The Mainz (g-2) project: Status and Perspectives

Hartmut Wittig

PRISMA Cluster of Excellence, Institute for Nuclear Physics and Helmholtz Institute Mainz

MITP Workshop *Determination of the Fundamental Parameters in QCD* 9 March 2016

- * Standard Model fully established but cannot account for:
 - Mass and scale hierarchies:

 $m_{\rm top}/m_{\nu_e} > 10^{11}$

- Dark matter and dark energy
- Amount of CP violation to sustain matter/antimatter asymmetry

 $m_{\rm Higgs} \ll m_{\rm Planck}$

 Δm_d

- * Standard Model fully established but cannot account for:
 - Mass and scale hierarchies:

 $m_{\rm top}/m_{\nu_e} > 10^{11}$

 $m_{\rm Higgs} \ll m_{\rm Planck}$

- Dark matter and dark energy
- Amount of CP violation to sustain matter/antimatter asymmetry
- Explore the limits of the Standard Model
 - Search for new particles and phenomena at higher energy
 - Search for enhancement of rare phenomena
 - Compare precision measurements to SM predictions

- * Standard Model fully established but cannot account for:
 - Mass and scale hierarchies:

 $m_{\rm top}/m_{\nu_e} > 10^{11}$

- Dark matter and dark energy
- Amount of CP violation to sustain matter/antimatter asymmetry

 $m_{\rm Higgs} \ll m_{\rm Planck}$

- Explore the limits of the Standard Model
 - Search for new particles and phenomena at higher energy
 - Search for enhancement of rare phenomena
 - Compare precision measurements to SM predictions

Control over hadronic uncertainties

- * Standard Model fully established but cannot account for:
 - Mass and scale hierarchies:

 $m_{\rm top}/m_{\nu_e} > 10^{11}$

- Dark matter and dark energy
- Amount of CP violation to sustain matter/antimatter asymmetry
- Explore the limits of the Standard Model
 - Search for new particles and phenomena at higher energy
 - Search for enhancement of rare phenomena
 - Compare precision measurements to SM predictions

Control over hadronic uncertainties

 $m_{\rm Higgs} \ll m_{\rm Planck}$

Precision Tests of the Standard Model

Anomalous magnetic moment of the muon:

 $a_{\mu} \equiv \frac{1}{2}(g-2)_{\mu}$

Experiment

SM prediction

 $a_{\mu} = \begin{cases} 116\,592\,080(54)(33)\cdot10^{-11} \\ 116\,591\,802(2)(42)(26)\cdot10^{-11} \end{cases}$

 $\mu \qquad \mu \qquad \mu$

Dispersion theory:

$$a_{\mu}^{\rm HVP} = (692.3 \pm 4.2 \pm 0.3) \cdot 10^{-10}$$

based on $R_{exp}(e^+e^- \rightarrow hadrons)$

Model estimates:

 $a_{\mu}^{\text{HLbL}} = \begin{cases} (105 \pm 26) \cdot 10^{-11} \\ (116 \pm 39) \cdot 10^{-11} \end{cases}$

Precision Tests of the Standard Model

Running of electroweak mixing angle

- Running of sin²θ_W at low energies discriminates between different scenarios for "New Physics"
- Challenge for theory: hadronic contributions

The Mainz $(g-2)_{\mu}$ project

Collaborators:

N. Asmussen, A. Gérardin, J. Green, O. Gryniuk, G. von Hippel, H. Horch, H. Meyer, A. Nyffeler, V. Pascalutsa, A. Risch, HW

M. Della Morte, A. Francis, B. Jäger, V. Gülpers, G. Herdoíza

Topics:

- Hadronic vacuum polarisation
- Light-by-light scattering
- ***** Running of $\alpha_{\rm em}$ and $\sin^2 \theta_{\rm W}$
- * Determination of α_s from vacuum polarisation function

