
Test of Quark-Hadron Duality in
Tau-Decay

Tau decay may be the ideal laboratory to test subtle ef-
fects of QCD in the intermediate energy region which is
still accessible by the perturbation series and the operator
product expansion (OPE).
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� We use only information that has been calculated ex-
plicitly, i.e. the known coe¢ cients of a perturbative
series and the Wilson coe¢ cients of the OPE.

� This hypothesis is of course known to be violated in
practice, for instance by the factorial growth of the
coe¢ cients. We assume that the asymptotic behav-
ior sets in at high enough perturbative orders so that
it does not a¤ect this applications.

� No dimension 2 operator

� We employ pinched FESR but no models or approx-
imations such as large Nc, large �0, Regge-theory,
vacuum saturation,...

� We check these assumptions against measured quan-
tities.
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Finite Energy Sum Rule
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1 Chiral Sum Rules
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In the chiral limit hO2i = hO4i = 0.

1. N = 0; 1 Weinberg sum rules

2. N = 2; 3 FESR projects d = 6; 8 vacuum conden-
sates,



Second Weinberg Sum RuleZ s0
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Second WSR



First Weinberg sum rule (pinched)
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WSR 1 (blue) and pinched WSR (red)



The DGLMY sum rule:

Pinched DGLMY sum rule
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(Das, Guralnik, Low, Mathur and Young 1967). Experi-
mentally m�� �m�0 = 4:59MeV .



The DMO sum rule:

(Pinched DMO sum rule)
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CHPT

��(0) = �8�L10
= 2

�
1

3
f2� < r

2
� > �FA

�
= 0:052� 0:002 ;

L10 �
CHPT

�6:33� 10�3

Our result

��(0) = �8�L10 = 4
f2�
s0
+
Z s0
sthr

ds

s

 
1� s

s0

!2
[�V (s)� �A(s)]

�L10 = �(6:5� 0:1)� 10�3



�0(0) is related to the O(p6) counter terms.

(Pinched sum rule)
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2 Chiral Condensates

Dimension 6 chiral condensate:Z s0
0

ds s2 [�V (s)� �A(s)] = hO6i

hO6i = �(5:0 � 0:7)� 10�3 GeV6: (1)



� Dimension 8 chiral condensate

Z s0
0

ds s3 [�V (s)� �A(s)] = hO6i

hO8i = �(9:0 � 5:0)� 10�3 GeV8 ;



3 Non-Chiral Sum Rules
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The gluon condensate is positive and equal for V and A.
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4 Generalized Pinching
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The powers in P (s) should be not too high as other-
wise higher and unknown condensates would contribute,
a linear function is su¢ cient

P (s) = 1 + (s0; s1)s

(s0; s1) = �
[s0M0(s0) � s1M0(s1)]h
s20M1(s0) � s21M1(s1)

i :
If s0 = s1, then (s0; s0) = � 1

s1
, and

P (s) = 1� s

s1
standard pinching (2)

We use the average of ALEPH and OPAL data and �s(M2
� ) =

0:431� 0:013 (Pich 2014)



Axial Sum Rule
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Vector Sum Rule
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For the vector current we can use e+e� data beyond the
end-point of the � -spectrum
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Conclusions

� Duality with pinching works well for s0 & 2:3 �
2:6 GeV 2 for all observables where the answer is
known.

� We use only linear �t because of unknown higher
dimensional condensates.

� Errors are predominantly experimental. Little or no
evidence of DV

� The pinched Weinberg sum rule shows that above
2.6 GeV2 we must have �PQCDV (s) = �

PQCD
A (s)

(within experimental errors)

� All QCD constraints regarding condensates must be
incorporated.
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