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Mount Allison University
New Brunswick

Population: 840,000
Area: 72,908 km2

English and French

Lobster, Lumber, and High Tides
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Mount Allison 
University  
• 2,250 students
• Undergrads only
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Bay of Fundy

Highest tides in the world 
— 16 m!

τ ≈ 12.5 − 12.7 h N2 ≈ 12.66 h
Bay Moon
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Hadron Physics - Conference Talks
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• Kouji Miwa (Tohoku U., Japan)

• Axel Schmidt (The George Washington U., USA)

• Xiaoyan Shen (IHEP, Beijing, China)
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Full Disclosure
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This talk was put together with slides from:

• Concettina Sfienti

• Harald Merkel

• Diego Bettoni

• Jianwei Qiu

Thank you!
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Hadron Physics
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• Introduction / History

• Experiment

• Theory

• Some Facilities / Experiments

• Outlook and Summary

Where to begin…
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Standard Model of Particle Physics
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Includes strong and weak nuclear 
forces, and EM interaction

6 quarks
6 leptons
4 gauge bosons
1 Higgs boson
+ antiparticles

Still a some open questions.

Free parameters, gravity, dark matter, 
dark energy, matter-antimatter 
asymmetry.

How did we get here?
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A Brief History of Subatomic Particles
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Advent of particle accelerators 
in the 1950s led to a hadron 
“explosion”.

WTF?

Unsatisfactory situation…Who ordered these?
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A Brief History of Subatomic Particles
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When the Nobel Prizes were first awarded in 1901, 
physicists knew something of just two objects, which 
are now called “elementary particles”: the electron and 
the proton.  A deluge of other “elementary” particles 
appeared after 1930; neutron, neutrino, muon, pion, 
heavier mesons, and various hyperons.  I’ve heard it 
said that “the finder of a new elementary particle used 
to be rewarded by a Nobel Prize, but a discovery now 
ought to be punished by a $10,000 fine.”

Willis Lamb in his 1955 
Nobel Prize acceptance 
speech:

Referring to all of the strange mesons and 
baryons that appeared in the 1950s.

“The garden that had seemed so tidy in 1947 had grown into a jungle by 1960, and hadron physics 
could only be described as chaos.”

                          David Griffiths

The hadrons were classified in two 
large groups in terms of charge, 
mass, and strangeness.
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A Brief History of Subatomic Particles
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Nucleons cannot be point like spin-1/2 Dirac particles

1933: Proton magnetic moment

Otto Stern
Nobel Prize 1943

1960: Elastic e-p scattering

Robert Hofstadter
Nobel Prize 1961

Form Factors F(Q2) → ρ(r)

Proton EM Charge
Radius!

Electric Charge Distribution
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Eightfold Way
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Proposed by Gell-Mann in 1961, independently by Ne’eman.

Arranged baryons and mesons into weird geometrical patterns, according to 
charge  and strangeness .

Hinted at substructure, the same way the periodic table did.

q s

Gell-Mann was the Mendeleev of the subatomic particle zoo…

Meson Octet Baryon Octet

Spin 1/2Spin 0
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Eightfold Way
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Baryon Decuplet

9 of the particles were 
known experimentally, but 
the  was not.

Gell-Mann predicted it, and 
in 1964 it was discovered!

Ω−

Over the next 10 years, every new hadron found a place in one of the 
Eightfold Way supermultiplets.

This begs the question, though, why the patterns?

SUCCESS!

Spin 3/2
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Constituent Quark Model
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In1964 Gell-Mann and Zweig proposed (independently) that all hadrons are 
composed of even more fundamental constituents, which Gell-Mann called quarks.

“—Three quarks for Muster Mark!”     James Joyce in Finnegan’s Wake.

