Charm quark mass with calibrated uncertainty

Pere Masjuan Johannes Gutenberg-Universität Mainz (masjuan@kph.uni-mainz.de)

Work in collaboration with Jens Erler (UNAM) and Hubert Spiesberger (Mainz) preliminary results

MITP, Mainz, 7-12 March, 2016

Outline

- Motivation and Introduction
- \bullet Using Sum Rules to extract m_Q
 - overview
 - our proposal
- Conclusions and outlook

Motivation: why precise mQ? Techniques

Y-spectroscopy

$$m(\Upsilon(1S)) = 2M_b - C\alpha^2 M_b + \cdots$$

lattice: HPQCD'14

 $\overline{m_c}(3\text{GeV}) = 986(6)\text{MeV}$

 $\overline{m_b}(10 \text{GeV}) = 3617(25) \text{MeV}$

QCD Sum Rules

$$\int \frac{\mathrm{d}s}{s^{n+1}} R_q(s) \sim \left(\frac{1}{m_q}\right)^{2n}$$

Pere Masjuan

Motivation: why precise mq?

$\overline{m_c}(\overline{m_c})$	method	reference
1275.8 ± 5.8	lattice ($N_f = 4$), PS current	HPQCD, 1408.4169
1348 ± 46	lattice $(2+1+1), M_D$	ETM, 1403.4504
1274 ± 36	lattice ($N_f = 2$), f_D	ALPHA, 1312.7693
1240 ± 50	$c\bar{c}$ X-section DIS	Alekhin et al, 1310.3059
1260 ± 65	$c\bar{c}$ X-section NLO fit	HI and ZEUS, 1211.1182
1262 ± 17	SR J/Ψ , $\Psi(2S - 6S)$	Narison, 1105.5070
1260 ± 36	lattice $(2+1), f_D$	PACS-CS, 1104.4600
1278 ± 9	SR $J/\Psi, \Psi, R$	Bodenstain et al, 1102.3835
1282 ± 24	1st moment SR $J/\Psi, \Psi, R$	Dehnadi et al, 1102.2264
1280 ± 70	lattice + pQCD in static potential	Laschka et al, 1102.0945
1279 ± 13	1st moment SR $J/\Psi, \Psi, R$	Chetyrkin et al, 1010.6157
1275 ± 25	PDG average	PDG 2014

Motivation: why precise mq?

$\overline{m_b}(\overline{m_b})$	method	reference
4174 ± 24	lattice ($N_f = 4$), PS current	HPQCD, 1408.4169
4201 ± 43	N^3 LO pQCD, M_{Υ}	Ayala et al, 1407.2128
4169 ± 9	SR $\Upsilon(1S - 6S)$	Penin, Zerf, 1401.7035
4247 ± 34	SR, f_B	Lucha et al, 1305.7099
4166 ± 43	lattice + pQCD, M_{Υ} , M_{B_s}	HPQCD, 1302.3739
4235 ± 55	SR $\Upsilon(1S - 6S)$, R	Hoang et al, 1209.0450
4171 ± 9	SR $\Upsilon(1S - 6S)$, R	Bodenstain et al, 1111.5742
4177 ± 11	SR $\Upsilon(1S - 6S)$	Narison, 1105.5070
4180 ± 50	lattice + pQCD in static potential	Laschka et al, 1102.0945
4163 ± 16	2nd moment SR $\Upsilon(1S - 6S)$, R	Chetyrkin et al, 1010.6157
4.180 ± 30	PDG average	PDG 2014

Using the optical theorem:

$$R(s) = 12\pi \text{Im}[\Pi(s+i\epsilon)]$$

 $\Pi_q(s)$ is the correlator of two heavy-quark vector currents which can be calculated in pQCD order by order and satisfies a Dispersion Relation:

For $t \rightarrow 0$

$$\mathcal{M}_{n} := \left. \frac{12\pi^{2}}{n!} \frac{d^{n}}{dt^{n}} \hat{\Pi}_{q}(t) \right|_{t=0} = \int_{4m_{q}^{2}}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R_{q}(s)$$

