Updated pseudoscalar contribution to the hadronic light-by-light of the muon (g - 2)

Pablo Sanchez-Puertas sanchezp@kph.uni-mainz.de

Johannes Gutenberg-Universität Mainz In collaboration with P. Masjuan

Determination of the Fundamentals Parameters in QCD MITP, Mainz, Germany, 10th March 2016

UNIVERSITÄT MAINZ

JOHANNES GUTENBERG

Updated pseudoscalar contribution to the hadronic light-by-light of the muon (g - 2)

Outline

- 1. Current ($g_{\mu}-2$) status and hadronic contributions: HLbL
- 2. A transition form factor description for the HLbL
- 3. Updated pseudoscalar pole contribution
- 4. Summary & Outlook

Section 1

Current $(g_{\mu} - 2)$ status and hadronic contributions: HLbL

The current
$$(g_{\mu} - 2)$$
 status

$$\begin{array}{l} a_{\mu}^{\rm SM} = (116 \,\, 591 \,\, 826(57)) \times 10^{-11} \\ a_{\mu}^{\rm exp} = (116 \,\, 592 \,\, 091(63)) \times 10^{-11} \\ a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = (265(85)) \times 10^{-11} \end{array}$$

New Physics? only 3σ

The current
$$(g_{\mu} - 2)$$
 status

$$\begin{array}{l} a_{\mu}^{\rm SM} = (116 \,\, 591 \,\, 826(57)) \times 10^{-11} \\ a_{\mu}^{\rm exp} = (116 \,\, 592 \,\, 091(63)) \times 10^{-11} \\ a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = (265(85)) \times 10^{-11} \end{array}$$

 $\frac{\text{Future } (g_{\mu} - 2) \text{ experiments}}{\text{Fermilab & J-PARC: precision}}$ $\delta a_{\mu} = 16 \times 10^{-11}$

The current
$$(g_\mu-2)$$
 status

 $\begin{array}{l} a_{\mu}^{\rm SM} = (116 \,\, 591 \,\, 826 (57)) \times 10^{-11} \\ a_{\mu}^{\rm exp} = (116 \,\, 592 \,\, 091 (63)) \times 10^{-11} \\ a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = (265 (85)) \times 10^{-11} \end{array}$

 $\frac{\text{Future } (g_{\mu} - 2) \text{ experiments}}{\text{Fermilab & J-PARC: precision}}$ $\delta a_{\mu} = 16 \times 10^{-11}$

The current
$$(g_\mu-2)$$
 status

 $\frac{\text{Future } (g_{\mu} - 2) \text{ experiments}}{\text{Fermilab & J-PARC: precision}}$ $\delta a_{\mu} = 16 \times 10^{-11}$

Order	$Result imes 10^{11}$		
$a_{\mu}^{\mathrm{HVP}\cdot\mathrm{LO}}$ $a_{\mu}^{\mathrm{HVP}\cdot\mathrm{NLO}}$ $a_{\mu}^{\mathrm{HVP}\cdot\mathrm{N^{2}LO}}$	6 923(42) -98.4(7) 12.4(1)		
$a_{\mu}^{\mathrm{HLbL\cdot LO}} a_{\mu}^{\mathrm{HLbL\cdot NLO}}$	116(<mark>39</mark>) 3(2)		
$a_{\mu}^{ m QCD}$	6 956(<mark>57</mark>)		

Davier et al ('12), Hagiwara et al ('11), Kurz et al ('14) Jegerlehnner Nyffeler ('09, '14) Improve on the QCD side

- Quark loop receives QCD corrections
- The loop integral receives contributions at Q^2 where QCD is non-perturbative
- Look for other approaches

- Quark loop receives QCD corrections
- The loop integral receives contributions at Q^2 where QCD is non-perturbative
- Look for other approaches

- Quark loop receives QCD corrections
- The loop integral receives contributions at Q² where QCD is non-perturbative
- Look for other approaches

- Quark loop receives QCD corrections
- The loop integral receives contributions at Q² where QCD is non-perturbative
- Look for other approaches

- $\Pi(q^2)$ obeys once-subst. dispersion relation
- Im $\Pi(q^2)$ related to $\sigma(e^+e^- \rightarrow \text{Hadrons})$

- Quark loop receives QCD corrections
- The loop integral receives contributions at Q^2 where QCD is non-perturbative
- Look for other approaches

- $\Pi(q^2)$ obeys once-subst. dispersion relation
- Im $\Pi(q^2)$ related to $\sigma(e^+e^-
 ightarrow$ Hadrons)
- Measure cross sections as precise as required

- Quark loop receives QCD corrections
- The loop integral receives contributions at Q^2 where QCD is non-perturbative
- Look for other approaches
- Ask the lattice community
- $\Pi(q^2)$ obeys once-subst. dispersion relation
- Im $\Pi(q^2)$ related to $\sigma(e^+e^-
 ightarrow$ Hadrons)
- Measure cross sections as precise as required

Hadronic contributions II: Hadronic Light-by-Light

- Not direct connection to data
- Dispersive proposals recently (much involved)
- Multi-scale problem \rightarrow more difficulties
- Devise non-perturbative approach to QCD!

Hadronic contributions II: Hadronic Light-by-Light

- Not direct connection to data
- Dispersive proposals recently (much involved)
- Multi-scale problem \rightarrow more difficulties
- Devise non-perturbative approach to QCD!

E. de Rafael (1994): large- $N_c + \chi PT$

Hadronic contributions II: Hadronic Light-by-Light

- Not direct connection to data
- Dispersive proposals recently (much involved)
- Multi-scale problem \rightarrow more difficulties
- Devise non-perturbative approach to QCD!

E. de Rafael (1994): large- $N_c + \chi$ PT

Authors	π^{0},η,η'	$\pi\pi, KK$	Resonances	Quark Loop	Total
BPP	85(13)	-19(13)	-4(3)	21(3)	83(32)
HKS	83(6)	-5(8)	2(2)	10(11)	90(15)
KN	83(12)	-	_	_	80(40)
MV	114(10)	_	22(5)	-	136(25)
PdRV	114(13)	-19(19)	8(12)	2.3	105(20)
N/JN	99(16)	-19(13)	15(7)	21(3)	116(39)

- Enough for $\delta a_{\mu} = 63 \times 10^{-11}$
- Not in future $\delta a_{\mu} = 16 \times 10^{-11}$
- Most results circa 15 years old
- Some advances since then

Hadronic contributions II: Hadronic Light-by-Light

- Not direct connection to data
- Dispersive proposals recently (much involved)
- Multi-scale problem \rightarrow more difficulties
- Devise non-perturbative approach to QCD!

