Quark masses from lattice QCD+QED

Christian Hoelbling

Bergische Universität Wuppertal

Determination of the Fundamental Parameters in QCD Budapest: S. Katz MITP, Mar. 9th, 2016 Marseille: L. Lellouch, A. Portelli Wuppertal: Sz. Borsanyi, S. Durr, Z. Fodor, S. Krieg, T. Kurth, T. Lippert, K. Szabo, B. Toth, L. Varnhorst

Christian Hoelbling (Wuppertal)

How to compute quark masses?

Problem:

- QCD fundamental degrees of freedom: quarks and gluons
- QCD observed objects: protons, neutrons (π , K, ...)

Basic recipie:

• Solve QCD for various quark masses

$$\mathcal{L} = -rac{1}{4}F_{\mu
u}F^{\mu
u} + ar{\Psi}(\mathsf{i}D_{\mu}\gamma^{\mu} - m)\Psi$$

- Compare some results (e.g. $m_{\pi}, m_{K}, m_{\Xi}/m_{\Omega}$) with experiment
- Find quark masses that give correct physical results
- Renormalize

Christian Hoelbling (Wuppertal)

Lattice

Lattice QCD=QCD when

• Cutoff removed (continuum limit)

Infinite volume limit taken

- At physical hadron masses (Especially π)
 - Numerically challenging to reach light quark masses
- Statistical error from stochastic estimate of the path integral

Extracting a physical prediction

- Compute target observable
- Identify physical point
- Extrapolate to physical point

Christian Hoelbling (Wuppertal)

The light hadron spectrum

Action details

Goal:

- Optimize physics results per CPU time
- Conceptually clean formulation

Method:

- Dynamical 2 + 1 flavor, Wilson fermions at physical M_{π}
- 3-5 lattice spacings 0.053 fm < *a* < 0.125 fm
- Tree level $O(a^2)$ improved gauge action(Lüscher, Weisz, 1985)
- Tree level O(a) improved fermion action(Sheikholeslami, Wohlert, 1985)
 - Why not go beyond tree level?
 - Keeping it simple (parameter fine tuning)
 - No real improvement, UV mode suppression took care of this
 - This is a crucial advantage of our approach
- UV filtering(APE coll. 1985; Hasenfratz, Knechtli, 2001; Capitani, Durr, C.H., 2006)
- → Discretization effects of $O(\alpha_s a, a^2)$
 - ✓ We include both $O(\alpha_s a)$ and $O(a^2)$ into systematic error

Algorithm stability

Christian Hoelbling (Wuppertal)

No exceptional configs

Christian Hoelbling (Wuppertal)

Topological sector sampling

Autocorrelation time (finest lattice, small mass)

Chiral interpolation

• Simultaneous fit to NLO $SU(2) \chi PT_{(Gasser, Leutwyler, 1984)}$

→ We use 2 safe chiral interpolation ranges: M_π < 340, 380 MeV
 → We use SU(2) χPT and Taylor interpolation forms

Renormalization

- Quark masses logarithmically divergent (a → 0) → renormalization
- Usual scheme MS: perturbatively defined

Desired scale in RI-MOM scheme

(Chetyrkin, Retey, 1999)

Christian Hoelbling (Wuppertal)

Renormalization: contact with perturbation theory

Optional conversion to \overline{MS}

(Cetyrkin 1997; Vermaseren, Larin, van Ritbergen, 1997)

Quark mass definitions

No additive mass renormalization and ambiguity in *m*_{crit}
 Only *Z*_S multiplicative renormalization (no pion poles)
 Works with *O*(*a*) improvement (we use this)

Finite volume effects from virtual pions

Goal:

- Eliminate virtual pion finite V effects
 - Hadrons see mirror charges
 - Exponential in lightest particle (pion) mass

Method:

C

- Best practice: use large V
 - Rule of thumb: $M_{\pi}L \gtrsim 4$

• Leading effects
$$\frac{M_X(L)-M_X}{M_X} = cM_\pi^{1/2}L^{-3/2}e^{M_\pi L}$$

(Colangelo et. al., 2005)

Christian Hoelbling (Wuppertal)

Landscape L vs. M_{π}

Continuum limit

Continuum limit

19/41

Continuum limit

Systematic error treatment

One conservative strategy for systematics:

