Strong coupling constant from Adler function in lattice QCD

Renwick J. Hudspith(York), Randy Lewis(York), Kim Maltman(York) and Eigo Shintani(RIKEN-AICS)

MITP workshop "Determination of the Fundamental Parameters in QCD", 7-12 March 2016, Mainz

• High accuracy of α_s is required from the precise SM test and beyond the SM (BSM) physics.

125 GeV Higgs partial widths

LHC HCSWG, 1307.1347

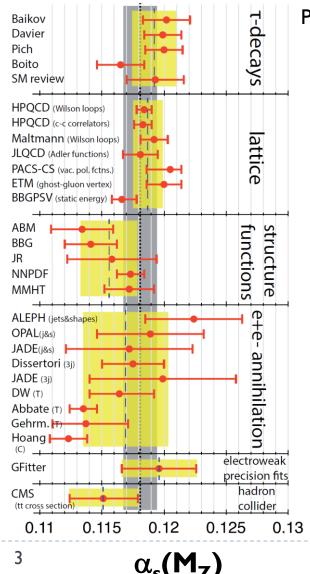
channel	$\Delta \alpha_{s}$	Δm _b	2loop EW
ΔΓ(H→bb)	±2.3%	±3.2%	±2%
Δ Γ(H →cc)	+7.0% -7.1%	+6.2% -6.0%	±2%
ΔΓ(H→gg)	+4.2% -4.1%	±0.1%	±3%

Higgs production cross-section of gluon fusion at 12TeV Anastasiou, 1602.00695

σ(theory) = 48	.58 pb (+2.22	Δ (PDF + α_s) = ±1.56 pb		
Δ (scale)	Δ (trunc)	Δ (EW)	Δ (PDF)	$\Delta(\alpha_s)$
+0.1 -1.15 pb	±0.18 pb	±0.49 pb	±0.9 pb	+1.27 -1.25 pb

If accuracy of α_s is required to be below EW 2-loop order, it corresponds to 0.5 % accuracy for α_s (and also for m_b).

1. Introduction Determination of $\alpha_s(M_Z)$



PDG2015

World average (χ^2 average) in 2015 0.1181 \pm 0.0013

Lattice is still leading the high precision.

0.1184±0.0005 (Lattice, PDG $\chi^2)$ \swarrow

 0.1192 ± 0.0018 (τ decay)

 ± 0.0012 (Lattice, FLAG13)

0.1156±0.0023 (DIS, unweighted)

 0.1169 ± 0.0034 (e⁺e⁻, unweighted)

 0.1196 ± 0.0030 (electroweak, NNLO)

0.1151±0.0028 (tt 7 TeV, CMS, NNLO)