Pere Masjuan

[SVZ,'79]

$$\hat{\Pi}_q(s)$$
 can be Taylor expanded:

$$\Pi_q(t) = Q_q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \bar{C}_n \left(\frac{t}{4\hat{m}_q^2}\right)^n$$

[Maier et al, '08] [Chetyrkin, Steinhauser'06] [Melnikov, Ritberger'03]

[Kiyo et al '09] [Hoang et al '09] [Greynat et al '09]

Pere Masjuan

Sum Rules:

$$\mathcal{M}_n = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R_q(s)$$
$$\mathcal{M}_n^{\mathrm{pQCD}} = \frac{9}{4} Q_q^2 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)}\right)^{2n} \bar{C}_n$$

L.h.s. from theory

$$R_{q}(s) = R_{q}^{\text{Res}}(s) + R_{q}^{\text{th}}(s) + R_{q}^{\text{cont}}(s)$$

Pere Masjuan

MITP, Mainz, 7-12 March, 2016

$$\begin{split} R_{q}(s) &= R_{q}^{\text{Res}}(s) + R_{q}^{\text{th}}(s) + R_{q}^{\text{cont}}(s) & & & \\ R_{q}^{\text{Res}}(s) &= \frac{9\pi M_{R}\Gamma_{R}^{e}}{\alpha_{\text{cm}}^{2}(M_{R})}\delta(s - M_{R}^{2}) & & & \\ R_{q}^{\text{Res}}(s) &= \frac{9\pi M_{R}\Gamma_{R}^{e}}{\alpha_{\text{cm}}^{2}(M_{R})}\delta(s - M_{R}^{2}) & & & \\ R_{q}^{\text{th}}(s) &= R_{q}(s) - R_{\text{background}} & (2M_{D} \leq \sqrt{s} \leq 4.8\text{GeV}) \\ R_{q}^{\text{cont}}(s) & & \\ (\sqrt{s} \geq 4.8\text{GeV}) & & & \\ \end{pmatrix}$$

MITP, Mainz, 7-12 March, 2016

1_

-

$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$

Using pQCD below threshold, calculate R, and extrapolate

$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$

$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$

MITP, Mainz, 7-12 March, 2016

$$R_{\text{background}} = R_{\text{uds}} + R_{\text{uds(cb)}} + R_{\text{sing}} + R_{\text{QED}}$$

Light flavor contribution in charm region + secondary production + singlet contribution + 2loop QED

Non-perturbative effects

Non-perturbative effects due to gluon condensates to the moments are:

[Chetyrkin et al '12]

$$\mathcal{M}_{n}^{\text{nonp}}(\mu^{2}) = \frac{12\pi^{2}Q_{q}^{2}}{(4\hat{m}_{q}^{2})^{n+2}} \text{Cond}\,a_{n}\left(1 + \frac{\alpha_{s}(\hat{m}_{q}^{2})}{\pi}b_{n}\right)$$

 a_n , b_n are numbers, and $\text{Cond} = \langle \frac{\alpha_s}{\pi} G^2 \rangle = (14 \pm 14) \cdot 10^{-3} \text{GeV}^4$ [Dominguez et al 'I4] from fits to tau data

$$\frac{\mathcal{M}_n^{\text{nonp}}(\hat{m}_c)}{\mathcal{M}_n^{\text{th}}} \sim 0.5\% - 2\% \longrightarrow \Delta \hat{m}_c(\hat{m}_c) \sim 2\text{MeV} - 8\text{MeV}$$

Our approach

- Consider global duality
- Do not use experimental data on threshold region, only resonances
 - Exp data in threshold only for error estimation
- Use two different moments to extract the mass

Our approach

For a global duality:

 $\hat{\Pi}_q(s)$ in \overline{MS}

$$12\pi^2 \frac{\hat{\Pi}_q(0) - \hat{\Pi}_q(-t)}{t} = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s} \frac{R_q(s)}{s+t}$$