- Identify all higher order effects you have to neglect
- For each of them:
 - Repeat the entire analysis treating this one effect differently
 - Add the spread of results to systematics
- Important:
 - Do not do suboptimal analyses
 - Do not double-count analyses
- Error sources considered:
 - Plateaux range (Excited states)
 - M_{π} , M_{K} interpolations
 - Renormalization: NP running mass and matching scale
 - Higher order FV effects
 - Continuum extrapolation

Christian Hoelbling (Wuppertal)

Systematic error

Christian Hoelbling (Wuppertal)

Proton neutron mass difference

Mar. 9th, 2016 21 / 41

Systematic error

Christian Hoelbling (Wuppertal)

Final result

	RI @ 4 GeV	RGI	<u>MS</u> @ 2 GeV
ms	96.4(1.1)(1.5)	127.3(1.5)(1.9)	95.5(1.1)(1.5)
m _{ud}	3.503(48)(49)	4.624(63)(64)	3.469(47)(48)
$m_{\rm e}/m_{\rm ud}$		27.53(20)(8)	
		=/100(=0)(0)	
mu	2.17(04)(10)	2.86(05)(13)	2.15(03)(10)

Relative contribution to total error:

	stat.	plateau	scale	mass	renorm.	cont.
ms	0.702	0.148	0.004	0.064	0.061	0.691
m _{ud}	0.620	0.259	0.027	0.125	0.063	0.727
$m_{ m s}/m_{ m ud}$	0.921	0.200	0.078	0.125	—	0.301

(JHEP 1108:148,2011; PLB 701:265,2011)

		Qu	ark n	F	Resul	ts							
Comparison													
	theory of the state of the stat												
	Collaboration	Ref.	Dublic	Chira)	Contin	finite	^{tenor}	^{tunnin}	m_{ud}	m_s			
-	RBC/UKQCD 12^{\ominus}	[25]	А	*	0	*	*	a	3.37(9)(7)(1)(2)	92.3(1.9)(0.9)(0.4)(0.8)			
	PACS-CS 12 [*]	[76]	Α	*			*	b	3.12(24)(8)	83.60(0.58)(2.23)			
	Laiho 11	[77]	C	0	*	*	0	-	3.31(7)(20)(17)	94.2(1.4)(3.2)(4.7)			
	BMW 10A, $10B^+$	[22, 23]	Α	*	*	*	*	c	3.469(47)(48)	95.5(1.1)(1.5)			
	PACS-CS 10	[21]	Α	*			*	b	2.78(27)	86.7(2.3)			
	MILC 10A	[75]	С	0	*	*	0	-	3.19(4)(5)(16)	_			
	HPQCD 10 [*]	[73]	Α	0	*	*	_	-	3.39(6)	92.2(1.3)			
	RBC/UKQCD 10A	[78]	Α	0	0	*	*	a	3.59(13)(14)(8)	96.2(1.6)(0.2)(2.1)			
	Blum 10^{\dagger}	[32]	Α	0		0	*	-	3.44(12)(22)	97.6(2.9)(5.5)			
	PACS-CS 09	[20]	Α	*			*	b	2.97(28)(3)	92.75(58)(95)			
	$HPQCD 09A^{\oplus}$	[72]	Α	0	*	*	-	-	3.40(7)	92.4(1.5)			
	MILC 09A	[37]	\mathbf{C}	0	*	*	0	-	3.25(1)(7)(16)(0)	89.0(0.2)(1.6)(4.5)(0.1)			
	MILC 09	[15]	Α	0	\star	*	0	-	3.2(0)(1)(2)(0)	88(0)(3)(4)(0)			
	PACS-CS 08	[19]	Α	*				_	2.527(47)	72.72(78)			
	RBC/UKQCD 08	[79]	Α	0		*	*	_	3.72(16)(33)(18)	107.3(4.4)(9.7)(4.9)			
	CP-PACS/ JLQCD 07	[80]	А	•	*	*	•	_	$3.55(19)(^{+56}_{-20})$	$90.1(4.3)(^{+16.7}_{-4.3})$			
	HPQCD 05	[81]	Α	0	0	0	0	_	$3.2(0)(2)(2)(0)^{\ddagger}$	87(0)(4)(4)(0) [‡]			
	MILC 04, HPQCD/ MILC/UKQCD 04	[36, 82]	Α	0	0	0	•	_	2.8(0)(1)(3)(0)	76(0)(3)(7)(0)			