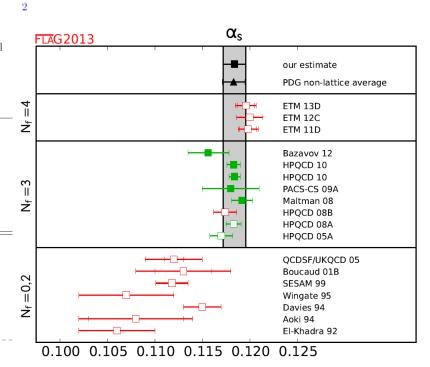
1. Introduction FLAG report 2013

Collaboration	Ref.	N_f	publy.	Tenor Star	Dertuni delisation	^{contine} bet	$\alpha_{\overline{\mathrm{MS}}}(M_{\mathrm{Z}})$	Method Ta
ETM 13D ETM 12C ETM 11D	[91] [92] [93]	2+1+1 2+1+1 2+1+1	A A A	0 0 0	0 0 0	:	$\begin{array}{c} 0.1196(4)(8)(16)\\ 0.1200(14)\\ 0.1198(9)(5)(^{+0}_{-5}) \end{array}$	gluon-ghost vertex gluon-ghost vertex gluon-ghost vertex
Bazavov 12 HPQCD 10 HPQCD 10 PACS-CS 09A Maltman 08 HPQCD 08B HPQCD 08A HPQCD 05A	[48] [62] [31] [63] [75] [59] [58]	$2+1 \\ 2+1 \\ 2+1 \\ 2+1 \\ 2+1 \\ 2+1 \\ 2+1 \\ 2+1 \\ 2+1$	A A A A A A A	0 0 ★ 0 0	0 ★ 0 ■ ★	0 ★ 0 ■ ★	$\begin{array}{c} 0.1156(\substack{+21\\-22})\\ 0.1183(7)\\ 0.1184(6)\\ 0.118(3)^{\#}\\ 0.1192(11)\\ 0.1174(12)\\ 0.1183(8)\\ 0.1170(12) \end{array}$	$Q-\bar{Q}$ potential current two points Wilson loops Schrödinger functional Wilson loops current two points Wilson loops Wilson loops
QCDSF/UKQCD Boucaud 01B SESAM 99 Wingate 95 Davies 94 Aoki 94 El-Khadra 92	$\begin{array}{c} 05 \ [64] \\ [86] \\ [65] \\ [66] \\ [67] \\ [68] \\ [69] \end{array}$	$\begin{array}{c} 0, 2 \rightarrow 3 \\ 2 \rightarrow 3 \\ 0, 2 \rightarrow 3 \\ 0, 2 \rightarrow 3 \\ 0, 2 \rightarrow 3 \\ 2 \rightarrow 3 \\ 0 \rightarrow 3 \end{array}$	A A A A A A	* • * * * *		* • • •	$\begin{array}{c} 0.112(1)(2)\\ 0.113(3)(4)\\ 0.1118(17)\\ 0.107(5)\\ 0.115(2)\\ 0.108(5)(4)\\ 0.106(4) \end{array}$	Wilson loops gluon-ghost vertex Wilson loops Wilson loops Wilson loops Wilson loops Wilson loops

Flavor Lattice Averaging Group reported such a nice summary of lattice $\alpha_s(M_Z)$ results and combined uncertainty based on their own opinion.

٠

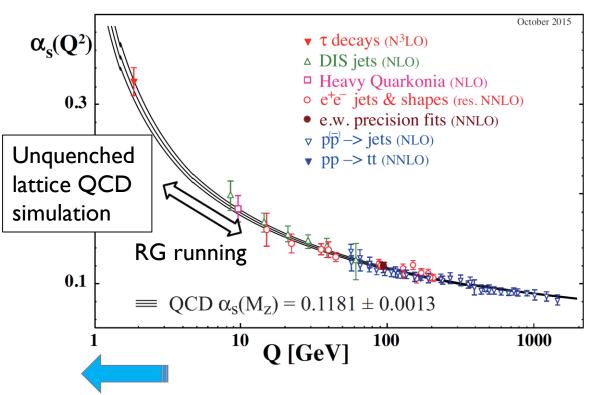
0 6



 $^{\#}$ Result with a linear continuum extrapolation in a.

http://itpwiki.unibe.ch/flag

1. Introduction Lattice study



Reliable region for lattice simulation

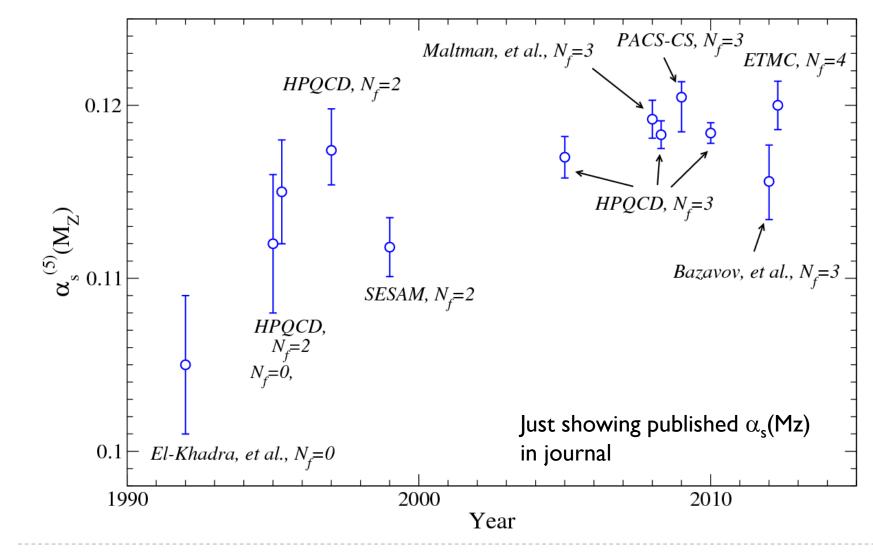
I. Lattice calculation of

Wilson loop, Heavy current correlator, Adler function, Schrödinger functional, Gluon-gluon (-ghost) vertex, Static energy, etc