E. de Rafael (1994): large- $N_c + \chi$ PT

Authors	π^{0},η,η'	$\pi\pi, KK$	Resonances	Quark Loop	Total
BPP	85(13)	-19(13)	-4(3)	21(3)	83(32)
HKS	83(6)	-5(8)	2(2)	10(11)	90(15)
KN	83(12)	-	-	-	80(40)
MV	114(10)	-	22(5)	_	136(25)
PdRV	114(13)	-19(19)	8(12)	2.3	105(20)
N/JN	99(16)	-19(13)	15(7)	21(3)	116(39)

- Enough for $\delta a_{\mu} = 63 \times 10^{-11}$
- Not in future $\delta a_{\mu} = 16 \times 10^{-11}$
- Most results circa 15 years old
- Some advances since then

Hadronic contributions II: Hadronic Light-by-Light

- Not direct connection to data
- Dispersive proposals recently (much involved)
- Multi-scale problem \rightarrow more difficulties
- Devise non-perturbative approach to QCD!

E. de Rafael (1994): large- $N_c + \chi PT$

Authors	π^{0},η,η'	$\pi\pi, KK$	Resonances	Quark Loop	Total
BPP	85(13)	-19(13)	-4(3)	21(3)	83(32)
HKS	83(6)	-5(8)	2(2)	10(11)	90(15)
KN	83(12)	-	_	_	80(40)
MV	114(10)	-	22(5)	-	136(25)
PdRV	114(13)	-19(19)	8(12)	2.3	105(20)
N/JN	99(16)	-19(13)	15(7)	21(3)	116(39)

Update π^0 , η , η' Contributions

HLbL: the pseudoscalar-pole contribution

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \left\langle \Omega \right| T\left\{ j^{\mu}(x_1) j^{\nu}(x_2) j^{\rho}(x_3) j^{\sigma}(x_4) \right\} \left| \Omega \right\rangle$$

HLbL: the pseudoscalar-pole contribution

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{i p_i \cdot x_i} \langle \Omega | T\{j^{\mu}(x_1) j^{\nu}(x_2) j^{\rho}(x_3) j^{\sigma}(x_4)\} | \Omega \rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \frac{i \langle \Omega | T\{j^{\mu}(0)j^{\nu}(x_2)\} | P \rangle \langle P | T\{j^{\rho}(0)j^{\sigma}(x_4)\} | \Omega \rangle}{q^2 - m_P^2 + i\epsilon} + \dots$$

HLbL: the pseudoscalar-pole contribution

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{i p_i \cdot x_i} \langle \Omega | T\{j^{\mu}(x_1) j^{\nu}(x_2) j^{\rho}(x_3) j^{\sigma}(x_4)\} | \Omega \rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = i\mathcal{M}^{\mu\nu}_{P \to \gamma^*\gamma^*} \frac{i}{(p_1 + p_2)^2 - m_P^2} i\mathcal{M}^{\rho\sigma}_{\gamma^*\gamma^* \to P} + \text{ crossed } + \dots$$

HLbL: the pseudoscalar-pole contribution

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \langle \Omega | T\{j^{\mu}(x_1)j^{\nu}(x_2)j^{\rho}(x_3)j^{\sigma}(x_4)\} | \Omega \rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = i\epsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \frac{i|F_{P\gamma^*\gamma^*}(p_1^2, p_2^2)|^2}{(p_1 + p_2)^2 - m_P^2} i\epsilon^{\rho\sigma\gamma\delta} p_{1\gamma} p_{2\delta} + \text{ crossed } + \dots$$

HLbL: the pseudoscalar-pole contribution

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1,p_2,p_3,p_4) = \int d^4x_i e^{ip_i \cdot x_i} \left\langle \Omega \right| T\left\{ j^{\mu}(x_1) j^{\nu}(x_2) j^{\rho}(x_3) j^{\sigma}(x_4) \right\} \left| \Omega \right\rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = i\epsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \frac{i|F_{P\gamma^*\gamma^*}(p_1^2, p_2^2)|^2}{(p_1 + p_2)^2 - m_P^2} i\epsilon^{\rho\sigma\gamma\delta} p_{1\gamma} p_{2\delta} + \text{ crossed } + \dots$$

Related to physical process! Graphically, it looks like

HLbL: the pseudoscalar-pole contribution

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1,p_2,p_3,p_4) = \int d^4x_i e^{ip_i \cdot x_i} \left\langle \Omega \right| T\left\{ j^{\mu}(x_1) j^{\nu}(x_2) j^{\rho}(x_3) j^{\sigma}(x_4) \right\} \left| \Omega \right\rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = i\epsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \frac{i|F_{P\gamma^*\gamma^*}(p_1^2, p_2^2)|^2}{(p_1 + p_2)^2 - m_P^2} i\epsilon^{\rho\sigma\gamma\delta} p_{1\gamma} p_{2\delta} + \text{ crossed } + \dots$$

Related to physical process! Experimentally, it looks like

HLbL: the pseudoscalar-pole contribution

• Plug previous result into HLbL (g - 2) contribution

HLbL: the pseudoscalar-pole contribution

• Plug previous result into HLbL (g - 2) contribution

• After some fun with loops and algebra [JN Phys.Rept., 477 (2009)] $\begin{aligned} a_{\ell}^{\text{HLbL};P} &= \frac{-2\pi}{3} \left(\frac{\alpha}{\pi}\right)^3 \int_0^{\infty} dQ_1 dQ_2 \int_{-1}^{+1} dt \sqrt{1-t^2} Q_1^3 Q_2^3 \\ &\times \left[\frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^3) F_{P\gamma^*\gamma}(Q_2^2, 0) I_1(Q_1, Q_2, t)}{Q_2^2 + m_P^2} + \frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) F_{P\gamma^*\gamma}(Q_2^2, 0) I_2(Q_1, Q_2, t)}{Q_3^2 + m_P^2}\right] \end{aligned}$

