Polyakov loop in 2+1 flavor QCD 0000000000 Static $Q\bar{Q}$ correlators

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

1/25

Deconfinement and Polyakov loop in 2+1 flavor QCD

J. H. Weber¹ in collaboration with A. Bazavov², N. Brambilla¹, H.T. Ding³, P. Petreczky⁴, A. Vairo¹ and H.P. Schadler⁵

¹Physik Department, Technische Universität München, Garching, ²University of Iowa, ⁴Central China Normal University, Wuhan ⁴Brookhaven National Lab ⁵Universität Graz

Determination of the Fundamental Parameters in QCD MITP, 03/11/2016

main results to be published next week

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
00000	000000000	0000	

- Overview & introduction
- $\bullet\,$ Polyakov loop in 2+1 flavor QCD
- $\bullet\,$ Static $Q\bar{Q}$ correlators at finite temperature
- Summary

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static QQ correlators	
0000			
Introduction			
QCD phase diagram	n		

Plasma phase: quark-gluon-plasma $T > T_c \approx 160 \text{ MeV}$ deconfinement, color screening, iso-vector chiral symmetry, ...

Hadronic phase:dilute hadron gas $T_c \gg T \approx 0$ MeVconfinement,hidden chiral symmetry,center symmetry (YM),...

ヘロト ヘロト ヘビト ヘビト

≣ ∽ 3 / 25

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
00000			
Introduction			
	a		

QCD expectation values LGT on a Euclid

$$\langle \mathcal{O} \rangle_{\rm QCD} = \int \mathcal{D}\phi \ \mathcal{O}[\phi] \ e^{i \int dV_d \mathcal{L}[\phi;\alpha]}$$

- fields $\phi_{\text{QCD}} = \{A_{\mu}, \psi, \bar{\psi}\}$
- parameters $\alpha_{\text{QCD}} = \{g, m_q, \ldots\}$
- observable $\mathcal{O}[\phi_{\text{QCD}}]$
- Lagrangian $\mathcal{L}_{\text{QCD}}[\phi_{\text{QCD}}, \alpha_{\text{QCD}}]$

Why non-perturbative approaches?

- Non-Abelian group SU(3)
- $\bullet~{\rm QCD}~{\rm scale}~\Lambda_{{\rm Q}{\it CD}}\sim 200~{\rm MeV}$
- Crossover transition at $T\approx T_c$

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
00000			
Observables in lattice gauge theory at finite	Т		
Thermal observables	in lattice gauge theory		

5/25

Free energy of a static quark related to the renormalized Polyakov loop

$$\langle L^{\mathrm{r}} \rangle = e^{-N_{\tau} a C_Q} \langle L^{\mathrm{b}} \rangle = \exp\left[-\frac{F_Q}{T}\right]$$

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
0000			
Observables in lattice gauge theory at fi	nite T		

I hermal observables in lattice gauge theory

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static QQ correlators	
00000			
Observables in lattice gauge theory at fit	nite T		
- (-)			

Z(3) center symmetry and Polyakov loop susceptibility

Center symmetry in pure YM theory

Z(3) center symmetry for $T < T_c$

 $\langle L \rangle = 0 \Leftrightarrow F_Q = \infty$

Confinement in pure gauge theory

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	Summary
00000			
Observables in lattice gauge theory at fin	nite T		
$\overline{\mathbf{T}}(\mathbf{a})$			

Z(3) center symmetry and Polyakov loop susceptibility

Center symmetry in pure YM theory

No center symmetry for $T > T_c$

 $\langle L \rangle > 0 \Leftrightarrow F_Q = \text{finite}$

Deconfinement in pure gauge theory

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	Summary
00000			
Observables in lattice gauge theory at finite	e T		
-(-)			

Z(3) center symmetry and Polyakov loop susceptibility

^{6 / 25}

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	Summary
00000			
Crossover temperature puzzle			
The crossover tem	perature puzzle in full QC	D	

Newer results from HotQCD collaboration

N_{τ}	$\frac{m_l}{m_s} = \frac{1}{27}$	$\frac{m_l}{m_s} = \frac{1}{20}$
8	182(3)	185(3)
12	170(3)	174(3)
∞	161(6)	165(6)
6	168(2)	171(2)
8	161(2)	164(2)
12	157(3)	161(2)
∞	156(8)	160(6)
∞	156(8)	160(6)

イロト イボト イヨト イヨト

 $\frac{\partial \chi_q}{\partial T}$, q = l, s dominated by regular part of free energy; singular part is not easily accessible.