2. Matching those data with perturbative expansion of α_s (MSbar), α_s (V), α_s (SF), etc, below O(I) GeV.

3. Convert to $\alpha_s(M_Z)$ with renormalization group equation.

1. Introduction History of $\alpha_s(M_z)$ from lattice QCD



2. Lattice calculation of Adler function Vacuum polarization function (VPF)

• Adler function, given from a derivative of VPF by Q²

- N³LO has been known. Baikov, Chetyrkin, Kuhn, Phys Rev Lett 101, 012002 (2008)
- OPE describes non-perturbative effect as the expansion of multiple dimension operator condensate.
- Current-current correlator

$$\Pi_{\mu\nu}(Q) = \int d^4x e^{iQx} \langle 0|J^a_{\mu}(x)J^{b\,\dagger}_{\nu}(0)|0\rangle = \delta^{ab} \Big(\delta_{\mu\nu}Q^2 - Q_{\mu}Q_{\nu}\Big)\Pi_J$$

Q: Euclidean momentum

Using the analytical expression of Adler function, the perturbative VPF is described as a function of $t = ln(Q^2/\mu^2)$

$$\Pi_V(Q^2) = \text{const} - \frac{1}{4\pi^2} \left[t + \sum_{k=1}^5 \left(\frac{\alpha_s(\mu)}{\pi} \right)^k \sum_{m=0}^{k-1} c_{km} \frac{t^{m-1}}{m+1} \right]$$

N.B. c_{50} has not been known from analytical calculation.

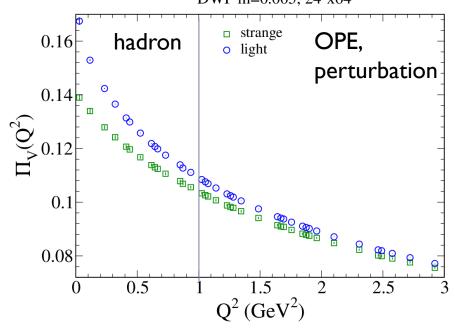
2. Lattice calculation of Adler function Lattice calculation of VPF

- $\Pi_{\mu\nu}(Q)$ is computed easily, but rich information is contained:
- Long distance (Q < I GeV)</p>

Hadronic contribution to g-2, S-parameter, etc.

- Taking into account the complicated hadronic state ($\pi\pi$ and ρ).
- Statistically noisy and sparse Q² variation near Q ~ 0 GeV.
 Blum (2003--), JLQCD(2008) and see also Wittig's talk.
 0.16 badron strange OPE
- Short distance (Q >> I GeV)
 OPE, moment, α, etc.
 - Clear statistical signal, and dense data.
 - Systematic uncertainty due to finite lattice spacing.

HPQCD (2008), JLQCD(2009,2010) and see also Hashimoto's talk.



2. Lattice calculation of Adler function VPF in short distance

- $Q \sim I 2 \text{ GeV}$: non-perturbative contribution in OPE is important.
 - Quark, gluon condensate in OPE.
 - Relatively small lattice artifact.
- Q > 2 GeV: higher dimensional operator is suppressed as I/Q^n .
 - Perturbative expression without quark mass.
 - Large lattice artifact.

According to sum rule analysis, OPE to fit in Q \sim I -- 2 GeV is problematic because of comparable size of OPE terms with alternating signs.

Boito, Golterman, Maltman, Osborne, Peris, PRD91,034003(2015) $\Pi^{(1+0)}(Q^2) = \sum_k \frac{C_{2k}}{Q^{2k}}, \qquad \begin{array}{l} C_{4,V+A} = +0.00268 \, \mathrm{GeV^4} \\ C_{6,V+A} = -0.0125 \, \mathrm{GeV^6} \\ C_{8,V+A} = +0.0349 \, \mathrm{GeV^8} \\ C_{10,V+A} = -0.0832 \, \mathrm{GeV^{10}} \\ C_{12,V+A} = +0.161 \, \mathrm{GeV^{12}} \end{array}$

In this study, we concentrate on Q > 2 GeV.