 $t \to \infty$ define the \mathcal{M}_0

[Erler, Luo '03]

Our approach

For a global duality:

 $\hat{\Pi}_q(s)$ in \overline{MS}

$$12\pi^2 \frac{\hat{\Pi}_q(0) - \hat{\Pi}_q(-t)}{t} = \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s} \frac{R_q(s)}{s+t}$$

 $t \to \infty$ define the \mathcal{M}_0 (but has a divergent part)

[Erler, Luo '03]

$$\lim_{t \to \infty} \hat{\Pi}_q(-t) \sim \log(t) \quad \longleftrightarrow \quad \int_{4m_q^2}^{\infty} \frac{\mathrm{d}s}{s} R_q(s) \sim \log(\infty)$$

Fortunately, divergence given by the zero-mass limit of R(s)

Our approach

Zeroth Sum Rule:

$$\begin{split} \sum_{\text{resonances}} \frac{9\pi\Gamma_R^e}{3Q_q^2 M_R \hat{\alpha}_{em}^2(M_R)} + \int_{4M^2}^{\infty} \frac{\mathrm{d}s}{s} \frac{R_q^{\text{cont}}}{3Q_q^2} - \int_{\hat{m}_q^2}^{\infty} \frac{\mathrm{d}s}{s} \lambda_1^q(s) \\ &= -\frac{5}{3} + \frac{\hat{\alpha}_s}{\pi} \left[4\zeta(3) - \frac{7}{2} \right] & \hat{\alpha}_s = \alpha_s (\hat{m}_q^2) \\ &+ \left(\frac{\hat{\alpha}_s}{\pi}\right)^2 \left[\frac{2429}{48} \zeta(3) - \frac{25}{3} \zeta(5) - \frac{2543}{48} + n_q \left(\frac{677}{216} - \frac{19}{9} \zeta(3)\right) \right] \\ &+ \left(\frac{\hat{\alpha}_s}{\pi}\right)^3 \left[-9.86 + 0.40 \, n_q - 0.01 \, n_q^2 \right] \\ & n_q \text{ active flavors} \end{split}$$

Pere Masjuan

MITP, Mainz, 7-12 March, 2016

Our approach

Zeroth Sum Rule:

 n_q active flavors

Our approach

Zeroth Sum Rule:

 $\Delta \hat{\alpha}_{em} \to \Delta m_c \sim 12 \text{MeV}$

 n_q active flavors

MITP, Mainz, 7-12 March, 2016

Our approach

Zeroth Sum Rule:

[Erler, Luo '03]

$$R_q^{\text{cont}}(s) = 3Q_q^2 \lambda_1^q(s) \sqrt{1 - \frac{4\,\hat{m}_q^2(2M)}{s'}} \left[1 + \lambda_3^q \frac{2\,\hat{m}_q^2(2M)}{s'} \right]$$

Simpler version of analytic reconstruction [Greynat, PM, Peris'12]

 $s' = s + 4(\hat{m}_q^2(2M) - M^2)$

Two parameters to determine: $m_q\,,\lambda_3^q$

Our approach

Zeroth Sum Rule:

[Erler, Luo '03]

 $s' = s + 4(\hat{m}_q^2(2M) - M^2)$

$$R_q^{\text{cont}}(s) = 3Q_q^2 \lambda_1^q(s) \sqrt{1 - \frac{4\,\hat{m}_q^2(2M)}{s'}} \left[1 + \lambda_3^q \frac{2\,\hat{m}_q^2(2M)}{s'}\right]$$

Simpler version of analytic reconstruction [Greynat, PM, Peris'12]

Two parameters to determine: $m_q\,,\lambda_3^q$

We need two equations: zeroth moment + nth moment

$$\frac{9}{4}Q_q^2 \left(\frac{1}{2\hat{m}_q(\hat{m}_q)}\right)^{2n} \bar{C}_n = \sum_{\text{resonances}} \frac{9\pi\Gamma_R^e}{M_R^{2n+1}\hat{\alpha}_{em}^2(M_R)} + \int_{4M^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}}R_q(s)$$
$$n \ge 1$$