Three fundamental building blocks

1960s ( ) ⇒ 1970s ( )p, n, Λ u, d, s

• Meson, made of 2 quarks:  

• Baryon, made of 3 quarks:  or 

qq̄
qqq q̄q̄q̄

π+ p n

Murray Gell-Mann
Nobel Prize 1969
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Constituent Quark Model
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Quarks Antiquarks

<latexit sha1_base64="vQgbQdGB5PQnrwWLwzaVm3Toahc="></latexit>

quark charge strangenes
u +2/3 0
d �1/3 0
s �1/3 1

Spin 1/2

Actual flavour wave function 
for hadrons is more 
complicated and is a 
superposition of these 
flavour states…
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Constituent Quark Model
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Baryons, made of 3 quarks:  or qqq q̄q̄q̄

Mesons, made of 2 quarks: qq̄

No free quarks observed in nature, ever! 
Peculiar… 
Observed indirectly in DIS experiments at SLAC in the 1970s.
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Deep Inelastic Scattering at SLAC
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Taylor, Friedman, Kendall
Nobel Prize, 1990

Localized Probe

Q2 = − (p − p′￼)2 ≫ 1 fm−2

1
Q

≪ 1 fm

Two variables:

Q2 = 4EE′￼sin2(θ/2)

xB =
Q2

2MNν

ν = E − E′￼

e(p) + h(P) → e′￼(p′￼) + X

Discovery of spin-1/2 quarks and partonic structure!

The birth of QCD (1973)
Quark Model + Yang-Mills gauge theory
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Deep Inelastic Scattering at SLAC
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“Modern Rutherford Experiment”

e(p) + h(P) → e′￼(p′￼) + X
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Quantum Chromodynamics 
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The spin-3/2  particle had 3 spin-1/2 -quarks all in the same apparent 
state!? 

Similar problems with the  and the . 

No two identical Fermions can occupy the same state. 

Colour is necessary for the Pauli exclusion principle to still hold!

Δ++ u

Δ− (ddd) Ω− (sss)

Δ++ = |uuu >

flavour

| ↑ ↑ ↑ >

spin

|ℓ = 0 >

orb. ℓ

1

6
εijkqiqjqk⟩

colour d.o.f.
Enter Quantum ChromoDynamics. 

From the Greek “khroma” ( ), 
meaning colour.

χρμα

PROBLEM:

|qqq⟩ =
1
6

(RGB − RBG + BRG − BGR + GBR − GRB)
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Quantum Chromodynamics
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3 primary colours together  white 

2 primary colours  complementary 
colour

⇒
⇒

All observable particles must be white  colour singlet.⇒

Baryons are red-
blue-green triplets.

Mesons are colour-anticolour pairs.
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Quark Model - Status Update
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End of the 1960s, early 1970s

Quark Model suffered from a profound embarrassment: 

• No free quarks had ever been observed in nature!

• Quark Confinement was proposed to be the solution, but this 

didn’t really explain anything.

• The fact that DIS at SLAC show three “lumps” and not one was 

encouraging.

• Lots of scientists didn’t believe in the colour theory.  “The last gasp of 

the quark model.”

The discovery of the  particle simultaneously in 1974 at both 
Brookhaven and SLAC precipitated the “November Revolution” and saved 
the quark model.

J/Ψ
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Quark Model - November Revolution
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Discovery of  meson:

• Very heavy

• Relatively long lived

• 4th quark, the charm quark! 

• Soon after heavier, charmed baryons  and  were found.

• Quark model was back on solid footing again.

• Confinement was still an issue, though.

J/Ψ

J/Ψ = cc̄
Λ+

c Σ++
c

At this point, 3 quarks but 4 leptons.  Lacked symmetry. 