(FLAG, 2013)

Christian Hoelbling (Wuppertal)

Computing m_u and m_d

• Two sources of isospin breaking:

• QCD: $\sim \frac{m_d - m_u}{\Lambda_{\text{OCD}}} \sim 1\%$

• QED:
$$\sim lpha (Q_u - Q_d)^2 \sim 1\%$$

- On the lattice:
 - Include nondegenerate light quarks $m_u \neq m_d$
 - Include QED

Including isospin breaking on the lattice

$$S_{\text{QCD+QED}} = S_{\text{QCD}}^{\text{iso}} + \frac{1}{2}(m_u - m_d) \int (\bar{u}u - \bar{d}d) + ie \int A_{\mu} j_{\mu}$$

with $j_{\mu} = \bar{q}Q\gamma_{\mu}q$

Method 1: operator insertion(RM123 '12-'13)

$$\begin{split} \langle \mathcal{O} \rangle &= \langle \mathcal{O} \rangle_{\rm QCD}^{\rm iso} - \frac{1}{2} (m_u - m_d) \langle \mathcal{O} \int (\bar{u}u - \bar{d}d) \rangle_{\rm QCD}^{\rm iso} \\ &+ \frac{1}{2} e^2 \langle \mathcal{O} \int_{xy} j_\mu(x) D_{\mu\nu}(x - y) j_\nu(y) \rangle_{\rm QCD}^{\rm iso} + \dots \end{split}$$

Method 2: direct calculation

(Eichten '97, Blum et al '07-, BMWc '10-, MILC '09, Blum et al '10, RBC/UKQCD '12, QCDSF '15, Giusti et. al. '15. . .)

Christian Hoelbling (Wuppertal)

Challenges of QED simulations

- Effective theory only (UV completion unclear)
- π^+ , *p*, etc. no more gauge invariant
- QED (additive) mass renormalization
- Power law FV effects (soft photons)

Zero mode of gauge potential unconstrained by action

	÷	÷	÷	÷	÷		÷	Ą	÷.	÷		÷	÷	÷	÷	÷	
	÷	÷	÷	÷	÷		÷	Ą	÷.	÷		÷	÷	÷	÷	÷	
	÷	÷	÷	÷	÷		÷	Ą	÷.	÷		÷	÷	÷	÷	÷	-
	÷	÷	÷	÷	÷		÷	Ą	÷.	÷		÷	÷	÷	÷	÷	-
	÷	÷	÷	÷	÷		÷	Ą	÷.	÷		÷	÷	÷	÷	÷	-
	÷	÷	÷	÷	÷		÷	Ą	÷.	÷		÷	÷	÷	÷	÷	-
	÷	÷	÷	÷	÷		÷	Ą	÷.	÷		÷	÷	÷	÷	÷	-
	÷	÷	÷	÷	÷		÷	Ą	÷.	÷		÷	÷	÷	÷	÷	-
	÷	÷	÷	÷	÷		÷	Ą	÷.	÷		÷	÷	÷	÷	÷	-
-	÷	-					÷	Ą.		÷					-		
	÷		÷	÷	÷		÷	Ŵ	, 🌲	÷		÷	÷	÷			-
	÷	÷	÷	÷	÷		÷	Ŵ	, 🌲	÷		÷	÷	÷			-
	÷	÷	÷	÷	÷		÷	Ŵ	, 🌲	÷		÷	÷	÷			-
	÷	÷	÷	÷	÷		÷	Ŵ	, 🌲	÷		÷	÷	÷			-
	÷		÷	÷	÷		÷	Ŵ	, 🌲	÷		÷	÷	÷			
	÷	÷	÷	÷	÷		÷	Ŵ	, 🌲	÷		÷	÷	÷			
	÷		÷	÷	÷		÷	Ŵ	, 🌲	÷		÷	÷	÷			
	÷		÷	÷	÷		÷	Ŵ	, 🌲	÷		÷	÷	÷			
	÷		÷	÷	÷		÷	Ŵ	, 🌲	÷		÷	÷	÷			
			÷							÷							

Remove $\vec{p} = 0$ modes in fixed gauge(Hayakawa, Uno, 2008)

Christian Hoelbling (Wuppertal)