Our approach

Zeroth Sum Rule:

[Erler, Luo '03]

$$R_q^{\text{cont}}(s) = 3Q_q^2 \lambda_1^q(s) \sqrt{1 - \frac{4\,\hat{m}_q^2(2M)}{s'}} \left[1 + \lambda_3^q \frac{2\,\hat{m}_q^2(2M)}{s'}\right]$$

Simpler version of analytic reconstruction [Greynat, PM, Peris'12]

Two parameters to determine: $m_q\,,\lambda_3^q$

We use Zeroth + 2nd moments (no experimental data on R(s) so far) preliminary results

 $s' = s + 4(\hat{m}_q^2(2M) - M^2)$

n	Resonances	Continuum	Total	Theory
0	1.231(24)	-3.230(+31)(43)	-1.999(59)	Input (11)
1	1.184(24)	0.960(+12)(17)	2.144(36)	2.165(16)
2	1.161 (25)	0.327(+6)(8)	1.488(37)	Input (25)
3	1.157(26)	0.149(+3)(4)	1.306(47)	1.291(38)
4	1.167(27)	0.077(+2)(2)	1.244(65)	1.206(59)
5	1.188(28)	0.042(+1)(1)	1.230(97)	1.158(93)

Our approach preliminary results

Resonances Truncation error Comparison with R^{Exp} threshold data Condensates $\Delta \alpha_s(M_z)$

> Good consistency between different sum rules

Our approach: error budget

Resonances:

Our approach: error budget

Truncation Error (theory error):

$$\mathcal{M}_{n}^{pQCD} = \frac{9}{4} Q_{q}^{2} \left(\frac{1}{2\hat{m}_{q}(\hat{m}_{q})} \right)^{2n} \bar{C}_{n}$$
$$\bar{C}_{n} = \bar{C}_{n}^{(0)} + \left(\frac{\hat{\alpha}}{\pi} \right) \bar{C}_{n}^{(1)} + \left(\frac{\hat{\alpha}}{\pi} \right)^{2} \bar{C}_{n}^{(2)} + \left(\frac{\hat{\alpha}}{\pi} \right)^{3} \bar{C}_{n}^{(3)} + \mathcal{O} \left(\frac{\hat{\alpha}}{\pi} \right)^{4}$$
[Erler, Luo '03]
$$\Delta \mathcal{M}_{n}^{(4)} = \pm N_{C} C_{F} C_{A}^{3} Q_{q}^{2} \left[\frac{\hat{\alpha}_{s}(\hat{m}_{q})}{\pi} \right]^{4} \left(\frac{1}{2\hat{m}_{q}(\hat{m}_{q})} \right)^{2n}$$

Example known orders

n	$\frac{\Delta \mathcal{M}_n^{(2)}}{\left \mathcal{M}_n^{(2)}\right }$	$\frac{\Delta \mathcal{M}_n^{(3)}}{\left \mathcal{M}_n^{(3)}\right }$
0	1.88	3.03
1	2.14	2.84
2	1.92	4.58
3	3.25	5.63
4	6.70	4.30
5	19.18	3.62

Pere Masjuan

from 5 MeV to 10 MeV (0th+lst) (0th+5th)

Our approach: error budget

Our approach: error budget

Comparison with R^{Exp} threshold data:

Collab.	n	$2M_{D0} - 3.872 { m ~GeV}$	(3.872 - 3.97) GeV	$(3.97 - 4.26) \mathrm{GeV}$	(4.26 - 4.496) GeV	(4.496 - 4.8) GeV
CB86	$egin{array}{c} 0 \ 1 \ 2 \end{array}$		$\begin{array}{c} 0.0339(22)(23) \\ 0.0220(14)(15) \\ 0.0142(9)(10) \end{array}$	$0.2455(25)(172) \\ 0.1459(16)(102) \\ 0.0868 (9)(61)$	$\begin{array}{c} 0.1542(27)(108) \\ 0.0800(14)(56) \\ 0.0416(7)(29) \end{array}$	
BES02	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$0.0333(24)(17) \\ 0.0232(17)(12) \\ 0.0161(12)(8)$	$0.0362(29)(18) \\ 0.0234(19)(12) \\ 0.0152(13)(8)$	$0.2361(41)(118) \\ 0.1400(24)(70) \\ 0.0832(15)(42)$	$0.1398(38)(70) \\ 0.0726(20)(36) \\ 0.0377(10)(19)$	$0.1704(63)(85)\ 0.0788(30)(39)\ 0.0365(14)(18)$
BES06	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$0.0310(16)(15) \\ 0.0216(11)(11) \\ 0.0151(8)(7)$				
CLEO09	$egin{array}{c} 0 \ 1 \ 2 \end{array}$			$0.2590(22)(5) \\ 0.1538(13)(3) \\ 0.0915(8)(2)$		
Total	$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$\begin{array}{c} 0.0319(14)(6)(10)\\ 0.0222(9)(4)(7)\\ 0.0155(6)(3)(5) \end{array}$	$\begin{array}{c} 0.0350(14)(9)(13)\\ 0.0226(10)(5)(8)\\ 0.0147(7)(3)(5)\end{array}$	$\begin{array}{c} 0.2544(18)(40)(14)(18)\\ 0.1510(11)(24)(8)(11)\\ 0.0898(6)(14)(5)(6)\end{array}$	$\begin{array}{c} 0.1447(27)(46)(37)\\ 0.0751(14)(24)(12)\\ 0.0390(7)(12)(10) \end{array}$	$0.1704(63)(85) \\ 0.0788(30)(39) \\ 0.0365(14)(18)$

Our approach: error budget

Comparison with R^{Exp} threshold data:

$$\int_{(2M_{D^0})^2}^{(4.8\text{GeV})^2} \frac{\mathrm{d}s}{s} R_c^{\text{cont}}(s) \Big|_{\hat{m}_c = 1.274\text{GeV}} = \mathcal{M}_0^{\text{Data}} = 0.6362(195) \longrightarrow \lambda_3^{\text{c,exp}} = 1.34(17)$$

$$(2M_D \le \sqrt{s} \le 4.8 \text{GeV})$$

Error induced to Quark mass:

- 1) $\lambda_3^c = 1.22 \longrightarrow \lambda_3^{c,exp} = 1.34$ from + 6.4 MeV to + 0.2 MeV
- II) $\Delta \lambda_3^{c,exp} = 0.17$ from 4.7 MeV to 0.1 MeV

n	Data	$\lambda_3^c = 1.34(17)$	$\lambda_3^c = 1.22$
0	0.6362(195)	0.6362(195)	0.6222
1	0.3498(101)	0.3506(111)	0.3426
2	0.1955(54)	0.1969(65)	0.1922
3	0.1110(29)	0.1126(38)	0.1099
4	0.0640(16)	0.0656(23)	0.0640
5	0.0375(9)	0.0389(14)	0.0379

Our approach: error budget

Comparison with R^{Exp} threshold data:

Pere Masjuan

MITP, Mainz, 7-12 March, 2016

Our approach: error budget

Condensates:

Non-perturbative effects due to gluon condensates to the moments are: [Chetyrkin et al '12]

$$\mathcal{M}_{n}^{\text{nonp}}(\mu^{2}) = \frac{12\pi^{2}Q_{q}^{2}}{(4\hat{m}_{q}^{2})^{n+2}} \text{Cond} a_{n} \left(1 + \frac{\alpha_{s}(\hat{m}_{q}^{2})}{\pi}b_{n}\right)$$

 a_n , b_n are numbers, and Cond = $\langle \frac{\alpha_s}{\pi} G^2 \rangle = (14 \pm 14) \cdot 10^{-3} \text{GeV}^4$ [Dominguez et al '14]

$$\Delta \langle \frac{\alpha_s}{\pi} G^2 \rangle = 14 \cdot 10^{-3} \text{GeV}^4 \quad \longrightarrow \quad \text{from 3 MeV to 10 MeV}_{\text{(Oth+Ist)}} \text{ (Oth+5th)}$$