* Convolution integral over Euclidean momenta: [Lautrup & de Rafael; Blum]

$$a_{\mu}^{\rm HVP} = 4\alpha^2 \int_0^\infty dQ^2 f(Q^2) \left\{ \Pi(Q^2) - \Pi(0) \right\}$$

$$\Pi_{\mu\nu}(Q) = \int d^4x \,\mathrm{e}^{iQ\cdot(x-y)} \,\left\langle J_\mu(x)J_\nu(y)\right\rangle \equiv (Q_\mu Q_\nu - \delta_{\mu\nu}Q^2)\Pi(Q^2)$$

$$J_{\mu} = \frac{2}{3}\overline{u}\gamma_{\mu}u - \frac{1}{3}\overline{d}\gamma_{\mu}d - \frac{1}{3}\overline{s}\gamma_{\mu}s + \dots$$

- * Lattice momenta are quantised: $Q_{\mu} = \frac{2\pi}{L_{\mu}}$
- * Determine VPF $\Pi(Q^2)$ and additive renormalisation $\Pi(0)$
- * Statistical accuracy of $\Pi(Q^2)$ deteriorates as $Q \rightarrow 0$

Convolution integral over Euclidean momenta:

[Lautrup & de Rafael; Blum]

$$a_{\mu}^{\rm HVP} = 4\alpha^2 \int_0^\infty dQ^2 f(Q^2) \left\{ \Pi(Q^2) - \Pi(0) \right\}$$

* Integrand peaked near $Q^2 \approx (\sqrt{5}-2)m_{\mu}^2$

Convolution integral over Euclidean momenta:

[Lautrup & de Rafael; Blum]

$$a_{\mu}^{\rm HVP} = 4\alpha^2 \int_0^\infty dQ^2 f(Q^2) \left\{ \Pi(Q^2) - \Pi(0) \right\}$$

* Integrand peaked near $Q^2 \approx (\sqrt{5}-2)m_{\mu}^2$

Accurate determination requires large statistics on large volumes!

* "Hybrid" method:

[Golterman, Maltman & Peris, Phys Rev D90 (2014) 074508]

* "Hybrid" method:

[Golterman, Maltman & Peris, Phys Rev D90 (2014) 074508]

★ Determine Π(0) from Padé approximation in small-momentum region

* "Hybrid" method:

[Golterman, Maltman & Peris, Phys Rev D90 (2014) 074508]

- ★ Determine Π(0) from Padé approximation in small-momentum region
- * Requires sub-percent accuracy in $u_{,d}$ -part for $Q^2 = O(0.1 \text{ GeV}^2)$

Main issues:

- * Statistical accuracy at the sub-percent level required
- ★ Reduce systematic uncertainty associated with region of small Q²
 ⇔ accurate determination of Π(0)
- Perform comprehensive study of finite-volume effects
- Include quark-disconnected diagrams

* Include isospin breaking: $m_u \neq m_d$, QED corrections

Low-momentum region of $\Pi(Q^2)$

Apply twisted boundary conditions to access low-Q² regime:

[Della Morte, Jäger, Jüttner, H.W., JHEP 1203 (2012) 055; PoS LATTICE2012 (2012) 175]

Low-momentum region of $\Pi(Q^2)$

* Apply twisted boundary conditions to access low- Q^2 regime:

$$\psi(x + Le_{\mu}) = e^{i\theta_{\mu}}\psi(x) \implies Q_{\mu} = \frac{2\pi}{L} + \frac{\theta_{\mu}}{L}$$

[Della Morte, Jäger, Jüttner, H.W., JHEP 1203 (2012) 055; PoS LATTICE2012 (2012) 175]

Low-momentum region: Time moments

- * Expansion of VPF at low- Q^2 : $\Pi(Q^2) = \Pi_0 + \sum_{j=1}^{\infty} Q^{2j} \Pi_j$
- * Vacuum polarisation for $Q = (\omega, \vec{0})$:

$$\Pi_{kk}(\omega) = a^4 \sum_{x_0} e^{i\omega x_0} \sum_{\vec{x}} \langle J_k(x) J_k(0) \rangle$$

* Spatially summed vector correlator: $G(x_0) = -a^3 \sum_{\vec{x}} \langle J_k(x) J_k(0) \rangle$