L has no demonstrated relation to singular part of free energy with massive light quarks.

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static QQ correlators	
0000			
Crossover temperature puzzle			

The crossover temperature puzzle in full QCD

Newer results from HotQCD collaboration

A. Bazavov et. al., PRD 85 054503 (2012)

N_{τ}	$\frac{m_l}{m_s} = \frac{1}{27}$	$\frac{m_l}{m_s} = \frac{1}{20}$
8	182(3)	185(3)
12	170(3)	174(3)
∞	161(6)	165(6)
6	168(2)	171(2)
8	161(2)	164(2)
12	157(3)	161(2)
∞	156(8)	160(6)
∞	156(8)	160(6)

 $\frac{\partial \chi_q}{\partial T}$, q = l, s dominated by regular part of free energy; singular part is not easily accessible.

L has no demonstrated relation to singular part of free energy with massive light quarks.

Is the higher value of T_c from L due to physical reasons? Does L provide reliable information about T_c in full QCD?

イロト イボト イヨト イヨト

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
	000000000		
Bare Polyakov loop			

Bare Polyakov loop and renormalization

Free energy needs renormalization $\langle L \rangle = e^{-N_{\tau} a C_Q} \langle L^{\rm b} \rangle$ $\Rightarrow \quad f_Q = f_Q^{\rm bare} + N_{\tau} a C_Q$ What is the nature of C_Q ?

- $C_Q(\beta)$ independent of N_{τ}
- C_Q diverges as

 $C_Q = 1/a(\beta)c_Q(\beta)$

• c_Q is related Z_3

$$\exp\left[-c_Q
ight] \propto Z_3(g^2)$$

<ロト < 団ト < 目ト < 目ト 目 の Q () 8 / 25

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
	000000000		
Renormalization with QQ procedure			

(ロ) (四) (E) (E) (E) (E)

9/25

Polyakov loop as asymptotic limit of static meson correlators

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
	000000000		
Renormalization with QQ procedure			

Polyakov loop as asymptotic limit of static meson correlators

Poylakov loop correlator $C_P(T, r)$

$$r \gg 1/T$$
: static $Q\bar{Q}$ decorrelate

$$\lim_{r\to\infty} C_P(T,r) = \langle L(T) \rangle^2$$

Apparent due to **color screening**

・ロン ・四 と ・ ヨン ・ ヨ

	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
	000000000		
Renormalization with QQ procedure			

Polyakov loop as asymptotic limit of static meson correlators

 $r \gg 1/T$: static $Q\bar{Q}$ decorrelate

$$\lim_{r\to\infty} C_P(T,r) = \langle L(T) \rangle^2$$

Apparent due to **color screening**

For any color configuration of $Q\bar{Q}$

 $\lim_{r\to\infty}C_{\mathcal{S}}(T,r)=\left\langle L(T)\right\rangle^{2}$

 $C_{S} \text{ is defined in Coulomb gauge as}$ $C_{S}(T,r) = \frac{1}{3} \sum_{a=1}^{3} W_{a}(T,0) W_{a}^{\dagger}(T,r)$

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
	000000000		
Renormalization with QQ procedure			

Polyakov loop as asymptotic limit of static meson correlators

$$r \gg 1/T$$
: static $Q\bar{Q}$ decorrelate

$$\lim_{r\to\infty} C_P(T,r) = \langle L(T) \rangle^2$$

Apparent due to **color screening**

For any color configuration of $Q\bar{Q}$

$$\lim_{r\to\infty} C_{\mathcal{S}}(T,r) = \langle L(T) \rangle^2$$

 C_{S} is defined in Coulomb gauge as $C_{S}(T, r) = \frac{1}{3} \sum_{a=1}^{3} W_{a}(T, 0) W_{a}^{\dagger}(T, \mathbf{r})$