Parametric error:

$$\Delta \hat{m}_c(\hat{m}_c)[\text{MeV}] = +0.24 \cdot 10^3 \frac{\text{MeV}}{\text{GeV}^4} \Delta \langle \frac{\alpha_s}{\pi} G^2 \rangle$$

(but this is only the first condensate)

Pere Masjuan

Our approach: error budget

$$\Delta \alpha_s(M_z) \qquad \qquad \alpha_s(M_z) = 0.1182(16) \qquad \qquad \text{from PDG}$$

 $\Delta \alpha_s(M_z) = 0.0016 \quad \longrightarrow \quad \text{from 6 MeV to 1 MeV}$

Parametric error:

(0th+1st)
$$\Delta \hat{m}_c(\hat{m}_c)[\text{MeV}] = 3.9 \cdot 10^3 \Delta \alpha_s(M_z)$$

(0th+5th) $\Delta \hat{m}_c(\hat{m}_c)[\text{MeV}] = -0.7 \cdot 10^3 \Delta \alpha_s(M_z)$

Pere Masjuan

Our approach preliminary results

Resonances Truncation error Comparison with R^{Exp} threshold data Condensates $\Delta \alpha_s(M_z)$

Our approach preliminary results

Resonances Truncation error Comparison with R^{Exp} threshold data Condensates $\Delta \alpha_s(M_z)$

Large condensate effects + new condensates will matter

Our approach: more than two moments?

Define a χ^2 function:

$$\chi^{2} = \frac{1}{2} \sum_{n,m} \left(\mathcal{M}_{n} - \mathcal{M}_{n}^{pQCD} \right) \left(\mathcal{C}^{-1} \right)^{nm} \left(\mathcal{M}_{m} - \mathcal{M}_{m}^{pQCD} \right) + \chi_{c}^{2}$$
$$\mathcal{C} = \frac{1}{2} \sum_{n,m} \rho^{\operatorname{Abs}(n-m)} \Delta \mathcal{M}_{n}^{(4)} \Delta \mathcal{M}_{m}^{(4)} \qquad \rho \text{ a correlation parameter}$$

$$\chi_c^2 = \left(\frac{\Gamma_{J/\Psi(1S)}^e - \Gamma_{J/\Psi(1S)}^{e,\exp}}{\Delta\Gamma_{J/\Psi(1S)}^e}\right)^2 + \left(\frac{\Gamma_{\Psi(2S)}^e - \Gamma_{\Psi(2S)}^{e,\exp}}{\Delta\Gamma_{\Psi(2S)}^e}\right)^2 + \left(\frac{\hat{\alpha}_s(M_z) - \hat{\alpha}_s(M_z)^{\exp}}{\Delta\hat{\alpha}_s(M_z)}\right)^2 + \left(\frac{\langle \frac{\alpha_s}{\pi}G^2 \rangle - \langle \frac{\alpha_s}{\pi}G^2 \rangle^{\exp}}{\Delta\langle \frac{\alpha_s}{\pi}G^2 \rangle}\right)^2$$

Pere Masjuan

Our approach: more than two moments?

Define a χ^2 function:

	Constraints	0th + 1st + 2nd
ρ		0
$m_c(m_c)$		$1.2815^{+0.0092}_{-0.0092} \text{GeV}$
λ_3		$1.151\substack{+0.081 \\ -0.081}$
$\Gamma^e_{J/\Psi}$	$5.55(14)10^{-6}$	$(5.56^{+0.14}_{-0.14})10^{-6}$
$\Gamma^e_{\Psi'}$	$2.36(4)10^{-6}$	$(2.361^{+0.040}_{-0.040})10^{-6}$
$\langle \frac{\alpha_s}{\pi} G^2 \rangle$	$14(14)10^{-3}$	$(16^{+14}_{-14})10^{-3}$
$\alpha_s(M_z)$	0.1182(16)	$0.1179\substack{+0.0015\\-0.0015}$

Assuming no correlation:

$$\hat{m}_c(\hat{m}_c) = 1.282(9) \text{GeV}$$

Our approach: more than two moments?

