Short-distance current correlators on the lattice: light and charm

based on the work by the JLQCD collaboration; Masaaki Tomii (Sokendai) and Katsumasa Nakayama (Nagoya, KEK), in particular.

Shoji Hashimoto (KEK, Sokendai) @ "Determination of the Fundamental Parameters in QCD," MITP, Mainz, Mar 8, 2016

JLQCD collaboration

- Members
 - KEK: G. Cossu, B. Fahy, S. Hashimoto, T. Kaneko, H. Matsufuru, K. Nakayama, J. Noaki, M. Tomii
 - o Osaka: H. Fukaya, T. Onogi, T. Suzuki
 - o Kyoto: S. Aoki
 - o Tsukuba: Y. Taniguchi
 - o RIKEN: N. Yamanaka
 - Columbia: X. Feng
 - o Wuhan: A. Tomiya
- Machines @ KEK
 - o Hitachi SR16000 M1
 - IBM Blue Gene /Q

Current correlator

$\Pi(x) \equiv \left< 0 \left| \mathrm{T} J(x) J(0) \right| 0 \right>$

Hadron spectrum from long distances

 non-perturbative, main use of LQCD

Short distances

- perturbation theory
 + power corrections
 (= OPE)
- $\alpha_{s'}$ quark mass, ...

Current correlator

Consider in the coordinate space: no extra divergences

Consistent? LHS: Directly calculable in LQCD. RHS: Mostly perturbative.

Lattice QCD

- Ab initio calculation of QCD
 → Use as an "experimental" facility of QCD
- Limitation due to finite lattice spacings
 = Window problem

$$a \ll x \ll \Lambda_{
m QCD}^{-1}$$

To avoid large discretization effects

To avoid too large non-perturbative effects

Need sufficiently small *a*. How small? See the data.

Lattices with domain-wall

$\beta = 4.17,$, 1/a ~ 2.	4 GeV, 32	$2^{3}x64 (x12)$
-----------------	------------	-----------	------------------

m _{ud}	m _π [MeV]	MD time
$m_{s} = 0.030$		
0.007	310	10,000
0.012	410	10,000
0.019	510	10,000
$m_s = 0.040$		
0.0035	230	10,000
0.0035 (48 ³ x96)	230	10,000
0.007	320	10,000
0.012	410	10,000
0.019	510	10,000
S. Hashimoto (I	<ek)< td=""><td></td></ek)<>	

 β = 4.35, 1/a ~ 3.6 GeV, 48³x96 (x8)

m _{ud}	m _π [MeV]	MD time
$m_s = 0.018$		
0.0042	300	10,000
0.0080	410	10,000
0.0120	500	10,000
$m_s = 0.025$		
0.0042	300	10,000
0.080	410	10,000
0.0120	510	10,000

 β = 4.47, 1/a ~ 4.6 GeV, 64³x128 (x8)

0.0030	~ 300	10,000	
--------	-------	--------	--

6

light-light correlator

Definitions

- $egin{aligned} \Pi_{\mathrm{S}}(x) &= ig\langle S(x)S(0)^{\dagger}ig
 angle, & \Pi_{\mathrm{P}}(x) &= ig\langle P(x)P(0)^{\dagger}ig
 angle, \ \Pi_{\mathrm{V},\mu
 u}(x) &= ig\langle V_{\mu}(x)V_{
 u}(0)^{\dagger}ig
 angle, & \Pi_{\mathrm{A},\mu
 u}(x) &= ig\langle A_{\mu}(x)A_{
 u}(0)^{\dagger}ig
 angle, \ \Pi_{\mathrm{V}/\mathrm{A}}(x) &= \sum_{\mu}\Pi_{\mathrm{V}/\mathrm{A},\mu\mu}(x) \end{aligned}$
- Non-singlet local operators are considered
 $S(x) = \bar{u}d(x), \quad P(x) = \bar{u}i\gamma_5 d(x),$ $V_{\mu}(x) = \bar{u}\gamma_{\mu}d(x), \quad A_{\mu}(x) = \bar{u}\gamma_{\mu}\gamma_5 d(x)$
- Chiral symmetry in perturbation theory (at m=0) $\Pi_{S} = \Pi_{P}, \ \Pi_{V,\mu\nu} = \Pi_{A,\mu\nu}$
 - Non-perturbative effects breaks these degeneracies

Discretization effect

Mar 8, 2016

subtraction:

$$\Pi_{\Gamma}^{lat}(x) \longrightarrow \Pi_{\Gamma}^{lat}(x) - \left(\Pi_{\Gamma}^{lat,free}(x) - \Pi_{\Gamma}^{cont,free}(x)
ight)$$

Filtering the points

Disc error is larger on the direction of lattice coordinates.
 Filter them out.