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	Summary
	000000000		
Renormalization with QQ procedure			
Static meson corr	elators at short distances r	$\ll 1/T$	

10/25

 $r \ll 1/T$: small thermal effects in $F_S(T, r) = -T \log \langle C_S(T, r) \rangle$ For $r \ll 1/T$: vacuum-like due to asymptotic freedom

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	Summary
	000000000		
Renormalization with QQ procedure			
· · · · · · · · · · · · · · · · · · ·			

Static meson correlators at short distances $r \ll 1/T$

$$r \ll 1/T$$
 is a vacuum-like regime $F_S(T,r) = V_{Q\bar{Q}}(r) + \mathcal{O}(rT)$

	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
	000000000		
Renormalization with QQ procedure			
-			

$Q\bar{Q}$ procedure:

We fix the static energy $(V_{Q\bar{Q}}\equiv V)$

Renormalization constant c_Q from QQ procedure

$$V'(\beta, r) = V^{b}(\beta, r) + 2c_{Q}(\beta)$$

for each β (β omitted below) to

$$V^{r}(r) = \frac{V_{i}}{r_{i}}, r^{2} \frac{\partial V(r)}{\partial r}\Big|_{r=r_{i}} = C_{i},$$

with $V_0 = 0.954$, $V_1 = 0.2065$ and $C_0 = 1.65$, $C_1 = 1.0$

- We take $2c_Q$ from HotQCD,
- A. Bazavov et. al., PRD 90 094503 (2014)
- we interpolate in β and
- add $N_{\tau}c_Q$ to $f_Q^{\text{bare}}(T[\beta, N_{\tau}])$.

Drawbacks of $T \approx 0$ lattices

- computationally expensive
- currently limited to $\beta \leq 7.825$

イロン 不得 とうほう イロン しゅ

11 / 25

Advantages of $T\approx 0$ lattices

• unambiguous procedure

	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
	000000000		
Deconfinement temperature			
Renormalized Polya	kov loop free energy		

Renormalized Polyakov loop and free energy:

- Cutoff effects are large for $N_{\tau} = 6$ only in crossover region.
- Cutoff effects on par with errors for $T>200~{\rm MeV}$
- Errors due to $N_{\tau}c_Q$ become dominant for high T

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	Summary
	00000000		
Deconfinement temperature			
Renormalized	Polyakov loop, free energy and	temperature derivati	ves

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
	00000000		
Deconfinement temperature			
Renormalized	Polyakov loop, free energy and t	emperature derivati	ves

Different inflection points of L and F_Q ?

- In principle the entropy $S_Q(T) = -\frac{dF_Q(T)}{dT}$ is a **measurable** quantity.
- \rightarrow The inflection point of F_Q is renormalization scheme independent.
 - $\bullet\,$ The inflection point of L is scheme dependent with no physics implied.

	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
	000000000		
Deconfinement temperature			
Relation between	entropy and pseudocritical	temperature	

 T_c is from O(2) scaling fits to chiral susceptibilities: $\Box \rightarrow \langle \overline{\sigma} \rangle \land \overline{z} \rightarrow \langle \overline{z} \rightarrow \langle \overline{z} \rangle \land \overline{z} \rightarrow \langle \overline{z} \rightarrow \langle \overline{z} \rangle \land \overline{z} \rightarrow \langle \overline{z}$

F_Q lies for low T below and for high T above the older HISQ result.
Hadron resonance gas agrees with our data up to T ≤ 135 MeV.

• The peak decreases for lower quark masses and for finer lattices.

 $\bullet\,$ The entropy peaks at $T_S=153^{+6.5}_{-5}$ MeV in the continuum limit.