QED ACTION

QED is an Abelian gauge theory with no self-interaction

- Compactifying QED induces spurious self-interaction
- → Keep it non-compact (no problem with topology in 4D-U(1))
- Need signals for gauge dependent objects
- ➤ insert gauge links or gauge fixing

$$S_{\text{QED}} = \frac{1}{2V_4} \sum_{\mu,k} |\hat{k}|^2 |A_{\mu}^k|^2 \text{ with } \hat{k_{\mu}} = \frac{e^{iak_{\mu}} - 1}{ia}$$

● Momentum modes decouple → quenched theory trivial

Finite volume gauge symmetry

• Periodicity requirement from gauge field

$$A_{\mu}(x) \rightarrow A_{\mu}(x) + rac{1}{e} \partial_{\mu} \Lambda(x) \implies \partial_{\mu} \Lambda(x) = \partial_{\mu} \Lambda(x+L)$$

• is loser than from fermion field

$$\psi(x) \to e^{-i\Lambda(x)}\psi(x), \quad \bar{\psi}(x) \to \psi(x)e^{i\Lambda(x)} \implies \Lambda(x) = \Lambda(x+L)$$

• Fermionic action not invariant under GT

$$\Lambda(\mathbf{x}) = \mathbf{c}_{\mu} \mathbf{x}^{\mu} \implies \delta \mathcal{L} = i \bar{\psi} (\gamma^{\mu} \partial_{\mu} \Lambda) \psi = i \mathbf{c}_{\mu} \bar{\psi} \gamma^{\mu} \psi$$

Add source term to action to restore gauge invariance

$$\mathcal{L}_{ ext{src}} = oldsymbol{J}_{\mu} ar{\psi} \gamma^{\mu} \psi \qquad oldsymbol{J}_{\mu} o oldsymbol{J}_{\mu} - oldsymbol{i} oldsymbol{\mathcal{C}}_{\mu}$$

Christian Hoelbling (Wuppertal)

QED in finite volume

• Gauge invariant definition of no external source:

$$\frac{e}{V_4}\int d^4x A_\mu(x) + i J_\mu = 0$$

with partial gauge fixing $J_{\mu} = 0 \rightarrow \mathsf{QED}_{\mathsf{TL}}$

• Imposing electric flux neutrality per timeslice:

$$\frac{e}{V_3}\int d^3x A_i(t,\vec{x})=0$$

with partial gauge fixing $A_0(t, \vec{p} = 0) = 0 \rightarrow \text{QED}_L$

Momentum subtraction

- Removing momentum modes with measure 0 as $V \to \infty$ allowed
- Remove k = 0 from momentum sum (*QED_{TL}*)
 - Realised by a constraint term in the action

$$\lim_{\xi\to 0}\frac{1}{\xi}\left(\int d^4x A_{\mu}(x)\right)^2$$

- Couples all times → no transfer matrix!
- Remove $\vec{k} = 0$ from momentum sum (*QED_L*)
 - Realised by a constraint term in the action

$$\lim_{\xi(t)\to 0}\int dt \frac{1}{\xi(t)} \left(\int d^3 x A_{\mu}(x)\right)^2$$

- Transfer matrix exists
- Gauge fields unaffected in QED_{TL}, only Polyakov loops

Momentum subtraction

- Removing momentum modes with measure 0 as $V \to \infty$ allowed
- Remove k = 0 from momentum sum (*QED_{TL}*)
 - Realised by a constraint term in the action

$$\lim_{\xi\to 0}\frac{1}{\xi}\left(\int d^4x A_{\mu}(x)\right)^2$$

- Couples all times → no transfer matrix!
- Remove $\vec{k} = 0$ from momentum sum (*QED_L*)
 - Realised by a constraint term in the action

$$\lim_{\xi(t)\to 0}\int dt \frac{1}{\xi(t)} \left(\int d^3 x A_{\mu}(x)\right)^2$$

- Transfer matrix exists
- Gauge fields unaffected in QED_{TL}, only Polyakov loops

Momentum subtraction

- Removing momentum modes with measure 0 as $V \to \infty$ allowed
- Remove k = 0 from momentum sum (*QED_{TL}*)
 - Realised by a constraint term in the action

$$\lim_{\xi\to 0}\frac{1}{\xi}\left(\int d^4x A_{\mu}(x)\right)^2$$

- Couples all times → no transfer matrix!
- Remove $\vec{k} = 0$ from momentum sum (*QED_L*)
 - Realised by a constraint term in the action

$$\lim_{\xi(t)\to 0}\int dt \frac{1}{\xi(t)} \left(\int d^3 x A_{\mu}(x)\right)^2$$

