ultra-cold muon experiment at J-PARC MLF from [14]

New Method:

Produce muons from ionization of muonium, store them and track decay.

K. Griessinger (U Mainz)

Hadronic Cross Section Measurements

09 March 2016 41 / 25