Of course, soon after another, heavier lepton was found, but then so was another 
quark…

u, d, s
e, ve, μ, νμ
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ℒQCD = ψ̄(iγμ𝒟μ − m)ψ −
1
4

G j
μνG

μν
j

Some interesting results:
• Gluons carry colour.
• The coupling “runs”.
• Weak at high energies  asymptotic freedom

• Strong at low energies  confinement
⇒
⇒

𝒟μ = ∂μ − ig
8

∑
j=1

λj

2
𝒜j

μ(x)

Gi
μν(x) = ∂μ𝒜i

ν(x) − ∂ν𝒜i
μ(x) + gfijk𝒜j

μ(x)𝒜k
ν(x)

Covariant derivative:

Gluon field tensor:

Gell-Mann Matrices
Structure Constants
Gluons

Coupling constant

λj →
fijk →
𝒜j

μ →
g →

QCD Lagrangian
QCD is the theory of quarks, gluons, and their interactions.
QFT based on the invariance under local gauge transformations in SU(3)c
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QED vs. QCD
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Two key features that distinguish QCD from QED:

1. Quarks interact more strongly the further they are apart, and more weakly as they are 
close by  Asymptotic Freedom!

• No other force does this.
• Gluons interact with themselves because they also carry colour charge.
• Photons are not electrically charged and do not interact with each other.

2. QED has two types of charge — positive and negative — whereas QCD has three — 
red, green, and blue.

→

Primitive vertex
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Strong Coupling
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Loop Contributions

Similar to QED
Quark loops like 
lepton loops in 
QED.
For each flavour, 
large mass 
suppressed

Only in QCD
- 8 gluons
- Larger contribution
- Opposite Sign
- Asymptotic Freedom
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Strong Coupling
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Charge Screening

QED Analogue

Gluon self-coupling 
in QCD
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Strong Coupling
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Charge Screening

electron quark

You get “anti-screening” from the gluon-gluon interaction.
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Confinement

Asymptotic
Freedom

QCD Lagrangian
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Wilczek, Gross, Politzer

 as αs → 0 Q → ∞
Close-range behaviour

Nobel Prize 2004
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Electron-Positron Annihilation
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, with overall e+e− → Hadrons JPC = 1−−

Consider  Collider Datae+e−
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Electron-Positron Annihilation
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Idea: Relate  cross section to known (QED) cross sectionqq̄

General Features

 cross section from QED:μ+μ−

 cross section (also only from QED!):qq̄

σ(e+e− → μ+μ−) =
4πα2

3s

σ(e+e− → qq̄) = Nc e2
q σ(e+e− → μ+μ−)

with

<latexit sha1_base64="6oDkK+sN0vfHmbzdJ+APVSZDI84=">AAACYnicdVFBb9MwFHYCgzXA1m1HOFhUTEiUzClVWwlNmuDCcUh0m1RXleO8tNYcJ7WdSVGUP8mNExd+CE4XJEDwSZaev++95/c+x4UUxhLyzfMfPNx79Hi/Fzx5+uzgsH90fGXyUnOY81zm+iZmBqRQMLfCSrgpNLAslnAd335s9es70Ebk6outClhmbK1EKjizjlr1K1ht8TmmElJL66DXozGshaqZ1qxqaikbx72Nzt5hui1ZQjNmNzqr01w39P329DwZmmGMKQ1whzcjl3u6S8blkA9t2xNU0nVsb1qsNzZc9QckJDtgEo7JlEymLpiR8Wg2w1EnDVCHy1X/K01yXmagLJfMmEVECrt0fa3gEpqAlgYKxm/ZGhYuVCwDs6x3FjX4lWMS7MZ2R1m8Y3+vqFlmTJXFLrNd0fytteS/tEVp09myFqooLSh+/1BaSmxz3PqNE6GBW1m5gHEt3KyYb5hm3LpfCZwJvzbF/w+uRmE0CSefx4OLD50d++g5eoleowhN0QX6hC7RHHH03dvzDrxD74cf+Ef+yX2q73U1J+gP+C9+AjcVsAA=</latexit>

eq =

⇢
�1/3 for q = d, s, b
+2/3 u, c, t

and  is the number of coloursNc = 3

R =
σ(e+e− → Hadrons)

σ(e+e− → μ+μ−)
= ∑

q

3e2
q

Then we define the ratio
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Electron-Positron Collider
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e+e− → Hadrons

With QCD corrections: R = ∑
q

3e2
q (1 +

αs(Q2)
π )