2. Lattice calculation of Adler function Managing lattice artifact in Q >> 1 GeV

Constraint on Q with cylinder cut

 $(Q_{\perp})_{\mu} \equiv Q_{\mu} - (\hat{n} \cdot Q)\hat{n}_{\mu}, \quad n_{\mu} = (1, 1, 1, 1)/2$

Here we choose $\Pi_{\mu
u}(\mathbf{Q})$ in maximum radius $|Q_{\perp}| < |Q_{\perp}|_{\max}$

This is to exclude undesirable $\Pi_{\mu\nu}(Q)$ which is, for instance, Q along single axis.

R. Lewis, lattice 2015

• Averaging over $\Pi_{\mu\nu}(\mathbf{Q})$ with reflection operator

$$\Pi_{\text{lat}}(Q) = \frac{1}{12} \sum_{\mu} \sum_{\nu \neq \mu} \frac{\Pi_{\mu\nu}(Q) - \Pi_{\mu\nu}(R_{\mu}Q)}{2Q_{\mu}Q_{\nu}}$$

 R_{μ} : reflection operator in μ direction, O(4) breaking term is possible to remove.

Additional term

$$\Pi_{\text{lat}}(Q) = \Pi(Q) + c_1 (aQ)^2 + \cdots$$

 $\Pi(Q)$ is comparable with perturbation, and c term is purely lattice artifact

Continuum extrapolation

2. Lattice calculation of Adler function Adler function

• Differential of $\Pi(Q)$ between Q_1 and Q_2

 $t_1 = \ln(Q_1^2/\mu^2), t_2 = \ln(Q_2^2/\mu^2)$

$$\Delta(Q_1^2, Q_2^2) = -4\pi^2 \left(\frac{\Pi(Q_1^2) - \Pi(Q_2^2)}{t_1 - t_2}\right) - 1$$

Need to know α_s^6 term.

Perturbative expression up to $\alpha_s^{\ 6}$

$$\begin{split} \Delta(Q_1^2, Q_2^2) &= \left(\frac{\alpha_s(\mu)}{\pi}\right) \left[1 + 1.639821 \left(\frac{\alpha_s(\mu)}{\pi}\right) + 6.371067 \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 + 49.07688 \left(\frac{\alpha_s(\mu)}{\pi}\right)^3 + c_{50} \left(\frac{\alpha_s(\mu)}{\pi}\right)^4 \right] \\ &+ \left(t_1 + t_2\right) \left\{-\frac{9}{8} \left(\frac{\alpha_s(\mu)}{\pi}\right) - 5.689597 \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 - 33.09141 \left(\frac{\alpha_s(\mu)}{\pi}\right)^3 - 346.7778 \left(\frac{\alpha_s(\mu)}{\pi}\right)^4\right\} \\ &+ \left(t_1^2 + t_1t_2 + t_2^2\right) \left\{\frac{27}{16} \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 + 15.8015 \left(\frac{\alpha_s(\mu)}{\pi}\right)^3 + 173.776 \left(\frac{\alpha_s(\mu)}{\pi}\right)^4\right\} \\ &+ \left(t_1^3 + t_1^2t_2 + t_1t_2^2 + t_2^3\right) \left\{-\frac{729}{256} \left(\frac{\alpha_s(\mu)}{\pi}\right)^3 - 42.9221 \left(\frac{\alpha_s(\mu)}{\pi}\right)^4\right\} \\ &+ \left(t_1^4 + t_1^3t_2 + t_1^2t_2^2 + t_1t_2^3 + t_2^4\right) \frac{6561}{1280} \left(\frac{\alpha_s(\mu)}{\pi}\right)^4 \right] \end{split}$$

- > This is a renormalization-independent function, so we use it for fitting function.
- \succ Leading term is α_s and then higher term depends on t.
- > No mass dependence.

3. Preliminary result Lattice parameter

Domain-wall fermion in RBC/UKQCD collaboration

Lattice size	a ⁻¹ (GeV)	m _s	m _u	Configs.
$24^{3} \times 64$	1.78	0.04	0.005,0.01,0.02	901
$32^{3} \times 64$	2.38	0.03	0.004,0.006,0.008	940
$32^{3} \times 64$	3.15	0.0186	0.0047	560

RBC/UKQCD, 1411.7017

- DWF has small chiral symmetry violation on the lattice \rightarrow O(a) suppression
- $\Pi_{\mu\nu}$ is given by the combination of local and conserved current.