Define a χ^2 function:

Correlation to ensure $\chi^2 = D.O.F.$

	Constraints	0th + 1st + 2nd	$0th + (1st + 2nd)_{\rho}$
ρ		0.520	0.627
$\hat{m}_c(\hat{m}_c) \; [\text{GeV}]$		$1.2808^{+0.0088}_{-0.0087}$	$1.2806^{+0.0089}_{-0.0089}$
λ_3^c		$1.137\substack{+0.071\\-0.071}$	$1.144_{-0.080}^{+0.080}$
$\Gamma^{e}_{J/\Psi(1S)}$ [keV]	5.55(14)	$5.57^{+0.12}_{-0.11}$	$5.57^{+0.14}_{-0.14}$
$\Gamma^{e}_{\Psi(2S)}$ [keV]	2.36(4)	$2.362_{-0.034}^{+0.035}$	$2.362_{-0.040}^{+0.040}$
$\left< \frac{\alpha_s}{\pi} G^2 \right> \left[\text{GeV}^4 \right]$	0.014(14)	$0.018\substack{+0.013\\-0.012}$	$0.018^{+0.013}_{-0.013}$
$\hat{\alpha}_s(M_z)$	0.1182(16)	$0.1176^{+0.0015}_{-0.0015}$	$0.1176_{-0.0015}^{+0.0015}$

 $\hat{m}_c(\hat{m}_c) = 1.281(9) \text{GeV}$

Our approach: more than two moments?

Define a χ^2 function:

Correlation to ensure $\chi^2 = D.O.F.$

	Constraints	$0th + (1st + 2nd + 3rd)_{\rho}$
ρ		0.85
$\hat{m}_c(\hat{m}_c) \; [\text{GeV}]$		$1.2790\substack{+0.0083\\-0.0073}$
λ_3^c		$1.141_{-0.075}^{+0.073}$
$\Gamma^{e}_{J/\Psi(1S)}$ [keV]	5.55(14)	$5.59_{-0.14}^{+0.13}$
$\Gamma^e_{\Psi(2S)}$ [keV]	2.36(4)	$2.363\substack{+0.036\\-0.035}$
$\langle \frac{\alpha_s}{\pi} G^2 \rangle \; [\text{GeV}^4]$	0.014(14)	$0.019\substack{+0.012\\-0.012}$
$\hat{lpha}_s(M_z)$	0.1182(16)	$0.1173_{-0.0015}^{+0.0013}$

$$\hat{m}_c(\hat{m}_c) = 1.279(8) \text{GeV}$$

Our approach: more than two moments?

Preferred scenario: $0 ext{th} + (1 ext{st} + 2 ext{nd})_{
ho}$ $\hat{m}_c(\hat{m}_c) = 1.281(9) ext{GeV}$

Include Comparison with R^{Exp} threshold data:
$$\Delta \hat{m}_c(\hat{m}_c) = 8 \text{MeV}$$

$$\hat{m}_c(\hat{m}_c) = 1.281(12) \text{GeV}$$

preliminary result

Conclusions and Outlook

- Heavy quark masses are interesting: for being fundamental parameters as well as for their implications on many phenomenological scenarios.
- From the different strategies, one of the most precise is the use of SR. Quark mass determinations at the % or sub-% level.
- Using SR + global fit using different moments (χ^2), we extract $\hat{m}_c(\hat{m}_c)$
 - Results still preliminary $\hat{m}_c(\hat{m}_c) = 1.281(12) \text{GeV}$
- Good agreement with other determinations based on SRs and lattice!
- Error sources are understood: seems a clear roadmap for improvements
- Next step: the bottom case

Thanks!