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1. Introduction

Strong coupling constant, as

 High accuracy of as is required from the precise SM test and 

beyond the SM (BSM) physics.

125 GeV Higgs partial widths

s(theory) = 48.58 pb (+2.22 -3.27 pb) D(PDF+as) = ±1.56 pb

D(scale) D(trunc) D(EW) D(PDF) D(as)

+0.1 -1.15 pb ±0.18 pb ±0.49 pb ±0.9 pb +1.27 -1.25 pb

Anastasiou, 1602.00695

If accuracy of as is required to be below EW 2-loop order, it corresponds to 0.5 % 

accuracy for as (and also for mb).

channel Das
Dmb 2loop EW

DG(H→bb) ±2.3% ±3.2% ±2%

DG(H→cc) +7.0% -7.1% +6.2% -6.0% ±2%

DG(H→gg) +4.2% -4.1% ±0.1% ±3%

Higgs production cross-section of gluon fusion at 12TeV

LHC HCSWG, 1307.1347



1. Introduction

Determination of as(MZ)

as(MZ)

PDG2015

World average (c2 average) in 2015

0.1192±0.0018 (t decay)

0.1184±0.0005 (Lattice, PDG c2)

±0.0012 (Lattice, FLAG13)

0.1156±0.0023 (DIS, unweighted)

0.1169±0.0034 (e+e-, unweighted)

0.1151±0.0028 (tt 7 TeV, CMS, NNLO)

0.1196±0.0030 (electroweak, NNLO)

0.1181±0.0013

Lattice is still leading 

the high precision.
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1. Introduction

FLAG report 2013 

http://itpwiki.unibe.ch/flag

• Flavor Lattice Averaging Group 

reported such a nice summary of 

lattice as(MZ) results and combined 

uncertainty based on their own 

opinion. 
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1. Introduction

Lattice study

Reliable region for lattice simulation

Unquenched 

lattice QCD 

simulation

RG running

Wilson loop, 

Heavy current correlator, 

Adler function, 

Schrödinger functional, 

Gluon-gluon (-ghost) vertex, 

Static energy, etc

1. Lattice calculation of

2. Matching those data with 

perturbative expansion of 

as(MSbar), as(V), as(SF), 

etc, below O(1) GeV.

3. Convert to as(MZ) with 

renormalization group 

equation.

5



1. Introduction

History of as(Mz) from lattice QCD

6

Just showing published as(Mz) 

in journal



 Adler function, given from a derivative of VPF by Q2

 N3LO has been known.

 OPE describes non-perturbative effect as the expansion of multiple 

dimension operator condensate.

 Current-current correlator
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2. Lattice calculation of Adler function

Vacuum polarization function (VPF)

Q :  Euclidean momentum

Baikov, Chetyrkin, Kuhn, Phys Rev Lett 101, 012002 (2008)

Using the analytical expression of Adler function, the perturbative VPF is 

described as a function of t = ln(Q2/m2)

N.B. c50 has not been known from analytical calculation.



 Pmn(Q) is computed easily, but rich information is contained:

 Long distance (Q < 1 GeV)

Hadronic contribution to g-2, S-parameter, etc.

 Short distance (Q >> 1 GeV)

OPE, moment, as etc. 

2. Lattice calculation of Adler function

Lattice calculation of VPF

Blum (2003--), JLQCD(2008) 

and see also Wittig’s talk. 

HPQCD (2008), JLQCD(2009,2010) 

and see also Hashimoto’s talk. 

• Taking into account the complicated hadronic state (pp and r).

• Statistically noisy and sparse Q2 variation near Q ~ 0 GeV.

• Clear statistical signal, and dense data.

• Systematic uncertainty due to finite 

lattice spacing. 
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hadron OPE, 

perturbation
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 Q ~ 1 -- 2 GeV : non-perturbative contribution in OPE is important.

 Quark, gluon condensate in OPE.

 Relatively small lattice artifact.

 Q > 2 GeV :  higher dimensional operator is suppressed as 1/Qn.

 Perturbative expression without quark mass.

 Large lattice artifact.

2. Lattice calculation of Adler function

VPF in short distance

According to sum rule analysis, OPE to fit in Q ~ 1 -- 2 GeV is problematic 

because of comparable size of OPE terms with alternating signs.

Boito, Golterman, Maltman, Osborne, Peris, 

PRD91,034003(2015)

In this study, we concentrate on Q > 2 GeV. 