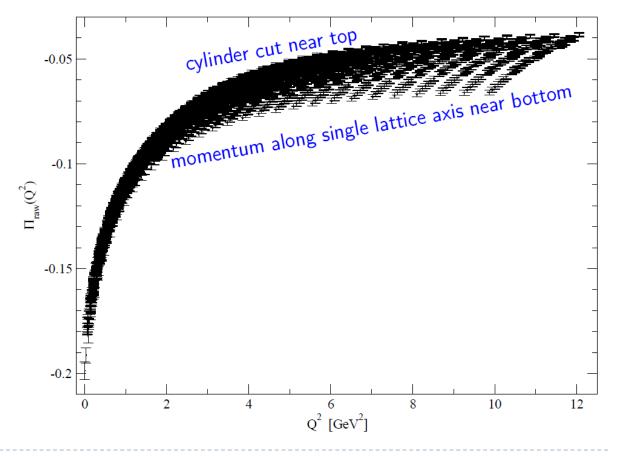
$$\sum_{\mu} \hat{Q}_{\mu} \Pi_{\mu\nu}(Q) = 0, \sum_{\nu} \hat{Q}_{\nu} \Pi_{\mu\nu}(Q) \neq 0$$
$$\hat{Q}_{\mu} = 2e^{iQ_{\mu}/2} \sin(Q_{\mu}/2)$$

3. Preliminary result Reduce lattice artifacts

$$\Pi_{\rm raw}(Q^2) = \frac{-1}{3\hat{Q}^2} \Big(\delta_{\mu\nu} - \frac{4\hat{Q}_{\mu}\hat{Q}_{\nu}}{\hat{Q}^2}\Big)\Pi_{\mu\nu}(Q^2)$$

Naïve subtraction shows a "fishbone" pattern of VPF in $Q >> I GeV^2$.

Near top of this pattern is only relevant.

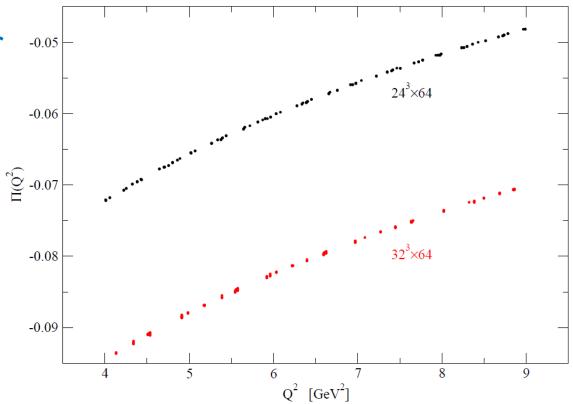


3. Preliminary result Reduce lattice artifacts

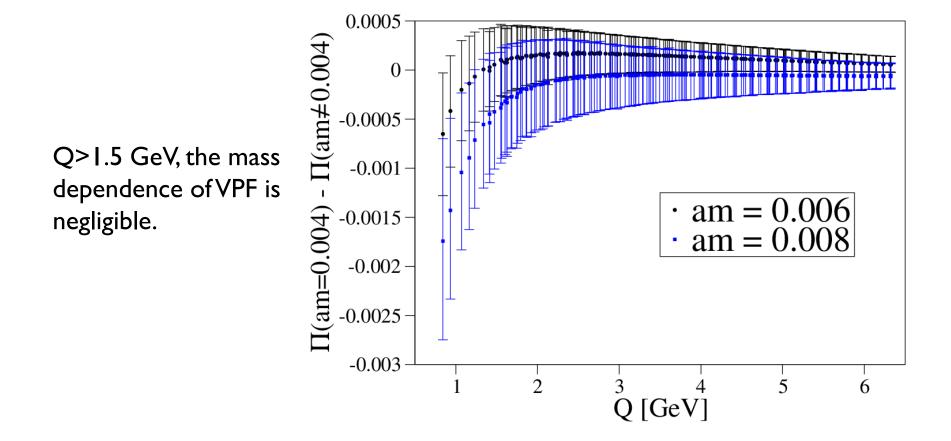
$$\Pi_{\rm lat}(Q) = \frac{1}{12} \sum_{\mu} \sum_{\nu \neq \mu} \frac{\Pi_{\mu\nu}(Q) - \Pi_{\mu\nu}(R_{\mu}Q)}{2Q_{\mu}Q_{\nu}} \Big|_{|Q_{\perp}| < |Q_{\perp}^{\rm max}}$$

Combination of cylinder cut and reflection operator

Smooth behavior under restriction on cylindrical region along (1,1,1,1) and subtraction of O(4) breaking term.