Low-momentum region: Time moments

- * Expansion of VPF at low- Q^2 : $\Pi(Q^2) = \Pi_0 + \sum_{j=1}^{\infty} Q^{2j} \Pi_j$
- * Vacuum polarisation for $Q = (\omega, \vec{0})$:

$$\Pi_{kk}(\omega) = a^4 \sum_{x_0} e^{i\omega x_0} \sum_{\vec{x}} \langle J_k(x) J_k(0) \rangle$$

- * Spatially summed vector correlator: $G(x_0) = -a^3 \sum_{\vec{x}} \langle J_k(x) J_k(0) \rangle$
- * Time moments:

[Chakraborty et al., Phys Rev D89 (2014) 114501]

$$G_{2n} \equiv a \sum_{x_0} x_0^{2n} G(x_0) = (-1)^n \frac{\partial^{2n}}{\partial \omega^{2n}} \left\{ \omega^2 \hat{\Pi}(\omega^2) \right\}_{\omega^2 = 0}$$

Low-momentum region: Time moments

- * Expansion of VPF at low- Q^2 : $\Pi(Q^2) = \Pi_0 + \sum_{i=1}^{\infty} Q^{2i} \Pi_i$
- * Vacuum polarisation for $Q = (\omega, \vec{0})$:

$$\Pi_{kk}(\omega) = a^4 \sum_{x_0} e^{i\omega x_0} \sum_{\vec{x}} \langle J_k(x) J_k(0) \rangle$$

- * Spatially summed vector correlator: $G(x_0) = -a^3 \sum_{\vec{x}} \langle J_k(x) J_k(0) \rangle$
- * Time moments:

[Chakraborty et al., Phys Rev D89 (2014) 114501]

$$G_{2n} \equiv a \sum_{x_0} x_0^{2n} G(x_0) = (-1)^n \frac{\partial^{2n}}{\partial \omega^{2n}} \left\{ \omega^2 \hat{\Pi}(\omega^2) \right\}_{\omega^2 = 0}$$

* Expansion coefficients: $\Pi(0) \equiv \Pi_0 = \frac{1}{2}G_2, \quad \Pi_j = (-1)^{j+1} \frac{G_{2j+2}}{(2j+2)!}$

Time-Momentum Representation

* Integral representation of subtracted VPF $\hat{\Pi}(Q^2) \equiv \Pi(Q^2) - \Pi(0)$

$$\Pi(Q^{2}) - \Pi(0) = \frac{1}{Q^{2}} \int_{0}^{\infty} dx_{0} G(x_{0}) \left[Q^{2} x_{0}^{2} - 4\sin^{2}\left(\frac{1}{2}Qx_{0}\right)\right]$$

$$G(x_{0}) = -\int d^{3}x \left\langle J_{k}(x)J_{k}(0)\right\rangle \qquad \text{[Bernecker & Meyer, Eur Phys J A47 (2011) 148]}$$

[Francis et al. 2013; Feng et al. 2013; Lehner & Izubuchi 2014, Del Debbio & Portelli 2015,...]

- * Q^2 is a tuneable parameter
- * No extrapolation to $Q^2 = 0$ required; related to time-moments
- ★ Must determine I = 1 vector correlator $G(x_0)$ for $x_0 \rightarrow \infty$

→ Include two-pion states to capture long-distance behaviour

Time-Momentum Representation

[Gülpers et al., arXiv:1411.7592; Francis et al., arXiv:1410.7491]

Current data sets and statistics

- * $N_{\rm f} = 2$ flavours of O(a) improved Wilson fermions
- * Three values of the lattice spacing: a = 0.076, 0.066, 0.049 fm
- * Pion masses and volumes: $m_{\pi}^{\min} = 185 \,\mathrm{MeV}, \quad m_{\pi}L > 4$
- * 1000-4000 measurements per ensemble

To be processed:

- N_f = 2+1 flavours of O(a) improved Wilson fermions; tree-level
 Symanzik gauge action; open boundary conditions
- * Five values of the lattice spacing; physical pion mass