	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
	0000000000000		
Renormalization with gradient flow			

Alternative renormalization scheme with gradient flow

Gradient flow approach

M. Lüscher, JHEP 08, 071(2010), ...

- Artificial fifth dimension t
- Diffusion-type field evolution $\dot{V}_{\mu} = -g_0^2 \{\partial_{\mu} S[V]\} V_{\mu}$
- Fields at finite flow time $V_{\mu} \equiv V_{\mu}(x, t), V_{\mu}(x, 0) = U_{\mu}(x)$
- Fields are smeared out over length scale $f_t = \sqrt{8t}$, no short distance singularities
- flow time t defines a specific renormalization scheme if

 $a \ll f_t = \sqrt{8t} \ll 1/T = aN_{ au}$

• adapt flow time for higher T

- f_t dependent cutoff effects are quite mild for $T \lesssim 400$ MeV.
- Hence, results at flow time f_t differ only by a constant and cross-check $Q\bar{Q}$ procedure.

ヘロト ヘロト ヘヨト ヘヨト

■ つ
16 / 25

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static QQ correlators	Summary
	00000000000		
Renormalization with gradient flow			
Polyakov loop suscept	ibility		

- Polyakov loop susceptibility: $\chi_A = (VT)^3 \left(\langle |L|^2 \rangle \langle |L| \rangle^2 \right)$
- Mixes representations: $\langle |L_3|^2 \rangle = \langle |L_6| \rangle \langle |L_3| \rangle$
- \bullet Casimir scaling violations prohibit application of $Q\bar{Q}$ procedure

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	Summary
	0000000000		
Renormalization with gradient flow			
Polyakov loop sus	sceptibility		

- Polyakov loop susceptibility: $\chi_A = (VT)^3 \left(\langle |L|^2 \rangle \langle |L| \rangle^2 \right)$
- 2+1 flavor HISQ data, renormalized via gradient flow
- χ_A strongly flow time dependent, no indication for critical behavior

	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
	000000000		
Renormalization with gradient flow			

Ratios of Polyakov loop susceptibilities

• Longitudinal and transverse Polyakov loop susceptibilities:

$$\chi_{L} = (VT)^{3} \left(\langle \operatorname{Re} L^{2} \rangle - \langle \operatorname{Re} L \rangle^{2} \right), \quad \chi_{T} = (VT)^{3} \left(\langle \operatorname{Im} L^{2} \rangle \right)$$

• $R_A = \chi_A / \chi_L$: step function behavior cannot be related to crossover.

	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	
	000000000		
Renormalization with gradient flow			

Ratios of Polyakov loop susceptibilities

• Longitudinal and transverse Polyakov loop susceptibilities:

$$\chi_{L} = (VT)^{3} \left(\langle \operatorname{Re} L^{2} \rangle - \langle \operatorname{Re} L \rangle^{2} \right), \quad \chi_{T} = (VT)^{3} \left(\langle \operatorname{Im} L^{2} \rangle \right)$$

• $R_T = \chi_T / \chi_L$: crossover pattern for $f_t \ge f_0$, exposes critical behavior.

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static QQ correlators	Summary
		0000	
Singlet free energy			
Singlet free energy			

- Singlet free energy: $C_{\mathcal{S}}(r,T) = \frac{1}{3} \langle \sum_{a=1}^{3} W_{a}(T,0) W_{a}^{\dagger}(T,\mathbf{r}) \rangle = e^{-F_{\mathcal{S}}(r,T)/T}$
- \bullet Consistent with T=0 static energy $V_{Q\bar{Q}}(r)$ up to $r\sim 0.45/T$
- Deviation from $V_{Q\bar{Q}}(r)$ is driven by the onset of color screening

inglet free energy						
Singlet free energy						
00000	0000000000	0000				
Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	Summary			

Effective coupling constant makes different regimes explicit

α_{QQ̄}(r, T) = r²/C_F ∂E(r, T)/∂r, E = {F_S(r, T), V_{QQ̄}(r)}

α_{QQ̄}(r, T) ≥ 0.5 for T ≤ 2T_c: QGP in HIC is strongly coupled

• Thermal modifications small for $r \to 0 \to {\rm study} \; V_{Q\bar{Q}}(r) - F_S(r,T)$