3. Preliminary result Large Q



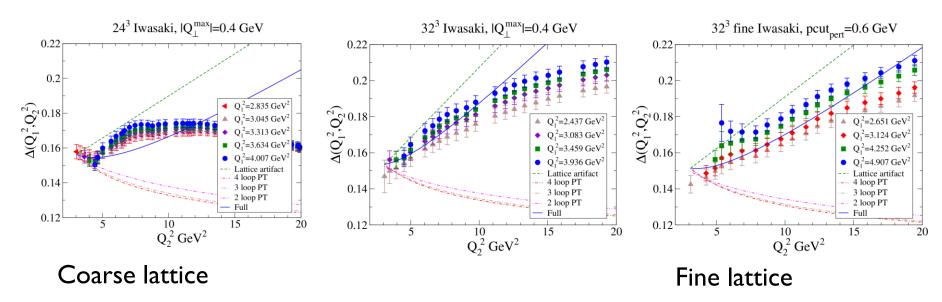
3. Preliminary result Fitting with perturbation

- $> Q_1^2$ and Q_2^2 are chosen from region where m dependence of $\Pi(Q)$ is negligible.
- Fixed Q_1^2 near 4 GeV² and fit data in $Q_2^2 > Q_1^2$ with a function combined with O((aQ)²) term:

$$\Delta(Q_1^2, Q_2^2)|_{Q_1^2 < Q_2^2} = \Delta_{\text{pert}}(Q_1^2, Q_2^2) + c_1(aQ_2)^2$$

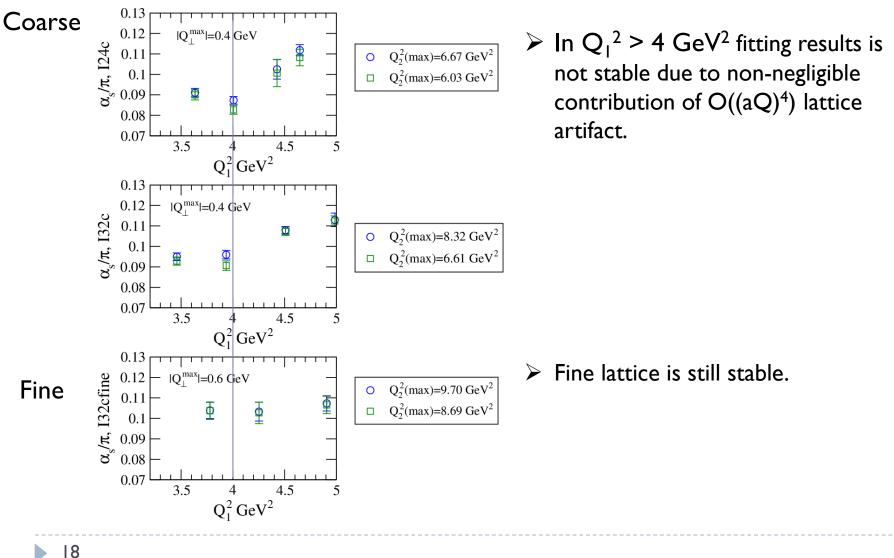
> Determination of fitting window, which is safe from undesirable contribution from higher dimensional operator and lattice artifact, as stable region by changing Q_1^2 .

3. Preliminary result $\Delta(Q_1^2, Q_2^2)$ in $Q_1^2 > 3 \text{ GeV}^2$



- ➢ In Q₂² < 10 GeV², linear term of O((aQ)²) is dominant in lattice data rather than perturbation.
- > In Q_2^2 > 10 GeV², the higher order term than O((aQ)²) is significant in particular for coarse lattice.