- Transfer matrix exists
- Gauge fields unaffected in QED_{TL}, only Polyakov loops
Quenched QED FV effects

Finite volume subtraction

- Universal to $O(1/L^2)$
- Compositmess at 1/L³
- Fit $O(1/L^3)$
- Divergent T dependence for p = 0 mode subtraction
- No *T* dependence for $\vec{p} = 0$ mode subtraction

$$\delta m = q^2 \alpha \left(\frac{\kappa}{2mL} \left(1 + \frac{2}{mL} - \frac{3\pi}{(mL)^3} \right) \right)$$

(BMWc, 2014)

Hadronic isospin splitting

(BMWc 2014)

Nucleon splitting QCD and QED parts

Resulting initial hydrogen abundance

Masses uf the *u* and *d* quarks

• Parameterize $\delta m = m_{\mu} - m_{d}$ via $\Delta M^{2} = M_{\mu\nu}^{2} - M_{dd}^{2}$

 $\Delta M^2 = 2B_2\delta m + O(m_{ud}\alpha, m_{ud}\delta m, \alpha^2, \alpha\delta m, \delta m^2)$

• Power counting: $O(\delta m) = O(m_{ud})$

• Condensate parameter $B_2^{\overline{MS}}(2\text{GeV}) = 2.85(7)(2)\text{GeV}_{(BMWc 2013)}$

m_u/m_d

Our dataset

Mar. 9th, 2016 37 / 41

Extracting physical ΔM^2

Christian Hoelbling (Wuppertal)

Finite volume

m_u/m_d

Chiral interpolation

Christian Hoelbling (Wuppertal)

Preliminary results

- $\delta m^{\overline{MS}}(2\text{GeV}) = -2.39(7)(6)(9)\text{MeV}$
- $m_u^{\overline{MS}}(2\text{GeV}) = 2.27(6)(6)(4)\text{MeV}$
- $m_d^{\overline{MS}}(2\text{GeV}) = 4.67(6)(6)(4)\text{MeV}$
- $m_u/m_d = 0.49(1)(1)(1)$

•
$$\epsilon := \frac{\Delta_{\text{QED}} M_K^2 - \Delta_{\text{QED}} M_{\pi}^2}{\Delta M_{\pi}^2} = 0.78(3)(7)(17)(2)$$

• $R := \frac{m_s - m_{ud}}{m_d - m_u} = 38.5(1.3)(1.0)(1.4)$
• $R := \sqrt{\frac{m_s^2 - m_{ud}^2}{m_d^2 - m_u^2}} = 23.4(0.4)(0.3)(0.4)$

Christian Hoelbling (Wuppertal)

BACKUP

Christian Hoelbling (Wuppertal)

Proton neutron mass difference

Mar. 9th, 2016 1 / 41

Chiral continuum fit

 Proton, neutron: 3 quarks

- Proton: uud
- Neutron: udd

- *m_u*<*m_d*:*M_p* < *M_n m_u*=*m_d*:*M_p* > *M_n* Proton decays
 M_p + *M_{e⁻*} ≳ *M_n*
 - No hydrogen

- Proton, neutron: 3 quarks
- Proton: uud
- Neutron: udd

- $m_u < m_d : M_p < M_n$
- $m_u = m_d : M_p > M_n$ Proton decays
- $M_p + M_{e^-} \gtrsim M_n$ No hydrogen

- Proton, neutron: 3 quarks
- Proton: uud
- Neutron: udd

- $m_u < m_d : M_p < M_n$
- $m_u = m_d : M_p > M_n$ Proton decays

• $M_p + M_{e^-} \gtrsim M_n$ No hydrogen

 Proton, neutron: 3 quarks

- Proton: uud
- Neutron: udd

- *m_u*<*m_d*:*M_p* < *M_n m_u*=*m_d*:*M_p* > *M_n* Proton decays
- $M_p + M_{e^-} \gtrsim M_n$ No hydrogen

Big bang nucleosynthesis

Christian Hoelbling (Wuppertal)

Hydrogen abundance

The light up quark 1st generation: $m_{\mu} < m_{d}$ Why? 2^{nd} generation: $m_c > m_s$ 3^{rd} generation: $m_t > m_b$ Mar. 9th, 2016 Christian Hoelbling (Wuppertal) Proton neutron mass difference