ヘロト ヘロト ヘビト ヘビト

≡ ∽ 21 / 25

• $V_{Q\bar{Q}}(r)$ and $F_{S}(r,T)$ differ by up to 10 MeV for $r \lesssim 0.27/T$

- Thermal modifications small for $r \to 0 \to {\rm study} \; V_{Q\bar{Q}}(r) F_{S}(r,T)$
- $V_{Q\bar{Q}}(r)$ and $F_{S}(r, T)$ differ by up to 10 MeV for $r \lesssim 0.27/T$
- Cutoff effects are rather large, finer lattices (larger N_{τ}) required

Overview & introduction	Polyakov loop in 2+1 flavor QCD 0000000000	Static <i>QQ</i> correlators	Summary
Polyakov loop correlator			
Static $Q\bar{Q}$ free en	ergy		
	0.6 0.4 0.2 0 0.2 0.2 0.2 0.2 0.4 0.6 0.8 -1 -1.2 -1.4 -1.6 Prelimin	7 [MeV] 0 175 22223 200 225 250 22722 275 2250 300 225 300 225 250 22722 275 2252 300 200 225 300 200 200 200 300 200 200 200 300 200 200 200 300 200 200 200 200 200 200 200 200 200	

$$C_P(r,T) = \langle L(T,0)L^{\dagger}(T,\mathbf{r}) \rangle = e^{-\frac{F_{Q\bar{Q}}(r,T)}{T}} = \frac{1}{9}e^{-\frac{F_{S}(r,T)}{T}} + \frac{8}{9}e^{-\frac{F_{O}(r,T)}{T}}$$

• Consistent with $T = 0$ static energy $V_{Q\bar{Q}}(r)$ up to $r \sim 0.15/T$
• This deviation from $V_{Q\bar{Q}}(r)$ is driven by the color-octet contribution

0.3

0.4

0.5

r [fm]

Image: A image: A

E ► < E≯ Ð, 22 / 25

0.7

0.6

-1.8

-2

0

0.1

0.2

Overview & introduction	Polyakov loop in 2+1 flavor QCD 0000000000	Static $Q\bar{Q}$ correlators	Summary
Summary (I)			

- We extract different deconfinement observables from the renormalized Polyakov loop. Our analysis is firmly based on the $Q\bar{Q}$ procedure.
- Renormalization scheme dependence leads to an inflection point of the Polyakov loop at higher temperatures $T\approx 200$ MeV.
- We see crossover behavior at $T \approx T_c$ for the entropy $S_Q(T) = -\frac{dF_Q(T)}{dT}$ and for the ratio of Polyakov susceptibilities $R_T(T) = \frac{\chi_T(T)}{\chi_I(T)}$.
- We extract $T_c = 153^{+6.5}_{-5}$ MeV from the entropy, in agreement with $T_c = 160(6)$ MeV from chiral susceptibilities (O(2) scaling fits for $m_l/m_s = 1/20$).

$N_{ au}$	∞	12	10	8	6
$T_c(S_Q)$	$153^{+6.5}_{-5}$	157.5(6)	159(4.5)	162(4.5)	167.5(4.5)
$T_c(\chi_{m,l})$	160(6)	161(2)	[162(2)]*	164(2)	171(2)

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static QQ correlators	Summary

Summary (II)

- Static $Q\bar{Q}$ correlators show remnants of confinement at least up to $4T_c$.
- Onset of thermal effects strongly depends on individual observables, is much faster if color octet states contribute.
- Singlet free energy (T > 0) and static energy (T = 0) differ by $\lesssim 10$ MeV for short distances.
- Precision test of perturbation theory for static correlators at finite T is in preparation.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Overview & introduction	Polyakov loop in 2+1 flavor QCD	Static $Q\bar{Q}$ correlators	Summary
00000	000000000	0000	

Thank You for listening!