HLbL: the pseudoscalar-pole contribution

• Plug previous result into HLbL (g - 2) contribution

- After some fun with loops and algebra [JN Phys.Rept., 477 (2009)] $\begin{aligned} a_{\ell}^{\text{HLbL};P} &= \frac{-2\pi}{3} \left(\frac{\alpha}{\pi}\right)^3 \int_0^{\infty} dQ_1 dQ_2 \int_{-1}^{+1} dt \sqrt{1-t^2} Q_1^3 Q_2^3 \\ & \times \left[\frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^3) F_{P\gamma^*\gamma}(Q_2^2, 0) I_1(Q_1, Q_2, t)}{Q_2^2 + m_P^2} + \frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) F_{P\gamma^*\gamma}(Q_3^2, 0) I_2(Q_1, Q_2, t)}{Q_3^2 + m_P^2}\right] \end{aligned}$
- Without the transition form factors $F_{\pi\gamma^*\gamma^*}(Q_1^2,Q_2^2)$ integrands look like

HLbL: the pseudoscalar-pole contribution

• Plug previous result into HLbL (g - 2) contribution

- After some fun with loops and algebra [JN Phys.Rept., 477 (2009)] $\begin{aligned} a_{\ell}^{\text{HLbL},P} &= \frac{-2\pi}{3} \left(\frac{\alpha}{\pi}\right)^3 \int_0^{\infty} dQ_1 dQ_2 \int_{-1}^{+1} dt \sqrt{1-t^2} Q_1^3 Q_2^3 \\ &\times \left[\frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^3) F_{P\gamma^*\gamma}(Q_2^2, 0) I_1(Q_1, Q_2, t)}{Q_2^2 + m_P^2} + \frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) F_{P\gamma^*\gamma}(Q_2^2, 0) I_2(Q_1, Q_2, t)}{Q_3^2 + m_P^2}\right] \end{aligned}$
- Without the transition form factors $F_{\pi\gamma^*\gamma^*}(Q_1^2,Q_2^2)$ integrands look like

We reduced everything to an integral involving physical input Description for space-like $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$, specially below 2 GeV Incorporate high-energy description (otherwise $l_1(Q_1, Q_2, t)$ diverges) See previous talk from A. Nyffeler (hep-ph:1602.03737)

Section 2

A transition form factor description for the HLbL

Describing the TFF I: First principles

Describing the TFF I: First principles

Ongoing progress

Describing the TFF II: Model approaches

-Lagrangian-based

Nambu Jona Lasinio • Hidden Local Symmetry • Resonance chiral th. • ...

- Often provide an appropriate overall picture and ballparks
- To reach precision extremely complicated
- May be hard to consistently describe QCD properties and data
- Ok, they are models (not full QCD), problem is uncertainty estimate

Describing the TFF II: Model approaches

-Phenomenological Data-based

Large- N_c -based + Resonance saturation + Data-fitting

- Experiment is full QCD!
- Use a well motivated model to describe data

large- $N_c \Rightarrow F_{P\gamma^*\gamma}(Q^2, 0) = F_{P\gamma\gamma}(0, 0) \sum_V c_V \frac{M_V^2}{M_V^2 + Q^2}$

Describing the TFF II: Model approaches

-Phenomenological Data-based

Large- N_c -based + Resonance saturation + Data-fitting

- Experiment is full QCD!
- Use a well motivated model to describe data

VMD approximation $F_{P\gamma^*\gamma}(Q^2, 0) = F_{P\gamma\gamma}(0, 0) \frac{M_V^2}{M_V^2 + Q^2}$

Describing the TFF II: Model approaches

-Phenomenological Data-based

Large- N_c -based + Resonance saturation + Data-fitting

- Experiment is full QCD!
- Use a well motivated model to describe data

Beyond VMD $F_{P\gamma^*\gamma}(Q^2, 0) = F_{P\gamma\gamma}(0, 0) \left(c_1 \frac{M_{\nu_1}^2}{M_{\nu_1}^2 + Q^2} + c_2 \frac{M_{\nu_2}^2}{M_{\nu_2}^2 + Q^2} \right)$
Describing the TFF II: Model approaches

-Phenomenological Data-based

Large- N_c -based + Resonance saturation + Data-fitting

Describing the TFF II: Model approaches

-Phenomenological Data-based

Large- N_c -based + Resonance saturation + Data-fitting

- Experiment is full QCD!
- Use a well motivated model to describe data

Beyond VMD $F_{P\gamma^*\gamma}(Q^2, 0) = F_{P\gamma\gamma}(0, 0) \left(c_1 \frac{M_{\mathbf{v_1}}^2}{M_{\mathbf{v_1}}^2 + Q^2} + c_2 \frac{M_{\mathbf{v_2}}^2}{M_{\mathbf{v_2}}^2 + Q^2} \right)$

• How reliable extrapolation is?

Describing the TFF II: Model approaches

-Phenomenological Data-based

Large- N_c -based + Resonance saturation + Data-fitting

- Experiment is full QCD!
- Use a well motivated model to describe data

Beyond VMD $F_{P\gamma^*\gamma}(Q^2, 0) = F_{P\gamma\gamma}(0, 0) \left(c_1 \frac{M_{V_1}^2}{M_{V_1}^2 + Q^2} + c_2 \frac{M_{V_2}^2}{M_{V_2}^2 + Q^2} \right)$

- How reliable extrapolation is?
- Large-N_c-corrections?

Describing the TFF II: Model approaches

-Phenomenological Data-based

Large- N_c -based + Resonance saturation + Data-fitting

- Experiment is full QCD!
- Use a well motivated model to describe data

Beyond VMD $F_{P\gamma^*\gamma}(Q^2, 0) = F_{P\gamma\gamma}(0, 0) \left(c_1 \frac{M_{\mathbf{v_1}}^2}{M_{\mathbf{v_1}}^2 + Q^2} + c_2 \frac{M_{\mathbf{v_2}}^2}{M_{\mathbf{v_2}}^2 + Q^2} + \dots \right)$

- How reliable extrapolation is?
- Large-N_c-corrections? Systematization?

Describing the TFF II: Model approaches

-Phenomenological Data-based

Large- N_c -based + Resonance saturation + Data-fitting

- Experiment is full QCD!
- Use a well motivated model to describe data

Beyond VMD $F_{P\gamma^*\gamma}(Q^2, 0) = F_{P\gamma\gamma}(0, 0) \left(c_1 \frac{M_{\mathbf{v_1}}^2}{M_{\mathbf{v_1}}^2 + Q^2} + c_2 \frac{M_{\mathbf{v_2}}^2}{M_{\mathbf{v_2}}^2 + Q^2} + \dots \right)$

- How reliable extrapolation is?
- Large-N_c-corrections? Systematization?

---Data-based Dispersive reconstruction

- Data based, in principle full QCD
- In practice most of QCD contributions \Rightarrow Not full Q^2 reconstruction

Objectives and strategies

—What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

Objectives and strategies

-What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

-What is the philosophy?