 Constraint on Q with cylinder cut

 Averaging over Pmn(Q) with reflection operator

 Additional term 

 Continuum extrapolation

2. Lattice calculation of Adler function

Managing lattice artifact in Q >> 1 GeV

Here we choose Pmn(Q) in maximum radius 

This is to exclude undesirable Pmn(Q) which is, for instance, Q along single axis. 

Rm : reflection operator in m direction, O(4) breaking term is possible to remove. 

P(Q) is comparable with perturbation, and c term is purely lattice artifact
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R. Lewis, lattice 2015



 Differential of P(Q) between Q1 and Q2

2. Lattice calculation of Adler function

Adler function

Perturbative expression up to as
6

 This is a renormalization-independent function, so we use it for fitting function. 

 Leading term is as and then higher term depends on t. 

 No mass dependence. 

Need to know as
6 term.
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3. Preliminary result

Lattice parameter

Lattice size a-1 (GeV) ms mu Configs.

243×64 1.78 0.04 0.005,0.01,0.02 901

323×64 2.38 0.03 0.004,0.006,0.008 940

323×64 3.15 0.0186 0.0047 560

 Domain-wall fermion in RBC/UKQCD collaboration

RBC/UKQCD, 1411.7017

• Pmn is given by the combination of local and conserved current.

• DWF has small chiral symmetry violation on the lattice → O(a) suppression
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3. Preliminary result

Reduce lattice artifacts

Naïve subtraction 

shows a “fishbone” 

pattern of VPF in 

Q >> 1 GeV2.

Near top of this 

pattern is only 

relevant.
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3. Preliminary result

Reduce lattice artifacts

Combination of cylinder 

cut and reflection 

operator

Smooth behavior under 

restriction on 

cylindrical region along 

(1,1,1,1) and 

subtraction of O(4) 

breaking term.
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3. Preliminary result

Large Q

Q>1.5 GeV, the mass 

dependence of VPF is 

negligible. 
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3. Preliminary result

Fitting with perturbation 

 Q1
2 and Q2

2 are chosen from region where m dependence of P(Q) 

is negligible. 

 Fixed Q1
2 near 4 GeV2 and fit data in Q2

2 > Q1
2 with a function 

combined with O((aQ)2) term:

 Determination of fitting window, which is safe from undesirable 

contribution from higher dimensional operator and lattice artifact, 

as stable region by changing Q1
2.
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3. Preliminary result

D(Q1
2,Q2

2) in Q1
2 > 3 GeV2

Coarse lattice Fine lattice 

 In Q2
2 < 10 GeV2, linear term of O((aQ)2) is dominant in lattice 

data rather than perturbation. 

 In Q2
2 > 10 GeV2, the higher order term than O((aQ)2) is 

significant in particular for coarse lattice. 
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3. Preliminary result

Fitting result

Coarse  

Fine 

 In Q1
2 > 4 GeV2 fitting results is 

not stable due to non-negligible 

contribution of O((aQ)4) lattice 

artifact.

 Fine lattice is still stable. 
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3. Preliminary result

Final result

 Continuum extrapolation  Running to as(Mz) in 4-loop 

as(Nf=3, 2 GeV) 

↓
as(Nf=4, Mc)

↓
as(Nf=5, Mb)

↓
as(Nf=5, MZ)

Linear ansatz: as + c a2

as(Nf=3, 2 GeV)/p = 0.10008(48)

as(MZ) = 0.1192(18)(??)

Statistical error only

T. van Ritbergen et al., PLB400, 379(1997)
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4. Summary

Our result

20

 as computation from Adler 

function with perturbation 

and lattice.

 It avoids reliance on the 

OPE and the dangers of an 

alternating-sign series.

 In high Q2 lattice artifact is 

significant.
⇒Several techniques to 

reduce artifact, e.g. cylinder 

cut.

 Continuum extrapolation

 Uncertainties: 

fitting range, O(a2) term,…



Thank you for your attention. 
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 Target : the moments of Heavy-heavy current correlator

and ratio to the tree level
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Fitting R4--18 with PT form: 

to obtain

Also they obtained 

mc(3 GeV, Nf=4) = 0.986(6) GeV, 

mb (10 GeV, Nf=5) = 3.62(3) GeV

Heavy quark correlator HPQCD (2009, 2010)



c1 result
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as(MZ) Improvement

Bethke 2015

as(MZ)

leading lattice 

averaging in PDG c2

Including FLAG13 report

24