Cut the points of $\theta > 30^{\circ}$ (angle from (1,1,1,1)).

Cichy et al., NPB865, 268 (2012).

Perturbative expansion

• Available to $O(\alpha_s^4)!$ Chetyrkin, Maier, NPB844 (2011) 266. • Convergence behavior in the region of interest... $\Pi_{\rm SS}^{\widetilde{\rm MS}}(x,\tilde{\mu}) = \frac{3}{\pi^4 \pi^6} (1 + 0.67\tilde{a}_s - 16.3\tilde{a}_s^2 - 31\tilde{a}_s^3 + 497\tilde{a}_s^4)$ $\Pi_{\rm VV}^{\widetilde{\rm MS}}(x) = \frac{6}{\pi^4 r^6} (1 + \tilde{a}_s - 4\tilde{a}_s^2 - 1.9\tilde{a}_s^3 + \frac{94\tilde{a}_s^4}{s})$ 0.1 $N_{f} = 3,$ Scalar Vector 4-loop $\Lambda_{
m QCD}=340~{
m MeV}$ 0.08 0.08 1-loop $^{9}x \times ^{\chi}M$ 0.06 \underline{W} \underline{W} 0.04 4-loop 1-loop 2-loop free free 0.02 0.02 3-loop 3-loop-2-loop 0 0 $1.5 2 x^2 [GeV^{-2}]$ 0.5 $x^{1.5}$ x^{2} [GeV⁻²] 2.5 0 0.5 2.5 0 3 3.5 3 3.5 1 1 S. Hashimoto (KEK) 12 Mar 8, 2016

Choosing the scale for $\alpha_s(\mu)$

- Well-known example: BLM scale setting Brodsky, Lepage, Mackenzie, PRD28, 228 (1983).
 - Improve the perturbative expansion by resuming a class of diagram so that the vacuum polarization diagrams are included to high orders. Amounts to choosing

$$ilde{\mu}^* = ilde{\mu} \expig(-11/6 + 2\zeta(3)ig) \simeq 1.8 ilde{\mu}$$

and rearranging the perturbative expansion.

$$\begin{split} \Pi^{\widetilde{\mathrm{MS}}}_{\mathrm{VV}}(x) = & \frac{6}{\pi^4 x^6} (1 + \tilde{a}_s - 4\tilde{a}_s^2 - 1.9\tilde{a}_s^3 + 94\tilde{a}_s^4) \\ \Pi^{\widetilde{\mathrm{MS}}}_{\mathrm{VV}}(x) = & \frac{6}{\pi^4 x^6} (1 + \tilde{a}_s^* + 0.083\tilde{a}_s^{*2} - 6\tilde{a}_s^{*3} + 18\tilde{a}_s^{*4}) \qquad \tilde{a}_s^* = a_s(\tilde{\mu}^*) \end{split}$$

Choosing the scale for $\alpha_{s}(\mu)$

Truncation error

Truncation error

Lattice versus PT (S/P)

• Direct comparison at finite *a*.

Lattice versus PT (V/A)

• Direct comparison at finite *a*.

Non-perturbative effect

Looking at the non-conserving part of the axial current

n

$$\Sigma_{m_{q}}(x) \equiv -\frac{\pi^{2}}{2m_{q}}x^{2}x_{\nu}\partial_{\mu}\Pi_{A-V,\mu\nu}(x) = \langle \bar{q}q \rangle + O(m_{q}) \cdot O(x^{-2})$$

$$\begin{bmatrix} Z_{S}^{\overline{MS}}(2 \text{ GeV})\Sigma_{m_{q}}(x) \end{bmatrix}^{1/3} [\text{MeV}] \\ & (\text{FLAG 2013}) = \\ am_{q}=0.0120 \leftrightarrow \\ am_{q}=0.0080 \leftrightarrow \\ am_{q}=0.0042 \leftrightarrow \\ am_{s}=0.0180 \end{bmatrix}$$

$$= 0.0180$$
Consistent with the FLAG average
$$\langle qbar q \rangle = [-271(15) \text{ MeV}]^{3}$$

Operator renormalization

Can be used to renormalize the lattice operators

$$Z_{\Gamma}^{\overline{MS}/lat}(\mu a) O_{\Gamma}^{lat}(a) = O_{\Gamma}^{\overline{MS}}(\mu)$$

 Renormalization condition = reproduce the MSbar result at a finite distance x. Martinelli et al., PLB411, 141 (1997).