Toolkit allowing full use of data & QCD constraints on form factors

Objectives and strategies

-What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

-What is the philosophy?

Toolkit allowing full use of data & QCD constraints on form factors

—How to implement for single-virtual case? We propose to use Padé Approximants

Objectives and strategies

-What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

-What is the philosophy?

Toolkit allowing full use of data & QCD constraints on form factors

—How to implement for single-virtual case? We propose to use Padé Approximants

—How to implement the double virtual Form Factor? Generalize our approach to bivariate functions: Canterbury Approximants

Objectives and strategies

—What do we need? A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

—How to implement for single-virtual case? We propose to use Padé Approximants

—How to implement the double virtual Form Factor? Generalize our approach to bivariate functions: Canterbury Approximants

Padé Approximants: Introduction to the method

Given a function with known series expansion

$$F_{P\gamma\gamma^*}(Q^2) = F_{P\gamma\gamma^*}(0)(1 + b_PQ^2 + c_PQ^4 + ...)$$
 i.e. χPT

Its Padé approximant is defined as

$$P_{M}^{N}(Q^{2}) = \frac{T_{N}(Q^{2})}{R_{M}(Q^{2})} = F_{P\gamma\gamma^{*}}(0)(1 + b_{P}Q^{2} + c_{P}Q^{4} + \dots + \mathcal{O}(Q^{2})^{N+M+1})$$

Convergence th. \Rightarrow Model-independency Increase $\{N, M\} \Rightarrow$ Systematic error estimation

$$P_1^0 = \frac{F_{P\gamma\gamma^*}(0)}{1 - b_P Q^2} = F_{P\gamma\gamma^*}(0)(1 + b_P Q^2 + \mathcal{O}(Q^4)) \xrightarrow{} \chi \text{PT/DR} + \text{pQCD}$$

Correct low (& high) energy implementation!

Updated pseudoscalar contribution to the hadronic light-by-light of the muon $\left(g-2
ight)$

A transition form factor description for the HLbL

Padé Approximants: Results

P. Masjuan, '12; R. Escribano, P. Masjuan, P. Sanchez, '14 & '15

Updated pseudoscalar contribution to the hadronic light-by-light of the muon (g-2)

A transition form factor description for the HLbL

Padé Approximants: Results

P. Masjuan, '12; R. Escribano, P. Masjuan, P. Sanchez, '14 & '15

Objectives and strategies

—What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

----What is the philosophy? Toolkit allowing full use of data & QCD constraints on form factors

—How to implement for single-virtual case? We proppose to use Padé Approximants

—How to implement the double-virtual Form Factor? Generalize our approach to bivariate functions: Canterbury Approximants

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

• Generalization of Padé apps. \rightarrow Canterbury apps. (Chisholm 1973) For a symmetric function with Taylor expansion

 $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) = F_{P\gamma\gamma}(0, 0)(1 + c_{1,0}(Q_1^2 + Q_2^2) + c_{2,0}(Q_1^4 + Q_2^4) + c_{1,1}Q_1^2Q_2^2 + \dots)$

Its Canterbury appproximant is defined as

$$C_{M}^{N}(Q_{1}^{2},Q_{2}^{2}) = \frac{T_{N}(Q_{1}^{2},Q_{2}^{2})}{Q_{M}(Q_{1}^{2},Q_{2}^{2})} = \frac{\sum_{i,j}^{N} a_{i,j} Q_{1}^{2i} Q_{2}^{2j}}{\sum_{k,l}^{M} b_{k,l} Q_{1}^{2k} Q_{2}^{2l}}$$

Fulfilling the conditions that

$$\begin{split} \sum_{i,j}^{M} b_{i,j} Q_1^{2i} Q_2^{2j} \sum_{\alpha,\beta}^{\infty} c_{\alpha,\beta} Q_1^{2\alpha} Q_2^{2\beta} &- \sum_{k,l}^{N} a_{k,l} Q_1^{2k} Q_2^{2l} = \sum_{\gamma,\delta}^{\infty} d_{\gamma,\delta} Q_1^{2\gamma} Q_2^{2\delta}, \\ d_{\gamma,\delta} &= 0 \quad 0 \leq \gamma + \delta \leq M + N \\ d_{\gamma,\delta} &= 0 \quad 0 \leq \gamma \leq \max(M, N), \\ 0 \leq \delta \leq \max(M, N) \\ d_{\gamma,\delta} &= 0 \quad 1 \leq \gamma \leq \min(M, N), \\ \delta &= M + N + 1 - \gamma. \end{split}$$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

-Reconstruction

1.Reproduce original series expansion \Rightarrow low energies

 $C_1^0(Q_1^2, Q_2^2) = F_{P\gamma\gamma}(0, 0)(1 + b_P(Q_1^2 + Q_2^2) + a_{P;1,1}Q_1^2Q_2^2 + ...)$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

1.Reproduce original series expansion \Rightarrow low energies 2.Reduce to Padé Approximants

$$C_1^0(Q^2,0) = \frac{F_{P\gamma\gamma}(0,0)}{1-b_PQ^2} = P_1^0(Q^2) \Rightarrow F_{P\gamma\gamma}(0,0) \& b_P \text{ determined}$$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

-Reconstruction

1.Reproduce original series expansion \Rightarrow low energies

2.Reduce to Padé Approximants (already determined)

3.Systematically implement double virtuality: $a_{P;1,1}$ (Exp. unknown)

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

- 1.Reproduce original series expansion \Rightarrow low energies
- 2. Reduce to Padé Approximants (already determined)
- 3.Systematically implement double virtuality: $a_{P;1,1}$ (Exp. unknown) 3a. χ PT leading logs suggest factorization at low energies

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

- 1.Reproduce original series expansion \Rightarrow low energies
- 2.Reduce to Padé Approximants (already determined)
- 3. Systematically implement double virtuality: $a_{P;1,1}$ (Exp. unknown)
 - 3a. $\chi {\rm PT}$ leading logs suggest factorization at low energies
 - 3b. Can incorporate QCD constraints from OPE

$$C_1^0(Q_1^2,Q_2^2)|_{OPE} = rac{F_{P\gamma\gamma}(0,0)}{1+b_P(Q_1^2+Q_2^2)}; \ (a_{P;1,1}\equiv 2b_P^2) \ OPE$$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