- * Low-order Padé approximants consistent for $Q^2 < 0.5 \text{ GeV}^2$
- ★ Apply trapezoidal rule to evaluate convolution integral for $Q^2 \ge 0.5 \text{ GeV}^2$

Interpolate G(x₀) by cubic spline
 for x₀ < x_{0,cut}

Interpolate G(x₀) by cubic spline
 for x₀ < x_{0,cut}

Mild dependence on X0,cut

Interpolate G(x₀) by cubic spline
 for x₀ < x_{0,cut}

* Comparison with $a_{\mu}^{(ud)hvp}$ determined from Padé fits

Mild dependence on X_{0,cut}

Interpolate G(x₀) by cubic spline for x₀ < x_{0,cut}

Mild dependence on X_{0,cut}

* Comparison with $a_{\mu}^{(ud)hvp}$ determined from Padé fits

 Consistent results with similar accuracy

Chiral and continuum extrapolations

....

* Use collection of different functional forms, e.g.

Fit A: $b_0 + b_1 m_\pi^2 + b_2 m_\pi^2 \ln(m_\pi^2) + b_3 a$ Fit B: $b_0 + b_1 m_\pi^2 + b_2 m_\pi^4 + b_3 a$

- Perform cuts in pion mass and lattice spacing
- Lattice spacing effects clearly resolved for larger quark masses

Chiral and continuum extrapolations

....

* Use collection of different functional forms, e.g.

Fit A: $b_0 + b_1 m_\pi^2 + b_2 m_\pi^2 \ln(m_\pi^2) + b_3 a$ Fit B: $b_0 + b_1 m_\pi^2 + b_2 m_\pi^4 + b_3 a$

- Perform cuts in pion mass and lattice spacing
- Lattice spacing effects clearly resolved for larger quark masses

* Final errors estimated via "extended frequentist method"

- Different methods consistent at the level of 1σ
- Time moments statistically most precise
- Strange quark contribution consistent with other recent results
- Overall accuracy dominated by
 u, *d* contribution

* Electromagnetic current correlator with *u*, *d*, *s* quarks:

$$G^{\ell s}(x_0) := -\int d^3x \left\langle J_k^{\ell s}(x) J_k^{\ell s}(0) \right\rangle, \quad J_\mu^{\ell s} = \frac{2}{3}\overline{u}\gamma_k u - \frac{1}{3}\overline{d}\gamma_k d - \frac{1}{3}\overline{s}\gamma_k s$$

* Identify connected and disconnected contributions:

$$G^{\ell s}(x_0) = \frac{5}{9} G^{\ell}_{\text{con}}(x_0) + \frac{1}{9} G^{s}_{\text{con}}(x_0) - \frac{1}{9} G^{\ell s}_{\text{disc}}(x_0)$$
$$G^{\ell s}_{\text{disc}}(x_0) = \int d^3 x \left\{ \text{Tr} \left[S^{\ell}(x, x) \gamma_k \right] - \text{Tr} \left[S^{s}(x, x) \gamma_k \right] \right\} \times \{x \to 0\}$$

* Electromagnetic current correlator with *u*, *d*, *s* quarks:

$$G^{\ell s}(x_0) := -\int d^3x \left\langle J_k^{\ell s}(x) J_k^{\ell s}(0) \right\rangle, \quad J_\mu^{\ell s} = \frac{2}{3}\overline{u}\gamma_k u - \frac{1}{3}\overline{d}\gamma_k d - \frac{1}{3}\overline{s}\gamma_k s$$

* Identify connected and disconnected contributions:

$$G^{\ell s}(x_0) = \frac{5}{9} G^{\ell}_{\text{con}}(x_0) + \frac{1}{9} G^{s}_{\text{con}}(x_0) - \frac{1}{9} G^{\ell s}_{\text{disc}}(x_0)$$
$$G^{\ell s}_{\text{disc}}(x_0) = \int d^3 x \left\{ \text{Tr} \left[S^{\ell}(x, x) \gamma_k \right] - \text{Tr} \left[S^{s}(x, x) \gamma_k \right] \right\} \times \{x \to 0\}$$