Confirmed quark charge 

Confirmed colour hypothesis 

Shows production thresholds for quark flavour production
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Electron-Positron Collider
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e+e− → Hadrons

R = ∑
q

3e2
q = 3 [( 2

3 )
2

+ (−
1
3 )

2

+ (−
1
3 )

2

] = 2

3 Light quarks
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Electron-Positron Collider
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e+e− → Hadrons

R = ∑
q

3e2
q = 3 [( 2

3 )
2

+ (−
1
3 )

2

+ (−
1
3 )

2

+ ( 2
3 )

2

] =
10
3

Include charm
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Electron-Positron Collider

35

e+e− → Hadrons

R = ∑
q

3e2
q = 3 [( 2

3 )
2

+ (−
1
3 )

2

+ (−
1
3 )

2

+ ( 2
3 )

2

+ (−
1
3 )

2

] =
11
3

and bottom
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Consequences of QCD
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Symmetries of the Lagrangian: Parity

 is invariant under parity transformation, i.e. ℒQCD ⃗r → − ⃗r
̂P acting on (t, ⃗r ) → (t, − ⃗r )

Eigenvalues:
 with Eigenvalues ̂Pϕ(t, ⃗r ) = Pϕ(t, ⃗r ) P = ± 1

Consequences for Hadrons:
• All states can be decomposed into states with definite parity, i.e.  or .
• For systems of hadrons, we just multiply the parity of the individual hadrons together to get 

the system parity  multiplicative quantum number (not additive).
• Hadrons produced via QED/QCD from a state with definite parity also have the same total 

parity.
• Additional  symmetries for baryon number, charge, lepton number  combined parity 

operators.

• Define intrinsic parity 

P = 1 P = − 1

→

U(1) →

Pproton = Pneutron = Pelectron = 1

General Eigenvalue Equation:    Q̂f = qf
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Consequences of QCD

37

Symmetries of the Lagrangian: Parity

Example: Parity of the pion using 2H + π− → n + n
Measure angular momentum (i.e. angular distribution)

Intrinsic parity 

Deuteron has spin
Pion has spin
S-wave

 is a Fermion  antisymmetric

Sum

Pproton = Pneutron = 1

n →

<latexit sha1_base64="t4gJ048M+9qHAysjnu6KTwRO9Sc="></latexit>

Sd = 1
S⇡ = 0
L = 0

9
=

; ) Total orbital angular momentum of the final state
L = 1 ⇒ P = (−1)L

(1) (1) (Pπ) = (−1) (1) (1)
p n Pion L = 1 nn

 Pion has intrinsic parity , i.e. it is a pseudo-scalar particle!⇒ Pπ = − 1

General Approach:
• Calculate parity of initial state.
• Examine strong and EM (not weak!) decays, determine angular momenta.
• Find intrinsic parity

̂P [R(r)YM
L (θ, ϕ)] = YM

L (π − θ, ϕ + π) = (−1)LYM
L (θ, ϕ)
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Consequences of QCD
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Symmetries of the Lagrangian: Charge Conjugation

 is invariant under parity transformation, i.e. exchange particle  antiparticleℒQCD ↔

Ĉ |ϕ⟩ → | ϕ̄⟩

Same properties as the parity operator:
• Eigenvalues 
• Multiplicative quantum number for a system
• NEW: only neutral particles can be eigenstates, otherwise the eigenvalue equation 

 does not hold

C = ± 1

Q̂ | f ⟩ = q | f ⟩

Experimental determination: e.g. C-Parity of the pion from decay 
C-Parity of the photon from  from QED
Multiplicative  

π0 → γ + γ
C(γ) = − 1

⇒ C(π0) = (−1)(−1) = 1

Quantum numbers of the pion: JPC = 0−+
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Natural Quantum Numbers
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“Natural” quantum numbers for mesons:  with JPC |L − S | ≤ J ≤ |L + S |
̂P |qq̄⟩ = PqPq̄(−1)L |qq̄⟩ = (+1)(−1)(−1)L |qq̄⟩ = (−1)L+1 |qq̄⟩