- 1.Reproduce original series expansion \Rightarrow low energies
- 2.Reduce to Padé Approximants (already determined)
- 3.Systematically implement double virtuality: $a_{P;1,1}$ (Exp. unknown)
 - 3a. $\chi {\rm PT}$ leading logs suggest factorization at low energies
 - 3b. Can incorporate QCD constraints from OPE

Theoretically, we expect $a_{P;1,1} \in \{b_P^2 \div 2b_P^2\}$ Precise value ultimately from experiment (implements low energies)

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

$$C_{2}^{1}(Q_{1}^{2},Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0,0)(1+\alpha_{1}(Q_{1}^{2}+Q_{2}^{2})+\alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1+\beta_{1}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2}(Q_{1}^{4}+Q_{2}^{4})+\beta_{1,1}Q_{1}^{2}Q_{2}^{2}+\beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$$

---Reconstruction

1. Reduce to Padé Approximants $F_{P\gamma\gamma}(0,0), \alpha_1, \beta_1, \beta_2 \rightarrow \text{from PAs}$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$$

---Reconstruction

1. Reduce to Padé Approximants $F_{P\gamma\gamma}(0,0), \alpha_1, \beta_1, \beta_2 \rightarrow \text{from PAs}$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2},Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0,0)(1+\alpha_{1}(Q_{1}^{2}+Q_{2}^{2})+\alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1+\beta_{1}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2}(Q_{1}^{4}+Q_{2}^{4})+\beta_{1,1}Q_{1}^{2}Q_{2}^{2}+\beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$$

-Reconstruction

1. Reduce to Padé Approximants

2.Reproduce the OPE behavior (high energies)

$$F_{\pi\gamma^*\gamma^*} = \frac{1}{3Q^2} (2F_{\pi}) \left(1 - \frac{8}{9} \frac{\delta^2}{Q^2} + \mathcal{O}(\alpha_s(Q^2)) \right) \Rightarrow \beta_{2,2} = 0, \alpha_{1,1}, \beta_{2,1}$$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$$
---Reconstruction

- 1.Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)
- 3. Reproduce the low energies $(a_{P;1,1})$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$$
---Reconstruction

- 1. Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)
- 3.Reproduce the low energies $(a_{P;1,1})$ Previous estimate $b_P^2 \leq a_{P;1,1} \leq 2b_P^2 \Rightarrow$ limited if avoiding poles Be generous: all configurations with no poles $\Rightarrow a_{P;1,1}^{\min} < a_{P;1,1} < a_{P;1,1}^{\max}$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$$
---Reconstruction

- 1.Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)
- 3.Reproduce the low energies ($a_{P;1,1}^{\min} < a_{P;1,1} < a_{P;1,1}^{\max})$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$$
---Reconstruction

- 1. Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)
- 3.Reproduce the low energies $(a_{P;1,1}^{\min} < a_{P;1,1} < a_{P;1,1}^{\max})$

Low- and high energies implemented Full use of data and theory constraints Double-virtual data for $a_{P;1,1}$ (and δ^2) desirable Systematization up to required precision $(C_3^2(Q_1^2, Q_2^2) \rightarrow C_{N+1}^N(Q_1^2, Q_2^2))$

Seeing is believing: toy models and systematics

-Regge Model-

-Logarithmic Model-

$$\mathcal{F}^{\text{Regge}}_{\pi^{0}\gamma^{*}\gamma^{*}}(Q_{1}^{2},Q_{2}^{2}) = \frac{aF_{P\gamma\gamma}}{Q_{1}^{2}-Q_{2}^{2}} \frac{\left[\psi^{(0)}\left(\frac{M^{2}+Q_{1}^{2}}{a}\right) - \psi^{(0)}\left(\frac{M^{2}+Q_{2}^{2}}{a}\right)\right]}{\psi^{(1)}\left(\frac{M^{2}}{a}\right)}$$

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}^{\log}(Q_{1}^{2},Q_{2}^{2}) = \frac{F_{P\gamma\gamma}M^{2}}{Q_{1}^{2}-Q_{2}^{2}}\ln\left(\frac{1+Q_{1}^{2}/M^{2}}{1+Q_{2}^{2}/M^{2}}\right)$$

Seeing is believing: toy models and systematics

-Regge Model-

$$\begin{split} F_{\pi^{0}\gamma^{*}\gamma^{*}}^{\text{Regge}}(Q_{1}^{2},Q_{2}^{2}) &= \frac{{}^{aF_{P\gamma\gamma}}}{Q_{1}^{2}-Q_{2}^{2}} \frac{\left[\frac{\psi^{(0)}\left(\frac{M^{2}+Q_{1}^{2}}{a}\right) - \psi^{(0)}\left(\frac{M^{2}+Q_{2}^{2}}{a}\right)\right]}{\psi^{(1)}\left(\frac{M^{2}}{a}\right)} \\ \lim_{Q^{2}\to\infty} F_{\pi^{0}\gamma^{*}\gamma}^{\text{Regge}}(Q^{2},0) &= \frac{F_{P\gamma\gamma}a\ln(Q^{2})}{\psi^{(1)}(M/a)Q^{2}} \\ \lim_{Q^{2}\to\infty} F_{\pi^{0}\gamma^{*}\gamma}^{\text{Regge}}(Q^{2},Q^{2}) &= \frac{F_{P\gamma\gamma}a}{\psi^{(1)}(M/a)Q^{2}} \end{split}$$

-Logarithmic Model-

$$F^{\log}_{\pi^0\gamma^*\gamma^*}(Q_1^2,Q_2^2) = \frac{F_{P\gamma\gamma}M^2}{Q_1^2 - Q_2^2} \ln\left(\frac{1 + Q_1^2/M^2}{1 + Q_2^2/M^2}\right)$$

$$\begin{split} \lim_{Q^2 \to \infty} \mathcal{F}^{\log}_{\pi^0 \gamma^* \gamma}(Q^2, Q^2) &= \frac{\mathcal{F}_{P \gamma \gamma} M^2 \ln(Q^2)}{Q^2} \\ \lim_{Q^2 \to \infty} \mathcal{F}^{\log}_{\pi^0 \gamma^* \gamma}(Q^2, Q^2) &= \frac{\mathcal{F}_{P \gamma \gamma} M^2}{Q^2} \end{split}$$