$$\Pi_{\rm PP}(x) = \langle P(x)P(0) \rangle, \quad \Pi_{\rm SS}(x) = \langle S(x)S(0) \rangle,$$

$$\Pi_{\rm VV}(x) = \sum_{\mu=1}^{4} \langle V_{\mu}(x)V_{\mu}(0) \rangle, \quad \Pi_{\rm AA}(x) = \sum_{\mu=1}^{4} \langle A_{\mu}(x)A_{\mu}(0) \rangle$$

$$\left[Z_{\Gamma}^{\overline{MS}/lat}(\mu a) \right]^{2} \Pi_{\Gamma\Gamma}^{lat}(x) = \Pi_{\Gamma\Gamma}^{\overline{MS}}(x,\mu) \quad \text{or} \quad Z_{\Gamma}^{\overline{MS}/lat}(\mu a) = \sqrt{\frac{\Pi_{\Gamma\Gamma}^{\overline{MS}}(x,\mu)}{\Pi_{\Gamma\Gamma}^{lat}(x)}}$$

Renormalization of Vector Current

Eliminate unwanted disc effects and higher order NP effects

 $\widetilde{Z}_{(5V+3A)/8}^{\overline{\text{MS}}/lat}(a;x) = Z_{V}^{\overline{\text{MS}}/lat}(a) + c_{-2}(a/x)^{2} + c_{4}x^{4} + (c_{6} + c_{6}'m_{q}^{2})x^{6}$

β	$7\overline{\mathrm{MS}}$	Errors						
	$Z_{\rm V}$	Stat.	Sys.	μ^*	$\Lambda_{\rm QCD}$			
4.17	0.9553	(60)	(72)	(9)	(4)			
4.35	0.9636	(39)	(45)	(7)	(3)			
4.47	0.9699	(29)	(37)	(6)	(4)			

5V+3A ??

Cancel the term of m<qbar q> in a linear combination

$$\widetilde{Z}_{(5\mathrm{V+3A})/8}^{\overline{\mathrm{MS}}/lat}(a;x) = Z_{\mathrm{V}}^{\overline{\mathrm{MS}}/lat}(a) + c_{4,\mathrm{G}}\langle\mathrm{GG}
angle x^4 + \cdots$$

Renormalization of Scalar Density

 $egin{aligned} \widetilde{Z}_{(\mathrm{S+P})/2+(\mathrm{V-A})/16}^{\overline{\mathrm{MS}}/lat}(2\ \mathrm{GeV};a;x) &= Z_{\mathrm{S}}^{\overline{\mathrm{MS}}/lat}(2\ \mathrm{GeV};a) \ &+ c_{-2}(a/x)^2 + c_4 x^4 + (c_6 + c_6' m_q^2) x^6 \end{aligned}$

R	$\overline{ZMS}(0, C-W)$	Errors						
ρ	$Z_{S}^{aa}(2 \text{ GeV})$	Stat.	Sys.	μ^*	$\Lambda_{\rm QCD}$			
4.17	1.0347	(92)	(78)	$\left(\begin{smallmatrix}+46\\-56\end{smallmatrix}\right)$	(59)			
4.35	0.9324	(57)	(55)	$\left(\begin{array}{c} +30\\ -37 \end{array}\right)$	(37)			
4.47	0.8912	(41)	(45)	$\left(\begin{smallmatrix}+24\\-31\end{smallmatrix}\right)$	(28)			

Mar 8, 2016

Summary (light)

- Lattice data at short distances \Leftrightarrow pert. theory.
 - "Window" exists around x ~ 1 GeV⁻¹ (only after improving both lattice and continuum), but narrow.
- Applications?
 - Precise calculation of renormalization constants (4loop available on the continuum side).
 - Extracting α_s from the x-dependence is non-trivial.
 One has to distinguish the pert x-dep from those of disc effect and non-perturbative contrib.

charmonium correlator

Current correlator

- Euclidean: use the optical theorem to relate to "exp"
 - Convenient to use the moments.

$$\frac{1}{n!} \left(\frac{\partial}{\partial q^2}\right)^n \left(\Pi(q^2)\right)_{q^2=0} = \frac{1}{12\pi Q_f^2} \int \mathrm{d}s \frac{1}{s^{n+1}} R(s)_{e^+e^- \to \text{ hadron}}$$

• In the coordinate space, it corresponds to the time moments:

$$i\int \mathrm{d}x \frac{1}{n!} \left(\frac{\partial}{\partial q^2}\right)^n \mathrm{e}^{iqt} \longrightarrow a^4 \sum_x t^{2n}$$