Charge Parity of a Meson as Quark-Antiquark pair: Ĉ |qq̄⟩ = C |qq̄⟩

Charge conjugation corresponds to the exchange of a quark/antiquark pair.
Same effect on spatial w.f. as parity inversion 
Spin  (e.g. spin singlet is anti-symmetric under interchange)

 for  and  for 

⇒ C ∼ (−1)L

⇒ C ∼ (−1)S+1

C ∼ + 1 q −1 q̄ ⇒ C ∼ (+1)(−1) ∼ (−1)

Ĉ |qq̄⟩ = (−1)L(−1)S+1(−1) |qq̄⟩ = (−1)L+S |qq̄⟩

Allowed:
Not allowed:
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Theory Approaches
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1. High  (small distances)
Expansion in powers of 
Perturbation theory
Pretty successful!

2. Low  (large distances)
Non-perturbative regime
Approximations difficult

Q
αs

Q

QCD is complicated!

Methods for Low-Energy QCD
Phenomenological models  Potential models, Quark models
Discretize space-time  Lattice QCD
Effective degrees of freedom  Chiral Perturbation Theory

⇒
⇒

⇒
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Non-Relativistic Potential
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The functional form of the potential is chosen to reproduce the asymptotic behaviour of 
the strong interaction.
Useful for heavy quarks, such as .cc̄

At small distances we 
have asymptotic 
freedom and the 
potential is Coulomb 
like: 

At large distances we 
have confinement that 
works like a spring:

V(r) ⟶
r→0

−
4
3

αs(r)
r

V(r) ⟶
r→∞

kr

αs(μ) =
4π

(11 − 2
3 nf) ln ( μ2

Λ2 )

 is the number of flavours

 GeV the QCD scale 
parameter

 is the spring constant  
GeV/fm

nf

Λ ≈ 0.2

k ≈ 1
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Lattice QCD
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The Brute Force Method

“Lattice field theory is the non-perturbative approach to QFT 
through regularised Euclidean functional integrals. 
The regularisation is based on discretisation of the action 
which preserves gauge invariance at all stages”

Preserves gauge invariance
Defines observables without reference to perturbation theory
Allows for stochastic evaluation of observables

Divide continuous spacetime into a discrete lattice.
Do calculations.
Extrapolate to the continuum.

Requires LOTS of computing power.
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Lattice QCD
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Start with Feynman’s Path Integral Formulation of QM

(a.k.a. Fermat’s principle, Hamilton’s principle, principle of least action)

Ψ(x2, t2) =
1
Z ∫ eiS Ψ(x1, t1) 𝒟x

where  is the integration over ALL paths  with ∫ 𝒟x x(t) x(0) = x1

and the action S = ∫
t2

t1

L(x, ·x, t) dt
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Lattice QCD — Summary
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• Gauge invariant
• Works in the non-perturbative regime
• Finite volume, finite momentum
• Requires lots of computing power

S. Durr, et al., Science 322 (2008).
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Effective Field Theory
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Replace the quarks and gluons with effective degrees of freedom that are 
relevant at this scale.

V(h) = mgRE

∞

∑
i=1

(−1)i−1( h
RE )

i

Degree of freedom: 
Symmetries: translations parallel to 
the Earth’s surface and rotations 
about an axis normal to it.

m

A Classical Example

V(h) = mghV(r) = −
GMm

r
→
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Effective Field Theory
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Approximate Symmetries of QCD

Replace the quarks and gluons with effective degrees of freedom that are relevant at 
this scale.

Effective Theories involve a systematic expansion of QCD.

At High Energies , Quarks and Gluons are relevant
Perturbative QCD, Expansion in 

Very slow hadrons 
Pions and Kaons are relevant
Approximate Symmetries  Expansion in 

Heavy quarks 
Light quarks and gluons relevant
Use approximate symmetries

Expansion in 

Q → ∞
1/Q

Q → 0

→ Q

mQ → ∞

→ 1/mQ
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Effective Field Theory
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Approximate Symmetries of QCD

Low-energy approximation to a more fundamental theory (QCD).