. 9th, 2016 6 / 41

Universal FV effects

(BMWc, 2014)

Christian Hoelbling (Wuppertal)

Baryon FV in QCD+QED

Christian Hoelbling (Wuppertal)

Identifying the physical point

We need to fix 6 parameters: m_u , m_d , m_s , m_c , α_s and α

- Requires fixing 5 dimensionless ratios from 6 lattice observables
- 4 "canonical" lattice observables: $M_{\pi^{\pm}}$, M_{K^+} , M_{Ω} , M_D
- Strong isospin splitting from $M_{K^{\pm}} M_{K^{0}}$

• what about α ?

- ★ From $M_{\pi^{\pm}} M_{\pi^0}$ → disconnected diagrams, very noisy
- **X** From $e^- e^-$ scattering \rightarrow far too low energy
- **メ** From $M_{\Sigma^+} M_{\Sigma^-}$ → baryon has inferior precision
- ✓ Take renormalized α as input directly
- Use the QED gradient flow Analytic tree level correction

$$\langle F_{\mu\nu}F_{\mu\nu}
angle = rac{6}{V_4}\sum_k e^{-2|\hat{k}|^2 t}$$

Slightly more complicated for clover plaquette

Plateaux

Physical predictions

Plateaux range

MASS DIFFERENCES Physical predictions

Scaling

0.01

0

0.005

g²a[fm]

0.015

0.02

0.025

0.03

0.035

Disentangling contributions

Problem:

• Disentangle QCD and QED contributions

- Not unique, $O(\alpha^2)$ ambiguities
- Flavor singlet (e.g. π^0) difficult (disconnected diagrams)

Method:

- Use baryonic splitting Σ^+ - Σ^- purely QCD
 - Only physical particles
 - Exactly correct for pointlike particle
 - Corrections below the statistical error

Isospin splittings numerical values

	splitting [MeV]	QCD [MeV]	QED [MeV]
∆N=n-p	1.51(16)(23)	2.52(17)(24)	-1.00(07)(14)
$\Delta \Sigma = \Sigma^{-} - \Sigma^{+}$	8.09(16)(11)	8.09(16)(11)	0
$\Delta \Xi = \Xi^{-} - \Xi^{0}$	6.66(11)(09)	5.53(17)(17)	1.14(16)(09)
$\Delta D = D^{\pm} - D^{0}$	4.68(10)(13)	2.54(08)(10)	2.14(11)(07)
$\Delta \Xi_{cc} = \Xi_{cc}^{++} - \Xi_{cc}^{+}$	2.16(11)(17)	-2.53(11)(06)	4.69(10)(17)
$\Delta_{\rm CG} = \Delta N - \Delta \Sigma + \Delta \Xi$	0.00(11)(06)	-0.00(13)(05)	0.00(06)(02)

• Quark model relation predicts Δ_{CG} to be small

(Coleman, Glashow, 1961; Zweig 1964)

 $\Delta_{\rm CG} = M(udd) + M(uus) + M(dss) - M(uud) - M(dds) - M(uss)$

 $\Delta_{\mathrm{CG}} \propto ((m_d - m_u)(m_s - m_u)(m_s - m_d), \alpha(m_s - m_d))$

Christian Hoelbling (Wuppertal)

PROGRESS

locality in position space:

 $|D(x, y)| < \text{const } e^{-\lambda |x-y|}$ with $\lambda = O(a^{-1})$ for all couplings. Our case: D(x, y) = 0 as soon as |x-y| > 1(despite smearing)

Iocality of gauge field coupling:

 $|\delta D(x,y)/\delta A(z)| < \text{const } e^{-\lambda |(x+y)/2-z|}$ with $\lambda = O(a^{-1})$ for all couplings.