Seeing is believing: toy models and systematics

-Regge Model-

-Logarithmic Model-

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}^{\text{Regge}}(Q_{1}^{2}, Q_{2}^{2}) = \frac{{}_{\sigma}F_{\rho\gamma\gamma}}{Q_{1}^{2} - Q_{2}^{2}} \frac{\left[\frac{\psi^{(0)}\left(\frac{M^{2} + Q_{1}^{2}}{a}\right) - \psi^{(0)}\left(\frac{M^{2} + Q_{2}^{2}}{a}\right)}{\psi^{(1)}\left(\frac{M^{2}}{a}\right)} \right]}{\frac{1}{\frac{C_{1}^{0} - C_{2}^{1} - C_{2}^{2} - C_{2}^{2}}} \frac{\left[\frac{\psi^{(0)}\left(\frac{M^{2} + Q_{2}^{2}}{a}\right) - \psi^{(0)}\left(\frac{M^{2} + Q_{2}^{2}}{a}\right)}{\psi^{(1)}\left(\frac{M^{2}}{a}\right)} \right]}{\frac{1}{\frac{C_{1}^{0} - C_{2}^{1} - C_{2}^{2} - C_{2}^{2}}{\frac{C_{1}^{2} - C_{2}^{2}}$$

		1	2	、 <u>2</u>
	c0	c1	c?	C ³
	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE	87.9	97.6	99.7	100.5
OPE	99.5	101.2	101.4	101.5

101.5

Exact

Seeing is believing: toy models and systematics

-Regge Model-

LE 66.0 71.9 72.8 73.1

OPE 77.4 73.4

Exact

-Logarithmic Model-

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}^{\text{Regge}}(Q_{1}^{2},Q_{2}^{2}) = \frac{{}^{{}_{\mathcal{F}_{\mathcal{F}_{\gamma\gamma}}}}}{Q_{1}^{2}-Q_{2}^{2}} \frac{\left[\psi^{(0)}\left(\frac{M^{2}+Q_{1}^{2}}{a}\right) - \psi^{(0)}\left(\frac{M^{2}+Q_{2}^{2}}{a}\right)\right]}{\psi^{(1)}\left(\frac{M^{2}}{a}\right)}$$

73.3

$F^{\log}_{\pi^0\gamma^*\gamma^*}(Q_1^2,Q_2^2) =$	$= \frac{F_{P\gamma\gamma}M^2}{Q_1^2 - Q_2^2} \ln$	$\left(\frac{1+Q_1^2/M^2}{1+Q_2^2/M^2}\right)$

	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE OPE	87.9 99.5	97.6 101.2	99.7 101.4	100.5 101.5
Exact		101.5		

• The convergence result is excellent!

73.3 73.3

- The OPE choice seems the best \rightarrow high energy matters
- Still, low energies provide a good performance
- Error \sim difference among elements \rightarrow Systematics!

Updated pseudoscalar contribution to the hadronic light-by-light of the muon (g-2)

Updated pseudoscalar pole contribution

Section 3

Updated pseudoscalar pole contribution

Updated pseudoscalar pole contribution

Pseudoscalar-pole contribution: Final results

<u>c</u> 0	(Ω^2)	Ω^{2}	
 \mathbf{c}_1	$(\mathbf{Q}_1,$	(\mathbf{Q}_2)	

$a_\mu^{\mathrm{HLbL};P} imes 10^{11}$	$Fact\;(a_{P;1,1}=b_P^2)$	$OPE(a_{P;1,1} = 2b_P^2)$
π ⁰	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$
η	$13.0(0.4)_F(0.4)_{b_n}[0.6]_t$	$17.0(0.6)_F(0.4)_{b_n}[7]_t$
η'	$12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t$	$16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t$
Total	79.0[2.8] _t	97.9[3.2] _t
Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\rm HLbL; \textit{P}} \times 10^{11}$	$Fact\; \big(a_{P;1,1} = b_P^2\big)$	OPE $(a_{P;1,1} = 2b_P^2)$
π^0 η	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$ $13.0(0.4)_F(0.4)_{b_{\pi}}[0.6]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$ $17.0(0.6)_F(0.4)_{b_{\pi}}[7]_t$
$\dot{\eta'}$	$12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t$	$16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t$
Total	79.0[2.8] _t	97.9[3.2] _t

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π ⁰	$63.9(1.3)_L(0)_{\delta}[1.3]_t$	$62.5(1.2)_L(1.0)_{\delta}[1.6]_t$
η	$16.6(0.8)_L(0)_{\delta}[1.0]_t$	$16.3(0.8)_L(0.6)_\delta[1.0]_t$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t$
Total	95.2[1.7] _t	93.1[2.1] _t

Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\rm HLbL; {\it P}} \times 10^{11}$	$Fact\; \big(a_{P;1,1} = b_P^2\big)$	OPE $(a_{P;1,1} = 2b_P^2)$
π ⁰	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$
$\eta \eta'$	$13.0(0.4)_{F}(0.4)_{b_{\eta}}[0.6]_{t}$ $12.0(0.4)_{F}(0.3)_{b_{\eta'}}[0.5]_{t}$	$17.0(0.6)_F(0.4)_{b_\eta}[7]_t$ $16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t$
Total	79.0[2.8] _t	$97.9[3.2]_t$

$a_{\mu}^{\rm HLbL; \textit{P}} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$63.9(1.3)_L(0)_{\delta}[1.3]_t\{1.0\}_{sys}$	$62.5(1.2)_L(1.0)_{\delta}[1.6]_t\{2.4\}_{sys}$
η	$16.6(0.8)_{L}(0)_{\delta}[1.0]_{t}$	$16.3(0.8)_L(0.6)_{\delta}[1.0]_t$
η'	$14.7(0.7)_L(0)_\delta[0.7]_t$	$14.3(0.5)_L(0.5)_\delta[0.7]_t$
Total	95.2[1.7] _t	$93.1[2.1]_t$

Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} imes 10^{11}$	$Fact\; \big(a_{P;1,1} = b_P^2 \big)$	OPE $(a_{P;1,1} = 2b_P^2)$
π^0	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_{F}(2.8)_{b_{\pi}}[3.1]_{t}$
$\eta \eta'$	$13.0(0.4)_F(0.4)_{b_{\eta}}[0.0]_t$ $12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t$	$17.0(0.6)_F(0.4)_{b_{\eta'}}[7]_t$ $16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t$
Total	79.0[2.8] _t	$97.9[3.2]_t$

$a_{\mu}^{\rm HLbL; \textit{P}} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$63.9(1.3)_L(0)_{\delta}[1.3]_t\{1.0\}_{sys}$	$62.5(1.2)_L(1.0)_{\delta}[1.6]_t\{2.4\}_{sys}$
η	$16.6(0.8)_{L}(0)_{\delta}[1.0]_{t}\{1.4\}_{sys}$	$16.3(0.8)_L(0.6)_{\delta}[1.0]_t\{0.7\}_{sys}$
η'	$14.7(0.7)_L(0)_\delta[0.7]_t$	$14.3(0.5)_L(0.5)_\delta[0.7]_t$
Total	$95.2[1.7]_t$	$93.1[2.1]_t$

Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} imes 10^{11}$	$Fact\; \big(a_{P;1,1} = b_P^2 \big)$	OPE $(a_{P;1,1} = 2b_P^2)$
π ⁰	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$
η	$(13.0(0.4)_F(0.4)_{b_{\eta}}[0.6]_t$	$17.0(0.6)_F(0.4)_{b_{\eta}}[7]_t$
η'	$12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t$	$16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t$
Total	79.0[2.8] _t	$97.9[3.2]_t$

$a_{\mu}^{\rm HLbL; P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$63.9(1.3)_L(0)_{\delta}[1.3]_t\{1.0\}_{sys}$	$62.5(1.2)_L(1.0)_{\delta}[1.6]_t\{2.4\}_{sys}$
η	$16.6(0.8)_L(0)_{\delta}[1.0]_t\{1.4\}_{sys}$	$16.3(0.8)_L(0.6)_{\delta}[1.0]_t\{0.7\}_{sys}$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	95.2[1.7] _t	$93.1[2.1]_t$

Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} imes 10^{11}$	$Fact\; \big(a_{P;1,1} = b_P^2\big)$	OPE $(a_{P;1,1} = 2b_P^2)$
π^0	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$
η	$13.0(0.4)_F(0.4)_{b_{\eta}}[0.6]_t$	$(17.0(0.6)_F(0.4)_{b_{\eta}}[7]_t$
η'	$12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t$	$16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t$
Total	$79.0[2.8]_t$	97.9[3.2] _t

$a_{\mu}^{\rm HLbL; \textit{P}} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$63.9(1.3)_L(0)_{\delta}[1.3]_t\{1.0\}_{sys}$	$62.5(1.2)_L(1.0)_{\delta}[1.6]_t\{2.4\}_{sys}$
η	$16.6(0.8)_L(0)_{\delta}[1.0]_t\{1.4\}_{sys}$	$16.3(0.8)_L(0.6)_{\delta}[1.0]_t\{0.7\}_{sys}$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	$95.2[1.7]_t \{2.7\}_{sys}$	$93.1[2.1]_t \{4.8\}_{sys}$

Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$Fact\; \big(a_{P;1,1} = b_P^2 \big)$	OPE $(a_{P;1,1} = 2b_P^2)$
π ⁰	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$
η	$13.0(0.4)_F(0.4)_{b_{\eta}}[0.6]_t$	$(17.0(0.6)_F(0.4)_{b_{\eta}}[7]_t$
η'	$12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t$	$16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t$
Total	79.0[2.8] _t	97.9[3.2] _t

$-C_2^1(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\rm HLbL; \textit{P}} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$63.9(1.3)_L(0)_{\delta}[1.3]_t\{1.0\}_{sys}$	$62.5(1.2)_L(1.0)_{\delta}[1.6]_t\{2.4\}_{sys}$
η	$16.6(0.8)_L(0)_{\delta}[1.0]_t\{1.4\}_{sys}$	$16.3(0.8)_L(0.6)_{\delta}[1.0]_t\{0.7\}_{sys}$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	$95.2[1.7]_t \{2.7\}_{sys}$	$93.1[2.1]_t \{4.8\}_{sys}$

-Final Result (preliminary)

 $a_{\mu}^{\pi,\eta,\eta'} = (63.2[1.5]\{2.4\} + 16.5[1.0]\{1.4\} + 14.5[0.7]\{1.7\}) \times 10^{-11} = 94.2[2.3]\{4.8\} \times 10^{-11}$

Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} imes 10^{11}$	$Fact\; \big(a_{P;1,1} = b_P^2\big)$	OPE $(a_{P;1,1} = 2b_P^2)$
π^0	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$
η	$(13.0(0.4)_F(0.4)_{b_{\eta}}[0.6]_t$	$17.0(0.6)_F(0.4)_{b_{\eta}}[7]_t$
η'	$12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t$	$16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t$
Total	79.0[2.8] _t	97.9[3.2] _t

$-C_2^1(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\rm HLbL; \textit{P}} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$63.9(1.3)_L(0)_{\delta}[1.3]_t\{1.0\}_{sys}$	$62.5(1.2)_L(1.0)_{\delta}[1.6]_t\{2.4\}_{sys}$
η	$16.6(0.8)_L(0)_{\delta}[1.0]_t\{1.4\}_{sys}$	$16.3(0.8)_L(0.6)_{\delta}[1.0]_t\{0.7\}_{sys}$
η	14.7(0.7) $L(0)_{\delta}[0.7]_{t}\{1.3\}_{sys}$	$14.5(0.5)L(0.5)\delta[0.7]t\{1.7\}_{sys}$
Total	$95.2[1.7]_t \{2.7\}_{sys}$	$93.1[2.1]_t \{4.8\}_{sys}$

-Final Result (preliminary)

 $a_{\mu}^{\pi,\eta,\eta'} = (63.2[1.5]\{2.4\} + 16.5[1.0]\{1.4\} + 14.5[0.7]\{1.7\}) \times 10^{-11} = 94.2[2.3]\{4.8\} \times 10^{-11}$

What has been achieved?

 $= \text{Final Updated Result (preliminary)} \qquad \qquad \delta a_{\mu}^{\exp} = 16 \times 10^{-11} \\ a_{\mu}^{\pi,\eta,\eta'} = (63.2[1.5]\{2.4\} + 16.5[1.0]\{1.4\} + 14.5[0.7]\{1.7\}) \times 10^{-11} = 94.2[2.3]\{4.8\} \times 10^{-11}$

KN: Phys.Rev., D65, 073034 (2002); GLCR: Phys.Rev., D89, 073016 (2014)

Updated pseudoscalar pole contribution

KN: Phys.Rev., D65, 073034 (2002); GLCR: Phys.Rev., D89, 073016 (2014)

- Updated value meeting future exp. precision (if $\delta a_{\mu}^{\text{HVP}}$, then 11×10^{-11})
- Full use of current data with systematics and good data description
- Full QCD constraints, also for the η and η'
- η and η' relevant, of the order of δa_{μ}^{\exp}

KN: Phys.Rev., D65, 073034 (2002); GLCR: Phys.Rev., D89, 073016 (2014)