Most general Lagrangian consistent with all symmetries. Relevant degrees of 
freedom are the pions, nucleons, etc.

Breakdown scale  GeV.  The mass of the lightest omitted degree of freedom.

Challenges: infinite number of terms in the Lagrangian, non-normalizable in the 
traditional sense.

 
Solution:
Expansion in  and power counting (  is typical momentum and masses). 
Finite number of terms in the Lagrangian. 

Renormalizable to given order ⇒ finite number of Low-Energy Constants (LECs). 

More LECs come in as you go up in order. . .

Λ ≈ 1

q/Λ q
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Charmonium
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November Revolution 1974
Simultaneous discovery of the (heavy)  at SLAC and BNL.
Bound state of  “Charmonium”
First evidence of the charm quark.
Strong confirmation of the quark model.
Discovery of  soon followed.

J/ψ
|cc̄⟩ →

ψ(2S) → J/ψ(e+e−)π+π−

Charm quarks are very heavy, and therefore not relativistic
Unlike the lighter quarks u, d, s
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Charmonium Properties
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n2S+1LJ
Very similar to the spectroscopic notation for 
electron orbitals 

 has the same  as the photon, J/ψ JPC 1−−

⃗S = ⃗S1 + ⃗S2
⃗J = ⃗L + ⃗S

P = (−1)L+1

C = (−1)L+S

 so either  
(singlet) or  (triplet)
S1 = S2 = 1/2 S = 0

S = 1
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The positronium of QCD
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Heavy charm quarks  non-relativistic  semi-classical QM does a pretty good job!→ →
Surprisingly similar structure to positronium.

V(r) = −
4
3

αs(r)
r

+ krMust be solved numerically.
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Production of Charmonium
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Colour suppressed  decay

• Predominantly from -meson decays
b → c

B BELLE

 annihilation / Initial-State Radiation (ISR)

•  collision below nominal c.m. energy

•

e+e−

e+e−

JPC = 1−−

Double charmonium production
• Typically one  or  plus 2nd  stateJ/ψ ψ cc̄

Two photon production
• Access to  stateC = + 1

BESIII

 annihilation
• All quantum numbers available

pp

PANDA
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Decay of Charmonium
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Annihilation:

–  Generally suppressed for bound state 

–  Decay to leptons is a clean experimental signal 

Strong interaction:

–  Dominant above ~3.72 GeV (  mesons) 

–  Suppressed below this mass threshold 

D

Radiative: 

–  EM radiative transition emitting photon 

–  Emit gluons producing light quarks 

Features: 

–  Suppression of strong decays leads to (relatively) long lifetimes, narrow widths 

–  Radiative decays are competitive; often most accessible transitions 
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Charmonium
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One set of hadrons that are particularly simple are 
the charmonium mesons.

Each box represents an observed particle.

Particles fall in groups — ‘gross structure’ splitting 
within a group — ‘fine structure’ reminds us of 
quantum mechanics of atoms.

A reasonable description of the spectrum of  
charmonium comes from solving the Schrödinger 
equation assuming a potential between a charm 
quark and an anti-charm quark.

mn = 2mc + En

1
mn

∇2ψ + V(r)ψ = Enψ

V(r) = −
4
3

αs(r)
r

+ kr Must be solved numerically.
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XYZ States

• Y states: same quantum numbers as the 
photon.  

• Z states: all exotic charge states.  Decay into 
quarkonium state and a light charged meson.

• X states: all other neutral states with quantum 
numbers NOT 

JPC = 1−−

JPC = 1−−

Recent evidence for non-standard exotic heavy 
mesons.

The so called XYZ states.

54

Charmonium structure discovered at Belle and 
observed at both BESIII and LHCb in the decay of the 

, given the name X(3872).

Superposition of exotic and conventional  states??

Υ(4260)

cc̄
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Charmonium States
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The quark model describes most of 
charmonium remarkably well. 