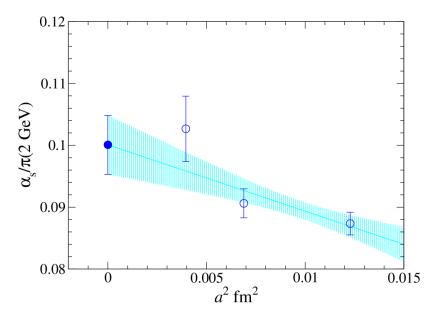
3. Preliminary result Fitting result



18

3. Preliminary result Final result

Continuum extrapolation

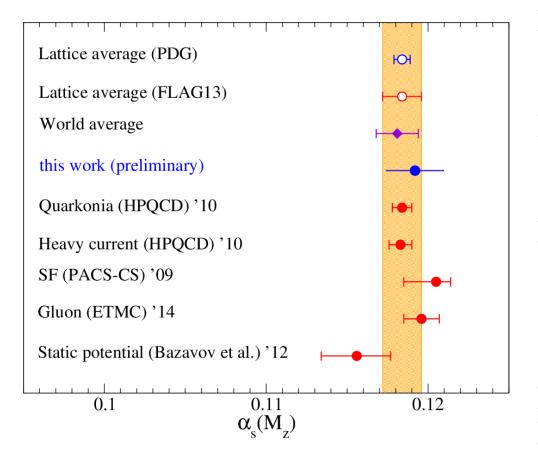


Linear ansatz: $a_s + c a^2$ $\alpha_s(N_f=3, 2 \text{ GeV})/\pi = 0.10008(48)$ > Running to $\alpha_s(M_z)$ in 4-loop T. van Ritbergen et al., PLB400, 379(1997)

 $\alpha_{s}(N_{f}=3, 2 \text{ GeV})$ $\alpha_{\circ}^{(4)}(M_c)$ α_s(N_f=4, M_c) $= \alpha_s^{(3)}(M_c) \left(1 + \sum c_{n0} (\alpha_s^{(3)}(M_c))^n \right)$ $\alpha_{s}(N_{f}=5, M_{b})$ $\alpha_{s}^{(5)}(M_{b})$ $= \alpha_s^{(4)}(M_b) \Big(1 + \sum c_{n0} (\alpha_s^{(4)}(M_b))^n \Big)$ $\alpha_{s}(N_{f}=5, M_{7})$ $\alpha_s(\mu) = \frac{1}{b_0 t} \left(1 - \frac{b_1}{b_0^2} \frac{\ln t}{t} + \cdots \right)$ $t = \ln(\mu^2 / \Lambda^2)$ $b_0 = \frac{33 - 2n_f}{12\pi}, \ b_1 = \frac{153 - 19n_f}{24\pi^2}$ $\alpha_{s}(M_{7}) = 0.1192(18)(??)$

Statistical error only

4. Summary Our result



- $\blacktriangleright \alpha_s$ computation from Adler function with perturbation and lattice.
- It avoids reliance on the OPE and the dangers of an alternating-sign series.
- In high Q² lattice artifact is significant.

⇒Several techniques to reduce artifact, e.g. cylinder cut.

- Continuum extrapolation
- Uncertainties: fitting range, O(a²) term,...

Thank you for your attention.

Heavy quark correlator

Target : the moments of Heavy-heavy current correlator

$$G(t) = a^{6} \sum_{\vec{x}} (am_{h})^{2} \langle j_{5}^{h}(\vec{x}, t) j_{5}^{h}(0, 0) \rangle, \quad G_{n} = \sum_{t} (t/a)^{n} G(t)$$

and ratio to the tree level

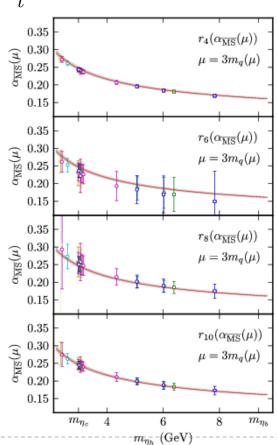
$$R_n = \begin{cases} G_4(t)/G_4(0) & (n=4), \\ \frac{am_{\eta_h}}{2am_h} (G_n/G_n^{(0)})^{1/(n-4)} & (n \ge 6) \end{cases}$$

Fitting R_{4-18} with PT form:

$$r_n(\alpha_s^{\overline{MS}},\mu) = 1 + \sum_{j=1}^{N_{\rm ph}=6} r_{n\,j}(\mu/m_h)(\alpha_s^{\overline{MS}})^j(\mu)$$

to obtain $\alpha_s^{(5)}(M_Z) = 0.1183(7)$

Also they obtained $m_c(3 \text{ GeV}, \text{Nf=4}) = 0.986(6) \text{ GeV},$ $m_b(10 \text{ GeV}, \text{Nf=5}) = 3.62(3) \text{ GeV}$



c_1 result