Our case: $\delta D(x, x) / \delta A(z) < \text{const } e^{-\lambda |x-z|}$ with $\lambda \simeq 2.2a^{-1}$ for $2 \le |x-z| \le 6$

Gauge field coupling locality

6-stout case:

Landscape M_{π} vs. *a*

Finite volume effects in resonances

Goal:

• Eliminate spectrum distortions from resonances mixing with scattering states

Method:

- Stay in region where resonance is ground state
 - Otherwise no sensitivity to resonance mass in ground state

Treatment as scattering problem

(Lüscher, 1985-1991)

- Parameters: mass and coupling (width)
- Alternative approaches suggested

Landscape

- Hadron masses are even in e, so signal $\propto e^2$
- Per configuration fluctuations are not even in e, so noise $\propto e$
- Per configuration cancellation helps in qQED, but not dynamically
Systematic uncertainties

Goal:

Accurately estimate total systematic error

Method:

- We account for all the above mentioned effects
- When there are a number of sensible ways to proceed, we take them: Complete analysis for each of
 - 18 fit range combinations
 - ratio/nonratio fits (r_X resp. M_X)
 - O(a) and $O(a^2)$ discretization terms
 - NLO χ PT M_{π}^3 and Taylor M_{π}^4 chiral fit
 - 3 χ fit ranges for baryons: $M_{\pi} < 650/550/450$ MeV

resulting in 432 (144) predictions for each baryon (vector meson) mass with each 2000 bootstrap samples for each Ξ and Ω scale setting

Systematic uncertainties II

Method (ctd.):

Weigh each of the 432 (144) central values by fit quality Q

- Median of this distribution → final result
- Central 68% → systematic error
- Statistical error from bootstrap of the medians

 f_K/f_π

Christian Hoelbling (Wuppertal)

Individual m_u and m_d

- Goal:
 - Compute *m_u* and *m_d* separately

• Method:

- Need QED and isospin breaking effects in principle
- Alternative: use dispersive input -Q from $\eta \to \pi \pi \pi$

$$Q^2 = \frac{1}{2} \left(\frac{m_s}{m_{ud}}\right)^2 \frac{m_d - m_u}{m_{ud}}$$

- ✓ Transform precise m_s/m_{ud} into $(m_d m_u)/m_{ud}$
- We use the conservative Q = 22.3(8)(Leutwyler, 2009)

Comparison

Chiral cuts

Unphysical operator mixing

- $\propto \chi$ SB induces mixing with 4 unphysical operators
- Mixing terms chirally enhanced B

15

10

- ✓ Small even below physical m_{π}
- Good chirality of our action

0.002

0.001 0

-0.001 -0.002 -0.003

\sub₁₄

Errors - unit weight

Comparison

Christian Hoelbling (Wuppertal)

UV FILTERING

Moderate smearing (1 stout) improves scaling dramatically

Christian Hoelbling (Wuppertal)

Updating photon field

Long range QED interaction → huge autocorrelation in standard HMC
 Solution: HMC in momentum space

$$\mathcal{H} = rac{1}{2V_4}\sum_{\mu,k}\left(|\hat{k}|^2|A^k_\mu|^2+rac{|\Pi^k_\mu|^2}{m_k}
ight)$$

• Use different masses per momentum

$$m_k = \frac{4|\hat{k}|^2}{\pi^2}$$

- Zero mode subtraction trivial
- Coupling to quarks in coordinate space → FFT in every step

HMC FOR PHOTON FIELDS

TREE LEVEL CORRECTION

Christian Hoelbling (Wuppertal)

EFFECT OF TREE LEVEL CORRECTION

Christian Hoelbling (Wuppertal)

SCALING IN RENORMALISED COUPLING

Illustration with precise $\Delta M_{\pi}^2 = M_{\bar{u}d}^2 - (M_{\bar{u}u}^2 + M_{\bar{d}d}^2)/2$

Christian Hoelbling (Wuppertal)

DONT DO THIS STAGGERED

Combining results

How to determine the spread of results?

- Stdev or 1σ confidence interval of results
- Can weight it with fit quality Q

Information theoretic optimum: Akaike Information Criterion

- Information content of a fit depends on how well data are described per fit parameter
- Information lost wrt. correct fit ∝ cross-entropy J
- Compute information cross-entropy *J_m* of each fit *m*
- Probability that fit is correct $\propto e^{J_m}$

Akaike information criterion

- *N* measurments Γ_i from unknown pdf $g(\Gamma)$
- Fit model $f(\Gamma | \Theta)$ with parameters Θ
- Cross-entropy (~ Kullback-Leibler divergence)

$$J_m = J(g, f_m[\Theta]) = \int d\Gamma g(\Gamma) \ln(f(\Gamma|\Theta))$$

• For $N \to \infty$ and f close to g:

$$J_m = -\frac{\chi_m^2}{2} - p_m$$

where p_m is the number of fit parameters Is this the only correct method?