Time moments on the lattice

• Vector current correlator

$$(q_{\mu}q_{\nu} - q^{2}g_{\mu\nu})\Pi_{V}^{(1)}(q^{2}) = i\int d^{4}x \, e^{ipx} \left\langle 0 \left| T[j_{\mu}(x)j_{\nu}(0)] \right| 0 \right\rangle$$

• Moments on the lattice

$$G_{V}(t) = a^{6} \sum_{x} \langle 0 | j_{k}(x,t) j_{k}(0,0) | 0 \rangle, \quad G_{V,n} = \sum_{t} (t/a)^{n} G_{V}(t)$$

$$\circ G_{V}(t) \text{ represents a J/\psi correlator, } \sim \exp(-m_{J/\psi}t), \text{ plus its excited states.}$$

Sum to define the moment

Sum to define the moment

Lattice versus "exp"

Determination of m_c and α_s

- Following the method of the pioneering work by HPQCD plus the Karlsruhe group (2008~).
 - Allison et al., PRD78, 054513 (2008); McNeile et al., PRD82, 034512 (2010); Chakraborty et al., PRD91, 054508 (2015).

Lattice data after continuum extrap Continuum perturbation theory known to α_s^{3} .

$$R_n = \frac{am_{\eta_c}^{(\exp)}}{2a\overline{m}_c(\mu)} r_n(\mu; m_c(\mu), \alpha_s(\mu))$$

- Solve equations with different n's (n = 6, 8, 10, in this work).
- \circ Use the pseudo-scalar density correlator for both lattice and pert. Perturbative coefficients known to α_s^3 .

RHS: Estimate of the perterbative truncation error.

Error budgets

			Lattice					m_{η_c}			
$\mu_m = \mu_lpha$										1	
		Trunc.	Stat.	a	$O(a^4)$	FV	$m_{\eta c}^{\exp}$	Disc	EM	$\eta_c J/\psi$	ALL
$m_c(3 \text{GeV})$	$0.9944 \mathrm{GeV}$	(26)	(14)	(7)	(53)	(33)	(3)	(3)	(5)	(10)	=(70)
$\alpha_s(3 \text{GeV})$	0.2534	(47)	(10)	(4)	(45)	(33)	(0)	(0)	(0)	(1)	=(74)
$rac{\langle lpha / \pi G^2 angle}{m^4}$	-0.0019 GeV	(38)	(0)	(0)	(3)	(0)	(0)	(0)	(0)	(0)	=(38)
$ll_m \neq ll_m$				La	ttice			m_{η_c}			

$\mu m \neq$	μ_{lpha}										٦
		Trunc.	Stat.	a	$O(a^4)$	FV	$m_{\eta c}^{\exp}$	Disc	EM	$\eta_c J/\psi$	ALL
$m_c(3 \text{GeV})$	$0.9944~{\rm GeV}$	(78)	(14)	(7)	(53)	(33)	(3)	(3)	(5)	(10)	=(102)
$\alpha_s(3 \text{GeV})$	0.2534	(119)	(10)	(4)	(45)	(33)	(0)	(0)	(0)	(1)	=(132)
$\frac{\langle \alpha/\pi G^2 \rangle}{m^4}$	-0.0019 GeV	(69)	(0)	(0)	(3)	(0)	(0)	(0)	(0)	(0)	=(69)

Comparison

Mar 8, 2016 36

Summary (charm)

• Test of LQCD at short distances

 Lattice results are consistent with the experimental data, also at short distances.

- Determination of the Fundamental Parameters in QCD
 - LQCD may provide an extra input to feed in the perturbative analysis.
 - $\circ\,$ The results for m_c and α_s are among the most precise ones.

Backup

From the vector channel:

Inconsistency in S/P channel

Non-perturbative effect too large for scalar-pseudoscalar

• OPE predicts the term of m<qbar q>:

P-S ~ 0.5 x V-A

 Lattice result: P-S >> V-A and different x-dep

OPE failure?

Known for some time:

- Novikov, Shifman, Vainshtein, Zakharov, "Are all hadrons alike?", NPB191 (1981) 301.
 - Spin-0 correlation functions may deviate from OPE at shorter distances.
- Shuryak, →
- Chetyrkin, Narison, Zakharov, *"Short-distance tachyonic gluon mass and 1/Q² corrections,"* NPB550 (1999) 353.
- Narison, Zakharov, "Hints on the power corrections from current correlators in x-space," PLB522 (2001) 266.

Shuryak, RMP65, 1 (1993)

Lattice observations:

- Chu, Grandy Huang, Negele, PRD48 (1993) 3340.
- DeGrand, PRD64 (2001) 094508.