But the XYZ states point beyond the 
quark model.

BESIII can directly produce the Y(4260) 
and Y(4360) in e+e− annihilation. 

BESIII has observed “charged 
charmoniumlike structures” —  
 the Zc(3900) and the Zc(4020).

BESIII has also observed a transition to 
the X(3872). 
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Possible Hadrons
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QCD does not explicitly require only 2- and 3-quark states.  Anything that is 
colourless is fair game.

Totalitarian Principle:  Anything that isn’t forbidden is compulsory.

A new “zoo” of exotic mesons is possible!
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Exotic Hadrons

57
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Many interesting questions about exotic mesons and other higher-energy 
phenomena!

…but we still don’t fully understand our old friends the nucleon and the pion.
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Hadron Structure
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Motivation for the proposed Electron-Ion Collider (EIC).

New facility with enormous Hadron Physics potential!

Evolving understanding of the proton.

Hadrons are strongly interacting, relativistic bound states of quarks and gluons.
Still lots of open questions, including mass, spin, etc.
Lots of work still to be done.

Massless, yet, responsible for nearly all visible mass.

Carry colour charge, responsible for colour confinement and 
strong force.

But, also for asymptotic freedom.

Gluons are very 
intriguing 
particles!
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Scientific Motivation for the EIC

60

The EIC hopes to shed some light on three 
important questions:

1. How does the mass of the nucleon arise?
While the Higgs mechanism can explain all of the mass of 
the electron, it accounts for only a small part of the mass 
of the proton and neutron.

2. How does the spin of the nucleon arise?
Three spin-1⁄2 quarks, bound by gluons, each with angular 
momentum, form a spin-1⁄2 proton.

3. What are the emergent properties of 
dense systems of gluons?

How does nuclear matter behave at extremely high 
densities found in astrophysical systems?
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Emergent Dynamics in QCD

Massless gluons, and almost massless quarks, through their interactions generate 
most of the mass of the nucleons.

Gluons carry 50% of the proton’s momentum, a significant fraction of the nucleon’s 
spin, and are essential for the dynamics of confined partons.

Properties of hadrons are emergent phenomena, resulting not only from the 
equation of motion but are also inextricably tied to the properties of the QCD 
vacuum.  Striking examples besides confinement are spontaneous symmetry 
breaking and anomalies.

The nucleon-nucleon forces emerge from quark-gluon interactions — how this 
occurs remains a mystery…

Experimental insight and guidance are crucial for complete understanding of how 
hadrons and nuclei emerge from quarks and gluons.

Quarks and gluons are kind of a big deal…
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Proton Mass mp ≈ 938 MeV/c2

Proton constituents: 2 u quarks → 2 × 3 MeV/c2 ≈ 6 MeV/c2

1 d quark → 1 × 6 MeV/c2 ≈ 6 MeV/c2

Total quark mass in proton: 12 MeV/c2 !

Where does the proton’s mass come from?!

It’s incorporated in the binding energy 
associated with the gluons!

99% of our mass comes from the 
quark-gluon interactions in the nucleon.

VERY COMPLEX SYSTEM!
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Understanding Nucleon Mass
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M = Eq + Eg + χmq + Tg

Relativistic motion

Quark energy

Gluon energy Quark mass

Trace anomaly

Quantum fluctuation

 symmetry breakingχ

“... The vast majority of the nucleon’s mass is due to 
quantum fluctuations of quark- antiquark pairs, the gluons, 
and the energy associated with quarks moving around at 
close to the speed of light. ...” 

The DOE 2015 Long Range Plan for Nuclear Science 

Preliminary Lattice 
Results

EIC:
• Trace anomaly via  production near threshold
• Quark-Gluon energy from q-g momentum fractions

Υ
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Proton Spin

1
2

=
1
2

ΔΣ + ΔG + Σ Lz
q Lz

g+
q⏟

quark
spin

⏟
gluon
spin

⏟
orbital
angular
momentum

“Helicity sum rule”

Precise determination 
of polarized PDFs of 
quark sea and gluons.