[Gülpers et al., arXiv:1411.7592; V. Gülpers, PhD Thesis 2015]

* Electromagnetic current correlator with *u*, *d*, *s* quarks:

$$G^{\ell s}(x_0) := -\int d^3x \left\langle J_k^{\ell s}(x) J_k^{\ell s}(0) \right\rangle, \quad J_\mu^{\ell s} = \frac{2}{3}\overline{u}\gamma_k u - \frac{1}{3}\overline{d}\gamma_k d - \frac{1}{3}\overline{s}\gamma_k s$$

* Identify connected and disconnected contributions:

 $G^{\ell s}(x_0) = \frac{5}{9} G^{\ell}_{\text{con}}(x_0) + \frac{1}{9} G^{s}_{\text{con}}(x_0) - \frac{1}{9} G^{\ell s}_{\text{disc}}(x_0)$ $G^{\ell s}_{\text{disc}}(x_0) = \int d^3 x \left\{ \text{Tr} \left[S^{\ell}(x, x) \gamma_k \right] - \text{Tr} \left[S^{s}(x, x) \gamma_k \right] \right\} \times \{x \to 0\}$

[Gülpers et al., arXiv:1411.7592; V. Gülpers, PhD Thesis 2015]

* Non-zero disconnected contribution can be resolved:

* Disconnected contribution for $x_0 \rightarrow \infty$:

$$-\frac{1}{9}\frac{G^{\ell s}_{\text{disc}}}{G^{\rho\rho}} = \frac{G^{\ell s} - G^{\rho\rho}}{G^{\rho\rho}} - \frac{1}{9}\left(1 - \frac{2G^s_{\text{con}}}{G^\ell_{\text{con}}}\right) \xrightarrow{x_0 \to \infty} -\frac{1}{9}$$

* Failure to resolve non-zero signal provides systematic error estimate

[Gülpers et al., arXiv:1411.7592; V. Gülpers, PhD Thesis 2015]

Running of electroweak couplings

Running of α — phenomenological approach

- * Fine structure constant: $\alpha(Q^2) = \frac{\alpha}{1 \Delta \alpha(Q^2)}$
- Hadronic contributions phenomenological approach:

* Error on $\Delta \alpha_{had}$ limits accuracy of Standard Model tests

Running of α — Euclidean approach

[H. Horch, G. Herdoíza @ Lattice 2015]

* Lattice QCD: similar accuracy as phenomenological approach

Running of sin²θ_W

***** Definition:

$$\sin^2 \theta_{\rm W}(Q^2) = \underbrace{\sin^2 \theta(0)}_{0.23864} \left(1 - \Delta \sin^2 \theta_{\rm W}(Q^2) \right)$$

Dispersive approach requires separation of contributions from up/down-type quarks

*

Running of $sin^2\theta_W$

* Euclidean approach:

$$\begin{aligned} \Pi^{\gamma Z}_{\mu\nu}(Q) &= \int d^{x} e^{iQ \cdot x} \left\langle V^{Z}_{\mu}(x) J^{\gamma}_{\nu}(0) \right\rangle \\ V^{Z}_{\mu} &= V^{3}_{\mu} - \sin^{2} \theta_{W} J^{\gamma}_{\mu} \\ V^{3}_{\mu} &= \frac{1}{4} \left(\overline{u} \gamma_{\mu} u - \overline{d} \gamma_{\mu} d - \overline{s} \gamma_{\mu} s + \overline{c} \gamma_{\mu} c + \ldots \right) \\ \Pi^{\gamma Z}(Q^{2}) &= \Pi^{\gamma 3}(Q^{2}) - \sin^{2} \theta_{W} \Pi^{\gamma \gamma}(Q^{2}) \\ \Delta_{\text{had}} \sin^{2} \theta_{W}(Q^{2}) &= \frac{e^{2}}{\sin^{2} \theta_{0}} \left(\Pi^{\gamma Z}(Q^{2}) - \Pi^{\gamma Z}(0) \right) \end{aligned}$$