- Updated value meeting future exp. precision (if $\delta a_{\mu}^{\text{HVP}}$, then 11×10^{-11})
- Full use of current data with systematics and good data description
- Full QCD constraints, also for the η and η'
- η and η' relevant, of the order of δa_{μ}^{\exp}

Previous KN Result ______ $\delta a_{\mu}^{\exp} = 16 \times 10^{-11}$ _____ $a_{\mu}^{\pi,\eta,\eta'} = (58(10) + 13(1) + 12(1)) \times 10^{-11} = 83(12) \times 10^{-11}$

- Study focused in sign mistake; remember $\delta a_{\mu} = 63 \times 10^{-11}$
- Not fully statistical errors and no systematics included ($N_c \rightarrow 30\%$?)
- Belle π^0 , Babar π^0 , η , η' , $\pi^0 \to \gamma\gamma$ PrimEx, $\eta \to \gamma\gamma$ KLOE-2 unreleased
- $\eta \eta'$ factorized: roughly 6×10^{-11} shift

KN: Phys.Rev., D65, 073034 (2002); GLCR: Phys.Rev., D89, 073016 (2014)

- Updated value meeting future exp. precision (if $\delta a_{\mu}^{\text{HVP}}$, then 11×10^{-11})
- Full use of current data with systematics and good data description
- Full QCD constraints, also for the η and η'
- η and η' relevant, of the order of δa_{μ}^{\exp}

- There are no systematic errors included above ($N_c
 ightarrow 30\%$?)
- No data used for the η, η' but SU(3)-symmetry

KN: Phys.Rev., D65, 073034 (2002); GLCR: Phys.Rev., D89, 073016 (2014)

- Updated value meeting future exp. precision (if $\delta a_{\mu}^{\text{HVP}}$, then 11×10^{-11})
- Full use of current data with systematics and good data description
- Full QCD constraints, also for the η and η'
- η and η' relevant, of the order of δa_{μ}^{\exp}

___ Possible improvements _____

- Double virtuality measurements $(a_{P;1,1}, \delta^2)$: BES III
- π^0 : low-energy SL at BES III & KLOE-2, TL (Dalitz) at MAMI, KLOE-2?
- η': Dalitz decay at MAMI?

KN: Phys.Rev., D65, 073034 (2002); GLCR: Phys.Rev., D89, 073016 (2014)

KTeV's $\pi^0 \rightarrow e^+e^-$: a source of double-virtual information?

- The process involves a loop integral over doubly-virtual TFF (mostly Q₁² = Q₂²)
- Loop integral saturates below 1 GeV (low-energy test)
- Indirect constraint on $a_{\pi;1,1}, \delta^2$!

KTeV's $\pi^0 \rightarrow e^+e^-$: a source of double-virtual information?

- The process involves a loop integral over doubly-virtual TFF (mostly Q₁² = Q₂²)
- Loop integral saturates below 1 GeV (low-energy test)
- Indirect constraint on $a_{\pi;1,1}, \delta^2!$

Updated pseudoscalar pole contribution

KTeV's $\pi^0 \rightarrow e^+e^-$: a source of double-virtual information?

KTeV result

$${
m BR}(\pi^0 o e^+ e^-) = 7.48(38) imes 10^{-8}$$

Updated pseudoscalar pole contribution

KTeV's $\pi^0 \rightarrow e^+e^-$: a source of double-virtual information?

KTeV result with latest RCs

$${
m BR}(\pi^0 o e^+ e^-) = 6.87(36) imes 10^{-8}$$

Updated pseudoscalar pole contribution

KTeV's $\pi^0 \rightarrow e^+e^-$: a source of double-virtual information?

Updated pseudoscalar pole contribution

KTeV's $\pi^0 \rightarrow e^+e^-$: a source of double-virtual information?

$$\begin{array}{c} \mbox{KTeV result with latest RCs} \\ BR(\pi^0 \to e^+e^-) = 6.87(36) \times 10^{-8} \\ \mbox{vs.} \\ BR^{C_2^1}(\pi^0 \to e^+e^-) = 6.23(5) \times 10^{-8} \\ \mbox{$_{[a_{\pi:1.1}=(1.92-2.07)b_2^2, \delta^2=0.2 \text{ GeV}^2]$} \end{array}$$

If seriously taken

Updated pseudoscalar pole contribution

KTeV's $\pi^0 \rightarrow e^+e^-$: a source of double-virtual information?

$$\begin{array}{c} \mbox{KTeV result with latest RCs} \\ BR(\pi^{0} \rightarrow e^{+}e^{-}) = 6.87(36) \times 10^{-8} \\ \mbox{vs.} \\ BR^{C_{2}^{1}}(\pi^{0} \rightarrow e^{+}e^{-}) = 6.23(5) \times 10^{-8} \\ \mbox{$$}_{[a_{\pi;1,1}=(1.92-2.07)b_{\pi}^{2},\delta^{2}=0.2 \ {\rm GeV}^{2}$]} \end{array}$$

If seriously taken

Have to damp the TFF requiring
$$\begin{split} \delta^2 &\geq 10 \ \mathrm{GeV}^2, a_{P;1,1} = -(4 \div 32) b_\pi^2 \\ & \underbrace{\qquad} & \mathsf{Meanwhile,} \ a_\mu^{\mathsf{HLbL}} \\ a_\mu^{\mathsf{HLbL};\pi^0} &= 36(7) \times 10^{-11} \\ & [\ \mathrm{We \ obtained} \ a_\mu^{\mathsf{HLbL};\pi^0} &= 63.2(2.8)] \end{split}$$

Prospects

New π^0 measurement: NA62 possible BES III measurements would help New Physics?

 $\eta \rightarrow \mu^+ \mu^-$ some tension (larger error) Though requires opposite solution in terms of $a_{\eta;1,1}, \delta^2$ Updated pseudoscalar contribution to the hadronic light-by-light of the muon (g - 2)Summary & Outlook

Section 4

Summary & Outlook

Summary & Outlook

- Updated the π^0, η, η' -pole contribution to HLbL
- Full use of SL and low-energy TL data + theory constraints
- Systematic and model-independent implementation with Canterbury approximants
- New value $a_{\mu}^{HLbL;\pi,\eta,\eta'} = 94.2(5.4) \times 10^{-11}$ including systematics
- Error meets future experiments $\delta a_{\mu} \sim 16 \times 10^{-11}$ requirements
- Improvement: double-virtual measurements $\gamma^*\gamma^* \rightarrow P$ BESIII
- User friendly and potential tool for experimentalists/lattice