Precision       andΔΣ ΔG

Σ Lz
q Lz

g+
q

Magnitude of
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Spin and Lattice: Recent Activities
Gluon’s spin contribution on Lattice: SG = 0.5(0.1) 

Yi-Bo Yang et al. PRL 118, 102001 (2017) . 

Jq calculated on Lattice QCD: 

QCD Collaboration, PRD 91, 014505 (2015). 

EIC:
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Emergent Properties of Dense Systems of 
Gluons

How does a dense nuclear environment affect the quarks and gluons, their 
correlations, and their interactions?

What happens to the gluon density in nuclei? Does it saturate at high energy, 
giving rise to a gluonic matter with universal properties in all nuclei, even the 
proton?
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EIC:
C.M. energy
High luminosity
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What is the Electron-Ion Collider?

• First major collider to be built 
in North America in the 21st 
century.
- Polarized electrons: 10–20 GeV
- Polarized light ions: (p, d, 3He) and 

unpolarized nuclei  U, 50–250 GeV

- C.M. energy of 

- High luminosity 
- 2nd interaction region possible

• International facility with estimated 
cost of about US$2B

• Large community of 1000+ users at 
220+ institutions in 30+ countries

• Site: BNL on Long Island, NY. 

→
s = 28 − 140 GeV

1033 − 1034 cm−2s−1
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What is the Electron-Ion Collider?
• Make use of existing Relativistic 

Heavy Ion Collider (RHIC).

• Existing tunnel, detector halls, 
hadron injector complex (AGS).

• Build new 20-GeV electron 
linac and add high-intensity 
storage ring in same tunnel.

• Achieve high-luminosity, high-
energy e-p/A collisions with full-
acceptance detectors.

• High luminosity achieved by 
extensions of state-of-the-art 
beam cooling techniques.
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EIC Compared to other DIS Facilities
All DIS Facilities in the 
world.

DIS — Deep Inelastic Scattering
68
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All DIS Facilities in the 
world.

However, if we ask for:

1. high luminosity and 
wide range of  s

DIS — Deep Inelastic Scattering
69

EIC Compared to other DIS Facilities
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All DIS Facilities in the 
world.

However, if we ask for:

1. high luminosity and 
wide range of 

2. polarized lepton and 
hadron beams

3. nuclear beams

s

EIC is unique!

DIS — Deep Inelastic Scattering
70

EIC Compared to other DIS Facilities
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The World’s First Polarized 
Electron-Proton Collider

Polarized proton as a 
laboratory for QCD

How are the sea quarks and gluons — and their spins — distributed 
in space and momentum inside the nucleon?

How do the nucleon properties emerge from them and their 
interactions? 
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ePIC Detector for the EIC
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p/A Beam e− Beam

Hadron 
Endcap

Lepton
Endcap

ECCE + ATHENA = ePIC



D. Hornidge 73

Calorimetry for the ePIC Detector
Electromagnetic calorimeter: Hadronic calorimeter:

• Measure energy and position of charged hadrons, 
neutrons, and 

• Main challenge is resolution for low-E hadrons

• Fe/Scintillator sandwich with longitudinal 
segmentation

K0
L• Measure E,  for photons and identify electrons.

• Backward: PbWO4 Crystals

• Forward: W/SciFi

• Barrel:  Pb/SciFi + Imaging

θ

η = − ln [tan ( θ
2 )]

x =
Q2

2Mν

Pseudo rapidity

Momentum fraction

Q2 = − q2 = − (k − k′￼)2

4-mom transfer of virtual photon

Note: The Barrel has a very wide kinematic coverage!
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Accessing Quarks in Electron-Ion Collisions

Key variables    and      in DIS

Four-momentum transfer of the virtual photon

Q2 = − q2 = − (k − k′￼)2 resolution of probe

Asymmetric reaction unlike pp at LHC!

Electrons in backward direction

Hadrons go in every direction

Need excellent           separatione−/π−

Q2

Momentum fraction of struck quark x

x
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