* Spin-off of calculation of running of $\Delta \alpha_{had}$

Running of sin²θ_W

* Preliminary results:

Connected contributions:

[H. Horch, G. Herdoíza, V. Gülpers @ Lattice 2015]

Running of $sin^2\theta_W$

* Preliminary results:

Connected contributions:

Disconnected contributions:

[H. Horch, G. Herdoíza, V. Gülpers @ Lattice 2015]

Running of $sin^2\theta_W$

* Preliminary results:

Connected contributions:

★ Long-distance behaviour of total correlator limited by accuracy of disconnected contribution → systematic error estimate

[H. Horch, G. Herdoíza, V. Gülpers @ Lattice 2015]

Disconnected contributions:

Several different methods, e.g. QCD+QED simulations [T. Blum et al., 2008–...]

 $\Pi^{\rm E}_{\mu_1\mu_2\mu_3\mu_4}(P_4;P_1,P_2) =$

 Here: compute HLbL amplitude from Euclidean four-point function of the vector current

$$\int d^4x_1 d^4x_2 d^4x_4 e^{-i\sum_a P_a \cdot x_a} \langle J_{\mu_1}(x_1) J_{\mu_2}(x_2) J_{\mu_3}(0) J_{\mu_4}(x_4) \rangle$$

* Pilot study: compute forward scattering amplitude of transversely polarised virtual photons:

$$\mathcal{M}_{\mathrm{TT}}(-Q_1^2, -Q_2^2, \nu) = \frac{e^4}{4} R_{\mu_1\mu_2} R_{\mu_3\mu_4} \Pi^{\mathrm{E}}_{\mu_1\mu_2\mu_3\mu_4}(-Q_2; -Q_1, Q_1)$$

* Relate forward amplitude to cross section for $\gamma^* \gamma^* \longrightarrow hadrons$

 $\mathcal{M}_{\mathrm{TT}}(-Q_1^2, -Q_2^2, \nu) - \mathcal{M}_{\mathrm{TT}}(-Q_1^2, -Q_2^2, 0)$ $= \int_{\nu_0}^{\infty} d\nu' \dots [\sigma_0(\nu') + \sigma_2(\nu')]$

- * Relate forward amplitude to cross section for $\gamma^* \gamma^* \longrightarrow hadrons$
 - $\mathcal{M}_{\mathrm{TT}}(-Q_1^2, -Q_2^2, v) \mathcal{M}_{\mathrm{TT}}(-Q_1^2, -Q_2^2, 0)$

$$=\int_{\nu_0}^{\infty}d\nu'\ldots[\sigma_0(\nu')+\sigma_2(\nu')]$$

* Relate forward amplitude to cross section for $\gamma^* \gamma^* \longrightarrow hadrons$

 $\mathcal{M}_{\mathrm{TT}}(-Q_1^2, -Q_2^2, v) - \mathcal{M}_{\mathrm{TT}}(-Q_1^2, -Q_2^2, 0)$

* Relate forward amplitude to cross section for $\gamma^* \gamma^* \longrightarrow hadrons$

 $\mathcal{M}_{\mathrm{TT}}(-Q_1^2, -Q_2^2, v) - \mathcal{M}_{\mathrm{TT}}(-Q_1^2, -Q_2^2, 0)$

$$= \int_{\nu_0}^{\infty} d\nu' \dots [\sigma_0(\nu') + \sigma_2(\nu')]$$

* Comparison with phenomenological model for σ_0 and σ_2

Prospects

10 mme C C

CALIFORNIA STATISTICS IN COMPANY AND INCOME.

10.0

1.00

Hadronic vacuum polarisation

- Major effort within Lattice QCD community; focus on reducing overall uncertainty to the sub-percent level
- Several complementary formalisms
- TMR, time moments readily carry over to Lattice QCD with open boundary conditions
- Good progress in computing quark-disconnected contributions

Hadronic light-by-light scattering

- Several concepts are being explored
- Aim for 20–30% overall accuracy